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ABSTRACT Millimeter-Wave (mmWave) communication is a promising solution for achieving high data
rate and low latency in 5Gwireless networks. Since directional beamforming and antenna arrays are exploited
in the mmWave networks, accurate angle-of-arrival (AOA) measurements can be obtained and utilized for
localization purposes. In this work, we consider the AOA-based positioning for the mmWave networks
using stochastic geometry and analyze how the Cramér-Rao lower bound (CRLB) is affected by the spatial
distribution of nodes, including the target and participating anchors. In order to apply the CRLB on a network
setting with random node locations, we propose an accurate approximation of the CRLB using the dL/4e-th
value of the ordered distances where L is the number of participating anchors. These findings provide us
deep insight into optimum network design that meets specified localization requirements.

INDEX TERMS Millimeter-wave, angle-of-arrival, localizability, Cramér-Rao lower bound.

I. INTRODUCTION
Positioning techniques received considerable attention due to
the emergency of internet-of-things, which can be utilized
to ameliorate the user experience of location-based services,
including indoor navigation, asset tracking, and simultaneous
localization and mapping (SLAM) [1]–[3]. In the 5G wire-
less networks, accurate angle-of-arrival (AOA) information
can be obtained by leveraging the massive antenna array
and highly directional transmission [4]. Thus, AOA-based
localization is regarded as a promising candidate to achieve
high-precision localization for 5G networks.

A. MOTIVATION
Millimeter-Wave (mmWave) is a promising technology for
5G wireless networks to meet the requirements of large
bandwidth and high carrier frequency [5]. Due to its high
transmission rate, mmWave signals enable us to efficiently
detect and resolve the multipath components, which pro-
vide us an opportunity to achieve submeter level localiza-
tion accuracy [6], [7]. However, the coverage area of the
mmWave signals is limited due to its fast attenuation. Block-
age and multipath effects also take significant roles in the
mmWave signal propagation, greatly increasing localization
error [8]. In addition, the cost of themmWave-based system is
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exorbitant due to the deployment of themassive antenna array
and a large number of mmWave anchors. The experimental
verification for the mmWave-based system is complicated
and time-consuming, which brings challenges to examining
the localization performance for the mmWave-based system.

Motivated by these limitations, we attempt to provide an
analytical tool to quantify the localization performance for
the AOA-based positioning and examine how its performance
is affected by the mmWave channel over diverse channel
propagation conditions. To characterize the fundamental lim-
its of the mmWave-based localization system, Cramér-Rao
lower bound (CRLB) is applied, which indicates the opti-
mal localization performance for any unbiased estimator.
However, the CRLB is generally assessed by given speci-
fied anchor geometry, which cannot reflect how the random
network configurations affect this metric. Thus, stochastic
geometry is applied to allow random spatial node locations,
including the target and anchor locations. Based on our
devised result, the system designers can examine how dif-
ferent network parameters and the overall setup influence
localization performance without prolix and complicated
experimental verification.

B. RELATED WORK
Localization based on the mmWave signals is thoroughly
investigated in the existed literature. Based on the processing
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methods, mmWave based localization can be categorized into
proximity, fingerprinting, and geometry-based [9]. A single-
anchor localization method for mmWave wireless networks
is presented in [10], which leverages time delay and angle
information to locate the target of interest. In [11], the authors
utilized the received signal strength (RSS)-based fingerprint-
ing algorithm to estimate the target location using commercial
mmWave Wi-Fi. Due to the fast attenuation of mmWave
signals, the localization performance under mmWave net-
works is subject to none-line-of-sight (NLOS) components,
and the impact of the NLOS propagation is introduced in [12].
Furthermore, a neural networks-enhanced hybrid localization
framework for the mmWave wireless networks is proposed
in [13] to achieve high-precision localization purposes.

