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ABSTRACT The Visual Simultaneous Localization and Mapping (VSLAM) is a system based on the scene’s
features to estimate a map and the system pose. Commonly, VSLAM algorithms are focused on a static
environment; however, some dynamic objects are present in the vast majority of real-world applications.
This work presents a feature-based SLAM system focused on dynamic environments using convolutional
neural networks, optical flow, and depth maps to detect objects in the scene. The proposed system employs
a stereo camera as the primary sensor to capture the scene. The neural network is responsible for object
detection and segmentation to avoid erroneous maps and wrong system locations. Moreover, the proposed
system’s processing time is fast and can run in real-time, running in outdoor and indoor environments. The
proposed approach has been compared with state-of-the-art; besides, we present several experimental results

outdoors that corroborate the approach’s effectiveness. Our code is available online.

INDEX TERMS VSLAM, dynamic environment, stereo vision, neural network.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) systems
are strategic for developing the following navigation tech-
niques. This is mainly due to its fundamental utility in
solving the problem of autonomous exploration tasks in
unknown environments such as mines, highways, farmlands,
underwater/aerial environments, and in broad terms, indoor
and outdoor scenes. The problem of SLAM for indoor
environments has been investigated for years, where usually
RGB-D cameras or Lidars are the primary sensors to capture
scenes [1]-[3]. Indoors, dynamic objects are usually more
controllable, unlike outdoors, where dynamic objects are
inherent to the scene.

On the other hand, the vast majority of SLAM systems
are focused on the assumption of static environments, such
as HECTOR-SLAM [4], Kintinuous [5], MonoSLAM [6],
PTAM [7], SVO [8], LSD-SLAM [9], among others. Since
this assumption is strong, the system is restricted to work in
static environments. However, in dynamic environments, the
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moving objects can generate an erroneous map and wrong
poses because dynamic features cause a bad pose estimation
and incorrect data. For this reason, new approaches have
arisen for solving the dynamic environment problem, such
as NeuroSLAM [10], hierarchical Outdoor SLAM [11], and
Large-Scale Outdoor SLAM [12].

In this work, we propose a method called STDyn-SLAM for
solving VSLAM'’s problem in dynamic outdoor environments
using stereo vision [19]. Fig. 1 depicts a sketch of our
proposal in real experiments. The first row shows the input
images, where a potentially dynamic object is present on
the scene and is detected by a semantic segmentation neural
network. Fig. 1d depicts the 3D reconstruction excluding
dynamic objects. To evaluate our system, we carried out
experiments in different outdoor scenes, and we qualitatively
compared the 3D reconstructions taking into account the
excluding of dynamic objects. We conducted experiments
using sequences from KITTI Dataset, and they are compared
with state-of-the-art systems. Furthermore, our approach is
implemented in ROS, in which we use the depth image
from a stereo camera for making the 3D reconstruction using
the octomap. Also, we analyzed the processing time using
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TABLE 1. This table shows the state-of-the-art SLAM problem considering dynamic environments.

System Sensor Environment | Dynamic Objects | Real Time Method
[13] Mono Indoor YOLO and GPU 3-D Box Proposal Generation,
Outdoor MS-CNN standard 3-D map point
reprojection error, constant motion
model with uniform velocity
[14] RGB-D/Stereo Indoor MS COCO — Segmentation algorithm
and monocular Outdoor and inpainting background
[15] RGB-D Indoor PASCAL VOC — Semantic segmentation,
and optical flow
[16] Mono Indoor COCO — Semantic segmentation network,
Outdoor depth prediction network
and geometry properties
[17] RGB-D Indoor COCO — Mask R-CNN, edge refinement,
and optical flow
[18] RGB-D/Stereo Indoor COCO — Factor graph and instance-level object
and proprioceptive Outdoor segmentation algorithm
Ours RGB-D/Stereo Indoor PASCAL VOC GPU Semantic segmentation, optical flow
Outdoor and epipolar geometry

different datasets. Further, we publish our code been available
on GitHub.! Also, a video is available on YouTube. The main
contributions are itemized as follows:

o We proposed a Stereo SLAM for dynamic environments
using semantic segmentation neural network and geo-
metrical constraints to eliminate the dynamic objects.