To quantify the localization error, L-localizability and
CRLB are utilized to analyze the performance of AOA-
based positioning. The L-localizability is first introduced
in [14] to identify whether a target is localizable with a suf-
ficient number of participating anchors. In [14], the authors
modeled a cellular network with a homogeneous Poisson
point process (HPPP) and applied a dominant interferer
analysis to derive an expression for L-localizability. With
an emphasis on mmWave networks, a reflection hyperbola
model is proposed in [15] to analyze the target localizability,
where the authors considered how the first-order reflection
path affects this metric. Considering the CRLB, a perfor-
mance benchmark is provided to quantify localization per-
formance for the mmWave-based positioning system [16].
The impacts of the massive antenna array and multipath
propagation on the CRLB under mmWave wireless network
are examined in [17]. However, these works assumed that
the locations of the target and anchors are fixed. To exam-
ine the localization performance with random network set-
tings, the authors of [18] derived an accurate approximation
for the time-of-arrival (TOA)-based CRLB by utilizing the
second-largest inter-nodal angle, which introduced a new
paradigm to analyze the localization performance in the area
of stochastic geometry. For RSS-based localization, [19]
applied u-statistics to approximate CRLB, which is only
accurate when numerous anchors participate in the localiza-
tion procedure. In contrast to TOA/RSS-based localization,
a comprehensive analysis of AOA-based localization using
stochastic geometry cannot be found in the open literature,
which motivates us to extend the CRLB paradigm in [18] to
the AOA-based positioning.

C. CONTRIBUTION
We aim to exploit the localization error in a randommmWave
network using stochastic geometry and provide insight into
how the network parameters affect the localization perfor-
mance. The stochastic geometric framework in [18] is applied
to analyze the impact of random anchor placement on CRLB.
The main challenges of this paper are how to utilize a single
random variable to approximate the AOA-based CRLB and
how to bridge the gap between this metric andmmWave chan-
nels. In addition, the NLOS propagation takes a significant

role in the mmWave signal transmission. Thus, a suitable
mmWave model is required to analyze how the NLOS effect
influences the localization performance. The main contribu-
tions of this paper are listed as follows:

1) L-LOCALIZABILITY
A tractable expression of L-localizability is derived for the
mmWave networks, where the directional antenna, Nakagami
fading, and the NLOS effect’s impacts on mmWave-based
localization systems are assessed. An asymptotic bound for
the distribution of the L-localizability is provided to track
the performance of AOA-based localization under mmWave
networks. Thus, the system designers can have insight into
how to optimize the network environment to improve the
localization performance.

2) DISTRIBUTION OF AOA-BASED CRLB
In [18], the authors applied stochastic geometry to
TOA-based localization, which open a new paradigm to
evaluate the localization performance under random wire-
less networks. To the best of our knowledge, there is no
prior work that investigates the impact of random geometry
on AOA-based localization. Motivated by [18], we accu-
rately approximate the AOA-based CRLB using the dL/4e-th
ordered distance, and merge the impacts of mmWave
channels into the devised result. The obtained distribution
provides an average performance bound for the system
designers how to achieve the stated localization requirements
by selecting the most appropriate network parameters.

The rest of this paper is organized as follows. The system
model is presented in Section II, localization performances
are analyzed in Section III, and numerical results are provided
in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL
In this section, we present the underlying model for analysis.

A. NETWORK MODEL
We consider downlink transmission in a mmWave network
where the locations of anchors follow an HPPP1 with anchor
density λ. Let us denote the locations of the anchors as ψ =
[x, y] ∈ R2, and the distance between an arbitrary anchor
and target as r = ||ψ ||, where ‖ · ‖ is the Euclidean norm.
Since the channel gains of NLOS paths are typically weaker
than those from the line-of-sight (LOS) [23], we make the
following assumption.
Assumption 1: The LOS region of the target can be

approximated by a LOS ball b(O, rL), which only contains
the LOS anchors. The anchors outside the LOS ball may be a
LOS anchor or a NLOS anchor with a certain probability.2

Remark 1: The number of anchors inside the LOS ball, i.e.,
L, is also regraded as the average number of anchor the target

1HPPP has been widely leveraged to various network models, such as cel-
lular networks and wireless sensor networks, due to its tractability [20]–[22].

2This assumption is widely applied and validated in the existed
literature [23]–[26].
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FIGURE 1. System model of mmWave wireless network.

can be observed. Conditioned on the number of participating
anchors, coverage area of the LOS ball can be computed
based on the Theorem 2 from [26].
As illustrated in Fig. 1, we assume that the target is located at
the origin O and the anchors are randomly distributed in the
R2 plane. Given that L anchors participate on the localization,
we will denote the nearest and furthest distances between the
associated anchor and target in the LOS ball as r1 and rL ,
respectively. Based on the model, the distance distribution of
the anchors residing in the localization ball is given by [27]

fr|r1,rL (r) =
2r

r2L − r
2
1

, (1)

where r is an unordered parameter with r1 ≤ r ≤ rL .
With the particular interest of the distribution of l-th nearest
anchor, we sort the distance between the anchor and target
in an ascending order. Consequently, the probability density
function (PDF) and cumulative distribution function (CDF)
of the l-th nearest anchor are given by [28]:

frl (rl) =
2(λπr2l )

l

rl(l − 1)!
e−λπr

2
l ,

Frl (rl) = 1−
l−1∑
n=0

1
n!
e−2πλr

2
l (2πλr2l )

n, (2)

where rl is an ordered parameter with 1 ≤ l ≤ L.