« We use the depth image from a stereo camera for making
the 3D reconstruction using the octomap. The depth
image is not necessary for the SLAM process.

o This work was tested using the KITTI and EurocMav
datasets, and we compared our system with the stereo
configuration systems from state-of-the-art. In addition,
we obtained results from outdoor and indoor environ-
ments of our sequences.

o Some results are shown in a YouTube video, and the
STDyn-SLAM is available as a GitHub repo.

The rest of the paper is structured as follows. Section II
mentions the related work of SLAM in dynamic environ-
ments. Then, in Section III, we show the main results and
the algorithm STDyn-SLAM algorithm. Section IV presents
the real-time experiments of STDyn-SLAM in outdoor
environments with moving objects; we compare our approach
with state-of-art methods using the KITTI dataset. Finally, the
conclusions and the future work are given in Section V.

Il. RELATED WORK

A. CLASSIC APPROACHES

The classical methods do not consider artificial intelligence.
Some of these approaches are based on optical flow, epipolar
geometry, or a combination of the two. For example, in [20],
Yang et al. propose a SLAM system using an RGB-D camera
and two encoders for estimating the pose and building an

1 https://github.com/DanielaEsparza/STDyn-SLAM
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(d) 3D reconstruction

FIGURE 1. The STDyn-SLAM results in scenes with moving objects. First
raw: Input images with two dynamic objects. Second raw: 3D
reconstruction performed by the STDyn-SLAM discarding moving objects.

OctoMap. The dynamic pixels are removed using an object
detector and a K-means to segment the point cloud. On the
other hand, in [21], Gimenez et al. present a CP-SLAM based
on continuous probabilistic mapping and a Markov random
field; they use the iterated conditional modes. Wang et al. [22]
propose a SLAM system for indoor environments based
on an RGB-D camera. They use the number of features
on the static scene and assume that the parallax between
consecutive images is a movement constraint. In [23],
Cheng, Sun, and Meng implement an optical-flow and the
five-point algorithm approach to obtain dynamic features.
In [24], Ma and Jia proposed a visual SLAM for dynamic
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FIGURE 2. A block diagram showing the algorithm steps of the STDyn-SLAM.

environments, detecting the moving objects in the scene using
optical flow. Furthermore, they use the RANSAC algorithm
to improve the computation of the homography matrix.
In [25], Sun et al. proposed an RGB-D system for detecting
moving objects based on ego-motion to compensate for the
camera movement, then obtaining the frame difference. The
result of frame difference helps for detecting the moving
object. After that, Sun et al. proposed in [26] an RGB-D
system for motion removal based on a foreground model. This
system does not require prior information.

B. ARTIFICIAL-INTELLIGENCE-BASED APPROACHES
Thanks to the growing use of deep learning, the
researchers have proposed some SLAM systems using
artificial-intelligence-based approaches. Table 1 resumes
the state-of-art in this regard. Some works, such as
Dosovitskiy et al. [27], 1lg et al. [28] and Mayer et al. [29],
used optical flow and supervised learning for detecting and
segmenting moving objects.