B. CHANNEL MODEL
We consider a widely adopted mmWave channel model,
where the probability of the associated anchor to be a LOS
transmitter, referred to as LOS probability, is given by [29]

PLOS (r) = min
(
A
r
, 1
)(

1− e−
r
B

)
+ e−

r
B , (3)

where r is the link distance between the target and the anchor,
the NLOS probability is PNLOS (r) = 1− PLOS (r), A = 18m
and B = 63m for urban environment.
Remark 2: In Fig. 2, we plot the LOS/NLOS probability

across different link distances. It is evident that as the link

FIGURE 2. The LOS and NLOS probability in mmWave wireless networks.

distance between the target and anchor increases, the cor-
responding anchor is more likely to be a NLOS transmitter.
It indicates that the signal transmitted over a long-distance
is more susceptible to blockage and multi-path effects. Fur-
thermore, we can observe that PLOS is close to 1 when the
distance r is less than 20m, which justifies Assumption 1.

The target has a single antenna, whereas each anchor is
equipped with a directional antenna array with Nt elements
and all anchors transmit with a constant power Pt . We use
a subscript q to denote LOS/NLOS link, i.e., q = {L,N }
for LOS and NLOS link, respectively.3 The received signal
power from the l-th anchor is given by NtGT hlr

αq
l , whereGT

is the antenna gain at the anchor, hl is the small-scale fading
gain that follows a Gamma distribution, i.e., hl ∼ 0(Mq,

1
Mq

)
with parameterMq, and αq denote the path-loss exponent; αL
for the LOS link and αN for the NLOS link, respectively. The
antenna gain GT is modeled by the flat-top antenna radiation
pattern as follows [30]

GT =

{
G1 for main lobe with prob. p1 =

ϕ

2π
,

G2 for side lobe with prob. p2 = 1− p1.
(4)

C. AOA MEASUREMENT
Let us denote the AOA between the l-th anchor θl and the
location of target ψ t = [xt , yt ] as

tan(θl) =
yl − yt
xl − xt

, l = 1, . . . ,L, (5)

where we used subscript t and l to indicate the target and the
l-th anchor, respectively. The AOA measurement at l-th
anchor is modeled by

rAOA,l = θl + nAOA,l

= tan−1
(
yl − yt
xl − xt

)
+ nAOA,l, (6)

where nAOA,l imitates the measurement error with variance
σ 2
AOA,l . The vector representation of the AOA measurements

3We assume that there is no correlation between the LOS link and NLOS
link, i.e., the LOS link and NLOS are independent [29].
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is given by

rAOA = f AOA(ψ t )+ nAOA,l, (7)

where rAOA, nAOA, and f AOA(ψ t ) are respectively defined by

rAOA =
[
rAOA,1, rAOA,2, . . . , rAOA,L

]T
,

f AOA(ψ t ) = [θ1, θ2, . . . , θL]T ,

θl = tan−1
(
yl − yt
xl − xt

)
,

nAOA =
[
nAOA,1, nAOA,2, . . . , nAOA,L

]T
. (8)

III. PERFORMANCE ANALYSIS
In this section, we characterize the L-localizability and CRLB
of AOA-based localization for mmWave networks.