In [30], Xu et al. proposed an instance segmentation of
the objects in the scene based on the COCO dataset [31].
The geometric and motion properties are detected and used to
improve the mask boundaries. Also, they tracked the visible
objects and moving objects and estimated the system’s pose.
Several works are based on RGB-D cameras, such as [15],
[17], and [18]. Cui and Ma [15] proposed the SOF-SLAM,
an RGB-D system based on ORB-SLAM?2, which combines
a neural network for semantic segmentation, and optical flow
for removing dynamic features. Zhao et al. [17] proposed an
RGB-D framework to dynamic scenes, where they combined
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the Mask R-CNN, edge refinement, and optical flow to detect
the probably dynamic objects. Henein et al. [18] proposed a
system based on an RGBD camera and proprioceptive sensors
for tackling the SLAM problem. They employ a model
of factor graph and an instance-level object segmentation
algorithm to the classification of objects and the tracking of
features. The proprioceptive sensors are used to estimate the
camera pose. Also, some works use a monocular camera,
for instance, the DSOD-SLAM presented in [16]. Ma et al.
employ a semantic segmentation network, a depth prediction
network, and geometry properties to improve the results in
dynamic environments. Our work is built on the well-known
ORB-SLAM?2 [32], taking some ideas from DS-SLAM
system [33]. In the DS-SLAM, the authors used stored images
from an RGB-D camera for solving the SLAM problem
in indoor dynamic environments. Nevertheless, the depth
map obtained from an RGB-D camera is hard for external
environments. In [34], Cheng et al. proposed a SLAM
system for building a semantic map in dynamic environments
using CRF-RNN for segmenting objects. Bescos ef al.
in [14] proposed a system for object detecting using the
Mask R-CNN, and their method proposed for inpainting the
background using the information from previous images.
An update of [14] is [35], where Bescos et al. proposed a
visual SLAM based on the trajectories of the objects and a
bundle adjustment.

lll. METHODS
In this section, we present and describe the framework of the
STDyn-SLAM with all the parts that compose it. A block
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diagram describing the framework’s pipeline is depicted in
Fig. 2, where the inputs at the instant time ¢ are the stereo
pair, depth image, and the left image captured at ¢+ — 1 (aka
previous left image). The process starts with extracting ORB
features in the stereo pair and the past left image. Then,
it follows the optical flow and epipolar geometry image
processing. Next, the neural network segments potentially
moving objects parallelly in the current left image. To remove
outliers (features inside dynamic objects) and estimate the
visual odometry, it is necessary to computation the semantic
information and the movement checking process. Finally, the
3D reconstruction is computed from the segmented image,
visual odometry, the current left frame, and the depth image.
These processes are explained in detail in the following
subsections.

A. STEREO PROCESS

Motivated by the vast applications of robotics outdoors,
where dynamic objects are presented, we proposed that
our STDyn-SLAM system be focused on stereo vision.
A considerable advantage of this is that the depth estimation
from a stereo camera is directly given as a distance measure.
The process described in this part is depicted in Fig. 2,
where three main tasks are developed: feature extraction,
optical flow, and epipolar geometry. Let’s begin with the
former.

The first step of the stereo process is acquiring the left,
right, and depth frames from a stereo camera. Then, a local
feature detector is applied in the stereo pair and the previous
left image. As a feature detector, we use the Oriented fast
and Rotated Brief (ORB) feature detector, which throws the
well-known ORB features [36]. Once the ORB features are
found, optical flow and a process using epipolar geometry are
conducted.

To avoid dynamic objects not classified by the neural
network (explained in the following subsection), the STDyn-
SLAM computes optical flow using the previous and current
left frames. This step employs a Harris detector to compute
the optical flow. Remember, these features are different from
the ORB ones. The Harris points pair is discarded if at least
one of the points is on the edge corner or close to it.

From the fundamental matrix, ORB features, and optical
flow, we compute the epipolar lines. Thus, we can map
the matched features from the current left frame into the
previous left frame. The distance from the corresponding
epipolar line to the mapped feature into the past left image
determines an inlier or outlier. Please refer to the remove
outliers section in Fig. 2. Notice that the orb features of the
car in the left image were removed, but the points on the
right frame remain unchanged. This is because removing
the points in the right images adds computational cost and is
unnecessary.

B. ARTIFICIAL NEURAL NETWORK'’s ARCHITECTURE
The approach we use is eliminating the ORB features on
dynamic objects. To address this, we need to discern the
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natural dynamic objects among all the objects in the scene.
It is here where the NN depicted in Fig. 2 is introduced.
In the NN block of that figure, a semantic segmentation
neural network is shown, with the left image as input and
a segmented image with the object of interest as output.
This NN is a pixel-wise classification and segmentation
framework. The STDyn-SLAM implements a particular NN
of this kind called SegNet [37], which is an encoder-decoder
network based on the VGG-16 model [38]. The encoder
of this NN architecture counts with thirteen convolutional
layers with batch normalization, a ReLU non-linearity
divided into five encoders, and five non-overlapping max-
pooling and sub-sampling layers located at the end of each
encoder. Since each encoder is connected to a corresponding
decoder, the decoder architecture has the same number
of layers as encoder architecture, and every decoder has
an upsampling layer at first. The last layer is a softmax
classifier. SegNet classifies the pixel-wise using a model
based on the PASCAL VOC dataset [39], which consists
of twenty classes. The pixel-wise can be classified into
one of the following classes: airplane, bicycle, bird, boat,
bottle, bus, car, cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep, sofa, train and
TV/monitor.

Notwithstanding those above, not all feature points in the
left frame are matched in the right frame. For that reason and
to save computing resources, the SegNet classifies the objects
of interest only on the left input image.

1) OUTLIERS REMOVAL

Once all the previous steps have been accomplished, a thresh-
old is selected to determine the features as inlier or outlier.
Fig. 3 depicts the three cases of a mapped feature. Let x1, x2,
and x3 denote the ORB features from the previous left image;
x{, X3, and x} are the corresponding features from the current
left image; X and X' represent the homogeneous coordinates
of x and x', respectively; F is the fundamental matrix; and
l{ = FX1, I} = FX», and I; = FXj are the epipolar lines.
The first and second cases correspond to inliers, x| is over
I{, and the distance from x} to [} is less than the threshold.
The third case is an outlier because the distance from xé
to [§ is greater than the threshold. To compute the distance
between the point x” and the epipolar line, I’, we proceed as
follows,

. XTFX
dX'\ I = ——— (€]

J(FX)} + (FX)3

where the subindex from (FX); and (FX), denotes the
element of the epipolar line. If the distance is larger than
the threshold, the feature point is considered an outlier, i.e.,
a dynamic feature.

Remember that the SegNet, described before, semantically
segments the left image in object classes. The semantic
segmentation enhances the rejection of ORB features on
the possible dynamic objects. The ORB features inside
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FIGURE 3. The cases of inliers and outliers. Green: the x| and x} are
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FIGURE 4. Diagram of the ROS nodes of the STDyn-SLAM required to
generate the trajectory and 3D reconstruction. The circles represent each
process’s ROS node, and the arrows are the ROS topics published by the
ROS nodes. The continued arrows depict the final ROS topics.

segmented objects, and thus possible moving objects, are
rejected. The remained points are matched with the ORB
features from the right image.

C. VISUAL ODOMETRY

Because the system is based on ORB-SLAM?2, the VSLAM
visually computes the odometry. Therefore, the next step
needs the ORB features to estimate the depth for each feature
pair. The features are classified in mono and stereo and will
be necessary to track the camera’s pose. Again, this step is
merely a process from ORB-SLAM?2.

D. 3D RECONSTRUCTION

Finally, the STDyn-SLAM builds a 3D reconstruction from
left, segmented, and depth images using visual odometry.
First, the 3D reconstruction process checks each pixel of the
segmented image to reject the point corresponding to the
classes of the objects selected as dynamic in section III-B.
Then, if the pixel is not considered a dynamic object, the
equivalent pixel from the depth image is added to the point
cloud, and the assigned color of the point is obtained from
the left frame. This section builds a local point cloud only in
the current pose of the system, and then the octomap [40]
joins and updates the local point clouds in a full point
cloud.
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the se-

(c) 3D reconstruction.

FIGURE 5. The STDyn-SLAM when a static object becomes dynamic.
Images a) and b) corresponds to the left images from a sequence. Image
¢) is the 3D reconstruction of the environment; in red dots is the
trajectory. The OctoMap node fills empty areas along the sequence of
images.

(a A movin person
from left to right.

walking (b) The same moving person in
the twentieth image from the se-
quence.