A. L-LOCALIZABILITY
L-localizability was first introduced in [14], which is defined
as the probability of having at least L participating anchors
in the localization procedure. We assume that the associated
anchor can align the beam by the implementation of sophisti-
cated beam training protocols [31]. The received signal-to-
interference-plus-noise ratio (SINR) at the target from the
L-th anchors located in the LOS ball can be expressed as

SINRL =
G1hLr

−αL
L

σ 2
n + I

, (9)

where σ 2
n =

σ 2t
βPtNt

is the normalized noise power, σ 2
t is the

thermal noise power, β =
(
λw
4π

)2
is the path-loss intercept

with antenna wavelength, λw, and I is the aggregate interfer-
ence. In [14], the L-localizability is defined for a given SINR
threshold τ as

PL (τ ) = P(SINRL ≥ τ ). (10)

The aggregate interference I in (9) consist of two compo-
nents; Iin and Iout , which is the interference from the nodes
inside and outside the LOS ball respectively. Then we have

I = Iin + Iout

=

L−1∑
i=1,i6=L

aiGT hir
−αL
i +

∞∑
j=L+1

bjGT hjr
−αq
j , (11)

where the indicators ai, bj ∈ {0, 1} represent the network
load, the probability P (ai = 1) = q, P

(
bj = 1

)
= p corre-

spond to the anchor activation probability, and the indicators
ai, bj are fixed throughout the localization procedure. To sim-
plify the derivation, wewill express the interference inside the
LOS ball as follows

Iin = GT h1r
−αL
1 +

L−1∑
i=2

aiGT hir
−αL
i . (12)

Let us denote I1 , GT h1r
−αL
1 and Îin ,

∑L−1
i=2 aiGT hir

−αL
i .

Based on the dominant interference analysis [14], I1 and Îin
can be approximated by the following Lemma.

Lemma 1: I1 and Îin can be approximated by its mean

Îin ≈ E
[
ˆIin|r1, rL ,L

]
= E[GT ] · E[h] ·

2(L̂ − 1)
2− αL

·
r2−αLL − r2−αL1

r2L − r
2
1

,

I1 ≈ E [I1|r1] = E[GT ] · E[h] · r−αL1 , (13)

where L̂ is the number of active anchors inside the LOS ball,
E[GT ] = G1p1 + G2p2, and E[h] is the mean channel gain.
Note that (13) are functions of r1 and rL .

Proof: See Appendix A. �
Based on the Lemma 1, the denominator of SINRL can be

expressed as

I + σ 2
n

(a)
= Iin + Iout + σ 2

n
(b)
= I1 + Îin + Iout + σ 2

n
(c)
= Iout + σ 2, (14)

where step (a) follows from (11), step (b) follows from (12),
and we substitute σ 2

= I1 + Îin + σ 2
n in step (c). Based on

Assumption 1, Iout consists of interference generated by both
LOS or NLOS anchors as expressed below [23]–[26]

Iout = IL + IN , (15)

where IL and IN represents the interference generated by the
LOS andNLOS anchors, respectively, that are located outside
the LOS ball. Then the Laplace transform of Iout is

LIout (s) = LIL (s)LIN (s) = EIL
[
e−sIL

]
EIN

[
e−sIN

]
= exp

(
−2πλp · ω

(
s|rL , αq

))
, (16)

where ω
(
s|rL , αq

)
is defined below

ω
(
s|rL , αq

)
, PLOS (r)

∫
∞

rL

(
1− Eh,GT

[
e−shGT r

−αL
])
rdr

+PNLOS (r)
∫
∞

rL

(
1− Eh,GT

[
e−shGT r

−αN
])
rdr . (17)

The term Eh,GT [exp (−shGT rαq)] is derived as follows

Eh,GT [exp
(
−shGT rαq

)
]

(a)
= p1 Eh[e−shG1 rαq ]+ p2 Eh[e−shG2 rαq ]
(b)
=

p1
(1+ sG1 · r−αq )Mq

+
p2

(1+ sG2 · r−αq )Mq
, (18)

where we applied (4) in step (a) and utilized the Laplace
transform of the Gamma random variable in step (b) [29].
To conclude, the L-localizability in (10) can be evaluated as

PL (τ )
(a)
=

ML∑
i=1

(−1)i+1
(
ML

i

)
E

[
e−

iτη(σ2+Iout)r
αL
L

G1

]
(b)
=

ML∑
i=1

(−1)i+1
(
ML

i

)
Er1,rL
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FIGURE 3. Accuracy of L-localizability.

×

[
e−iτµσ

2
· EIout

(
e−iτµIout

)]
(c)
=

ML∑
i=1

(−1)i+1
(
ML

i

)∫
∞

0

∫ rL

0
e−iτµσ

2
LIout (iτµ)

× fr1 (ι)frL (υ)dιdυ, (19)

where η = ML(ML !)
−

1
ML , (14) and Alzer’s inequality [32]

are used in step (a), a change of variable is used in step (b),
i.e., µ = ηrαL

G1
, and EIout

[
e−iτµIout

]
= LIout (iτµ) in step (c).

Note that LIout (s) in (16) is a function of rL , whereas σ 2
=

I1 + Îin + σ 2
n is a function of both r1 and rL .

Remark 3: When the parameter ML is equal to 1,
(19) provides the localization performance for Rayleigh fad-
ing. Different from the approximation method in [14], we only
approximate the interference inside the LOS ball by its mean
value. We can observe in Fig. 3 that our devised method is
slightly better than that in [14].

B. APPROXIMATION OF CRAMER-RAO LOWER BOUND
We derive the AOA-based random CRLB using the FIM,
denoted by IAOA(ψ t ), as [9]

IAOA(ψ t )

=

(
∂f AOA(ψ t )
∂ψ t

)T
· C−1AOA ·

∂f AOA(ψ t )
∂ψ t

=


L∑
i=1

(yt − yi)2

r4i · σ
2
AOA,i

−

L∑
i=1

(xt − xi)(yt − yi)

r4i · σ
2
AOA,i

−

L∑
i=1

(xt − xi)(yt − yi)

r4i · σ
2
AOA,i

L∑
i=1

(xt − xi)2

r4i · σ
2
AOA,i

 ,
(20)

where CAOA represents the noise covariance matrix and
f AOA(ψ t ) is the angle vector with respect to ψ t , given by

CAOA

= diag
(
σ 2
AOA,1, σ

2
AOA,2, . . . , σ

2
AOA,L

)
,

∂f AOA(ψ t )
∂ψ t

= −



yt − y1
(xt − x1)2 + (yt − y1)2

xt − x1
(xt − x1)2 + (yt − y1)2

yt − y2
(xt − x2)2 + (yt − y2)2

xt − x2
(xt − x2)2 + (yt − y2)2

...
...

yt − yL
(xt − xL)2 + (yt − yL)2

xt − xL
(xt − xL)2 + (yt − yL)2


.

(21)

Remark 4: In contrast to the AOA-based CRLB, the FIM
of TOA-based localization can be represented by angular
information θi as [18]

ITOA(ψ t )

=


L∑
i=1

(xt − xi)2

r2i · σ
2
TOA,i

L∑
i=1

(xt − xi)(yt − yi)

r2i · σ
2
TOA,i

L∑
i=1

(xt − xi)(yt − yi)

r2i · σ
2
TOA,i

L∑
i=1

(yt − yi)2

r2i · σ
2
TOA,i



=


L∑
i=1

cos2θi
σ 2
TOA,i

L∑
i=1

sin θi cos θi
σ 2
TOA,i

L∑
i=1

sin θi cos θi
σ 2
TOA,i

L∑
i=1

sin2θi
σ 2
TOA,i

 . (22)

However, the AOA-based CRLB cannot be simplified as (22)
because the sufficient statistics of (21) requires both x and
y coordinates. In order to resolve this issue, [19] used the
u-statistics to compute the joint distribution of AOA-based
CRLB. However, this method is accurate only when the num-
ber of participating anchors is sufficiently large.
To evaluate the average localization performance, we assume
σAOA to be known and identical for each anchor [18], [19]

σAOA , σAOA,1 = σAOA,2 = · · · = σAOA,L . (23)

Then, the standard deviation of AOA measurement is com-
puted as [16], [33]

σAOA =

√
E(r)2

10E(SNR)/10
, where E(SNR) =

E[G]Pt
N0 WTOT

,

(24)

E(r) is the mean distance from all participating anchors,
E(SNR) is the average signal-to-noise-ratio (SNR) for the
mmWave network, E[G] is the mean channel gain, N0 is the
spectral density of the white Gaussian noise, andWTOT is the
total system bandwidth.
Remark 5: The assumption in (23) has been validated and

justified in [14], [18], [19]. In this paper, we attempt to
compute the average localization error using the AOA-based
positioning, thus we assume that the AOA measurement is
statistically independent with its means and same variance.
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By using IAOA(ψ t ) in (20), the CRLB of AOA-based local-
ization can be expressed as [18], [19]

CRLB = tr
(
I−1AOA(ψ t )

)
=

L · σ̂ 2
AOA

Q1 − Q2
, (25)

where σ̂ 2
AOA is the approximated AOA variance; Q1 and Q2

are given by

Q1 =

L∑
i=1

(yi − yt )2

r4i
·

L∑
j=1

(xj − xt )2

r4j
,

Q2 =

L∑
i=1

(xi − xt )2(yi − yt )2

r8i
. (26)

In order to characterize the distribution of the CRLB in (25),
(26) needs to be simplified. In the following Lemma, we use
asymptotic bounds to approximate Q1 and Q2, which enable
us to represent the AOA-based CRLB using a single variable.
Lemma 2: Q1 and Q2 in (26) can be approximated as

Q1 ≈

(
1
2

L∑
i=1

1

r2i

)2

, Q2 =

L∑
i=1

1

4r4i
. (27)

Proof: See Appendix B. �
Based on Lemma 2, (25) can be expressed as

CRLB ≈
4L · σ̂ 2

AOA(∑L
i=1

1
r2i

)2

−
∑L

i=1
1
r4i

=
4L · σ̂ 2

AOA
L∑

i,j=1
i6=j

1
r2i r

2
j

. (28)

In the following Proposition, we will further simplify (28).
Proposition 1: Let us assume that the link distances are

sorted in an ascending order, i.e., r1 ≤ r2 ≤ · · · ≤ rL . The
term Q1 − Q2 can be approximated as

Q1 − Q2 ,
L∑

i,j=1
i6=j

1

r2i r
2
j

≈
L(L − 1)

r4
dL/4e

, (29)

where L is the number of participating anchors and rdL/4e is
the dL/4e-th link distance in the ordered set R = [r1, . . . , rL].
In the following subsections, we employ two methods to

justify the approximation in (29), namely, mutual information
and root-finding. Then in Section IV, we use Monte Carlo
simulation to validate the accuracy of (29).

1) MUTUAL INFORMATION
To justify (29), we will approximate D , Q1 − Q2 by an
optimized approximation of rk , denoted as r∗, given by

D ≈
L(L − 1)

r4∗
, (30)

where the term r∗ minimizes the mean square error (MSE)

r∗ = min
1≤k≤L

E

[∣∣∣∣D− L(L − 1)

r4k

∣∣∣∣2
]
. (31)

FIGURE 4. Impact of distance selection on mutual information.

Since R is a sorted set, the expression in (29) is bounded by

L (L − 1)

r4L
≤

L∑
i,j=1
i6=j

1

r2i r
2
j

≤
L (L − 1)

r41
. (32)

In [18], the authors introduced an approximation scheme
where the best approximation was achieved by maximizing
the mutual information. Furthermore, feature selection by
maximizing the mutual information is a well know technique
in machine learning and statistics [34]–[36]. Motivated by
these approaches, we adopt a heuristic method and perform
an iterative search to find the k-th term rk , 1 ≤ k ≤ L, as

min
1≤k≤L

E

[∣∣∣∣D− L(L − 1)

r4k

∣∣∣∣2
]
⇔ max

1≤k≤L
I (D; rk |L),

(33)

where I (D; rk |L) is the mutual information (MI) between
D and rk for a given L. The MI is defined in terms of the
differential entropies h(D|L) and h(D|rk ,L) as [18]

I (D; rk |L) = h (D|L)− h (D|rk ,L) , (34)

where the supports of rk and d are denoted by Rk and D̄,

h(D|L) = −
∑
d∈D̄

fD(d |L) log2 fD(d |L),

h(D|rk ,L) = −
∑

rk∈Rk ,d∈D̄

fD;rk (d |r,L) log2 fD(d |r,L).

(35)

Through extensive simulation, we observed that the dL/4e-
th distance achieves the maximum mutual information as
illustrated in Fig. 4, thus we can use the dL/4e-th distance to
approximateD in (30), justifying Proposition 1. Furthermore,
we observed that as the number of anchors increases, the
mutual information trends to saturate for L ≥ 9.
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FIGURE 5. Original CRLB compared with approximate CRLBs.

2) ROOT-FINDING Method [37]
Wemay use root-finding algorithm as an alternative approach
to approximate (29), where the optimized approximation of
rk is determined as the root of the following function

f (r) =
L∑

i,j=1
i6=j

1

r2i r
2
j

−
L(L − 1)

r4
. (36)

Since the range of r is bounded between r1 ≤ r ≤ rL
and (33), the following property holds; f (rL) · f (r1) < 0.
By applying Newton’s iterative method, we found that the
roots of (36) are located at the d 5L16 e-th and dL/4e-th dis-
tances, which validates (29) and Proposition 1.

Based on Proposition 1, the CRLB in (28) of the
AOA-based localization can be approximated as follows

CRLB ≈
4 σ̂ 2

AOA

L − 1
· r4
dL/4e. (37)

We note that the CRLB in (37) is a function of rdL/4e, which is
a random variable. In the following proposition, we provide
the distribution of CRLB based on the distance distribution of
rdL/4e [27]. To remain consistency with the root mean square
error, we derive the distribution of the squared-root CRLB,
instead of CRLB.
Proposition 2: Let us assume that the number of

participating anchors L and the standard deviation of AOA
measurement σAOA are known. Based on [27], the CDF of a
squared-root CRLB is given by

P
(√

CRLB ≤ s
)
= F√CRLB

(
s|L, σ̂AOA

)
= FrdL/4e

√ s
√
L − 1

2σ̂AOA

∣∣∣∣L, σ̂AOA
 , (38)

where Frn (r) is the CDF of the n-th distance [27, eq. (9)].
Remark 6: In Fig. 5, we plot the CRLB curve evalu-

ated by (25) (labeled as ‘original CRLB’), (37) (labeled as
‘dL/4e-th distance’), the 1-st and the L-th ordered distances.

FIGURE 6. Impact of L on L-localizability when αL = 2.1, αN = 4, L = 5,
Nt = 64 and q = 0.75.

FIGURE 7. Impact of Nakagami fading parameter, M on L-localizability
when αL = 2.1, αN = 4, Nt = 64 and q = 0.75.

Note that there is a wide gap between the approximations
of CRLB using the L-th, 1-st distance and the original
CRLB. However, the approximation based on (37) accurately
matches the exact CRLB, which justifies Proposition 1 and
Proposition 2.

IV. SIMULATION RESULTS
In this section, we evaluate the L-localizability and
AOA-based CRLB for mmWave networks, compare simula-
tion results to numerical results, and investigate the impact of
network parameters on the localization performance.We used
MATLAB to simulate a realization of the node deployment
106 times. We assumed that the anchors are randomly dis-
tributed by a HPPP with density λ = 2/

√
3× 5002m2, band-

widthWTOT = 1 GHz, transmit power PT = 1 Watt, antenna
spacing d = λw/4, path-loss intercept β = (λw/4π)2, and
antenna gain G1 = 1 and G2 = 0.2 with its associate
probability p1 = 0.4 and p2 = 0.6, respectively.
In Figs. 6-7, we assessed the impact of network parameters

on the performance of L-localizability. Specifically, we first
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FIGURE 8. Impact of number of anchors on the distribution of
√

CRLB
when αL = 2.1, Nt = 64, ML = 5 and q = 0.75.

FIGURE 9. Impact of M (M = 3,5,7) on the distribution of
√

CRLB when
αL = 2.1, Nt = 64, L = 5, q = 0.75 and the impact of Nt (Nt = 32,64,128)
when αL = 2, M = 1, L = 5 and q = 0.75.

plotted the L-localizability versus the SINR threshold across
different number of participating anchors L in Fig. 6. Then
we fixed L and compared the performance of L-localizability
across different Nakagami fading parameter ML in Fig. 7.
The simulation results are plotted by circle markers with a
line, whereas the analytical results are illustrated by dashed
curves. We observed that the numerical results are very close
to the analytical results, justifying the analysis. In Fig. 6,
we note that reducing the number of participating anchors
increases the L-localizability PL(τ ). This phenomenon is
understandable as a large number of participating anchors
leads to a higher interference, degrading the overall perfor-
mance. In Fig. 7, we observed that the L-localizability perfor-
mance escalates with a higherML value, which represents the
Nakagami parameter of the LOS link. As ML increases, the
LOS channel becomes more deterministic while the NLOS
channel condition remains fixed, which results in a higher
SINR in (9) and better PL (τ ) in (10). Note that the case of
ML = 1 corresponds to Rayleigh fading environment.
In Figs. 8-9, we evaluated the distribution of the

squared-root CRLB P(
√
CRLB ≤s) and compared its perfor-

mance across various configuration of network parameters.
The numerical results are evaluated by using (38) in Propo-
sition 2 and plotted by solid curves, whereas the simulation
results are illustrated by dotted curves. We used the approxi-
mation based on the dL/4e-th distance and observed that the
numerical results closely match simulation results, validating
the accuracy of Proposition 2. In Fig. 8, we observed that
P(
√
CRLB ≤s) is an increasing function of L, indicating that

the localization error declines for a large number of participat-
ing anchors. Hence, a network designer looking to improve
the localization accuracy needs to optimize the network envi-
ronment to ensure a sufficient number of anchors participate
in the localization procedure. For example, a joint optimiza-
tion problem can be designed that maximizes the CRLB
distribution P(

√
CRLB ≤ s) given that the L-localizability

PL (τ ) is above certain threshold. Fig. 9 compares the local-
ization performance for various Nakagami parameter ML
and the number of antenna elements Nt . We observed that
increasing ML parameter improves the localization perfor-
mance, which provides similar result in Fig. 7. Furthermore,
we consider the impact of the number of antenna Nt on the
localization performance. For a larger Nt , the normalized

noise power σ 2
n =

σ 2T
βPtNt

will decrease, resulting in a higher
P(
√
CRLB ≤ s). This indicates that the localization perfor-

mance can be enhanced by adding more antenna elements in
the anchors, which raises the implementation cost for each
anchor.

V. CONCLUSION
This paper presents L-localizability and random AOA-based
CRLB for mmWave wireless networks, where we used
stochastic geometry to account for all possible position-
ing scenarios. We derived the L-localizability and random
CRLB for AOA localization while considering the flat-top
antenna radiation pattern and Nakagami fading. We provided
numerical results to validate the analytical derivation and
investigated the impact of various network parameters, e.g.,
network load, fading parameters, number of anchors, number
of antenna elements, on the localization performance. The
analytical framework developed in this paper offers an accu-
rate tool to evaluate the localization performance of mmWave
wireless networks without relying on extensive simulation.
The network operators can use the asymptotic bounds to opti-
mize the network parameters and find the best deployment of
the anchors to ensure localization performance.

APPENDIX A
The interference inside the LOS ball except for the nearest
anchor is approximated as [14]:

E
[
Î1|r1, rL ,L

]
= E[GT ] ·

∫ rL

r1

∫
∞

0

2r

r2L − r
2
1

r−αL · hf (h)dhdr
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= E[GT ] · E[h] ·
2(L̂ − 1)
2− αL

·
r2−αLL − r2−αL1

r2L − r
2
1

, (39)

where f (h) is the PDF of the desired channel power,E[GT ] =
G1p1 + G2p2 and E[h] is the mean channel gain.

APPENDIX B
First, we derive the lower bound of Q2 as follows

Q2
(a)
≥

L∑
i=1

1
4 [(xi − xt )

2
+ (yi − yt )2]2

r8i

(b)
=

L∑
i=1

1

4r4i
, (40)

where the inequality (xi−xt )2+(yi−yt )2 ≥ 2(xi−xt )(yi−yt )
is applied to step (a) and Cartesian coordinates is converted to
polar coordinate in step (b). As the polar coordinate of (xi, yi)
is given by

xi − xt = ri cos (θi) , yi − yt = ri sin (θi) , (41)

we derive the upper bound of Q1 as

Q1 =

L∑
i=1

(yi − yt )2

r4i

L∑
j=1

(xj − xt )2

r4j

=

L∑
i=1

sin2 (θi)

r2i

L∑
j=1

cos2
(
θj
)

r2j
, (42)

where we will maximize Q1 with respect to the phase {θi} for
a given distance {θi}. Then, (42) can be expressed as

Q1 =

L∑
i=1

sin2 (θi)

r2i

L∑
j=1

1− sin2
(
θj
)

rj
= ξ

 L∑
j=1

1

r2j
− ξ

 ,
(43)

where we denote ξ ,
∑L

i=1
sin2(θi)
r2i

. The first order derivative

of Q1 is zero when ξ∗ = 1
2

∑L
i=1

1
r2i

and the second order

derivative of Q1 has a negative value at ξ∗ as follows

∂Q1

∂ξ
=

L∑
i=1

1

r2i
− 2ξ = 0⇒ ξ∗ =

1
2

L∑
i=1

1

r2i
,

∂2Q1

∂ξ2
= −2 < 0. (44)

Thus, Q1 is upper bounded by

Q1 ≤ max
{θi}

Q1

∣∣∣∣
ξ=ξ∗
=

(
1
2

L∑
i=1

1

r2i

)2

. (45)

This completes the proof.
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