(c) 3D reconstruction.

FIGURE 6. The 3D reconstruction from STDyn-SLAM in an indoor
environment. In the scene appears a moving person, which is crossing
from left to right. The VSLAM system considers the person as a dynamic
object.

Remark 1: Ttis essential to mention that we merely applied
the semantic segmentation, optical flow, and geometry
constraints to the left image to avoid increasing the time
executing. Moreover, the right-hand-side frame segmentation
is unnecessary because feature selection rejects the ORB
features inside dynamic objects from the left image, so the
corresponding points from the right frame will not be
matched.
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FIGURE 7. The 3D reconstruction, with the presence of static (two parked cars) and dynamic objects (a person and two dogs). Notice that the person and
dogs are not visualized in the scene for the effect of the STDyn-SLAM. Fig. a) depicts the static objects. Nevertheless, the vehicles are potentially dynamic
objects, thus in Fig. b), the STDyn-SLAM excludes the bodies considering its possible movement.

IV. EXPERIMENTS

This section tests our algorithm STDyn-SLAM in real-time
scenes under the KITTI datasets. Our system’s experiments
were compared to other state-of-art systems to evaluate the
3D reconstruction and the odometry. The results of the 3D
map were qualitatively measured because of the nature of
the experiment. We employ the Absolute Pose Error (APE)
metric for the odometry.

A. HARDWARE AND SOFTWARE SETUP

We tested our system on an Intel Core i7-7820HK laptop
computer with 32 Gb RAM and a GPU GeForceGTX
1070. Moreover, we used as input a ZED camera, which
is a stereo camera developed by Sterolabs. We selected an
HD720 resolution. The ZED camera resolutions are WVGA
(672 x 376), HD720 (1280 x 720), HD1080 (1920 x 1080),
and 2.2K (2208 x 1242).

The STDyn-SLAM is developed naturally on ROS. Our
system’s main inputs are the left and right images, but
the depth map is necessary to build the point cloud.
However, if this is not available, it is possible to exe-
cute the STDyn-SLAM only with the stereo images and
then obtain the trajectory. On the other hand, the STDyn
node in ROS generates two main topics; the Odom and
the ORB_SLAM?2_PointMap_SegNetM / Point_Clouds topics.
The point cloud topic is the input of the octomap_server
node; this node publishes the joined point cloud of the
scene.

Fig. 4 depicts the required ROS nodes by the STDyn-
SLAM to generate the trajectory and the 3D reconstruction.
The camera node publishes the stereo images and computes
the depth map from the left and right frames. Then, the
STDyn-SLAM calculates the odometry and the local point
cloud. The OctoMap combines and updates the current local
point cloud with the previous global map to visualize the
global point cloud. It is worth mentioning that the user can
choose the maximum depth of the local point cloud. All the
ROS topics can be shown through the viewer.
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B. REAL-TIME EXPERIMENTS
We present real-time experiments under three different
scenarios explained next.

First, we test the STDyn-SLAM in an outdoor environment
where a car is parked and then moves forward. In this case,
a static object (a car) becomes dynamic, see Fig. 5. This figure
shows the 3D reconstruction, where the car appears static in
the first images from the sequence, Fig. 5 a). Then, the car
becomes a dynamic object when it moves forward (Fig. 5 b),
so the STDyn-SLAM is capable of filling the empty zone if
the scene is covered again, as is the case in Fig. 5 ¢).

The second experiment tests our system in an indoor
environment. The scene consists of a moving person crossing
from left to right. Subfigures a and b depicts the left and right
images from Fig. 6. And ¢ shows the 3D reconstruction. The
area occupied by the moving person is filled after the zone is
visible.

The third experiment consists of a scene sequence with
two parked cars, a walking person, and a dog. Even though
the vehicles are static, the rest of the objects move. Fig. 7a
shows the scene taking into account the potentially dynamic
entities. However, a car can change its position; the STDyn-
SLAM excludes the probable moving bodies (parked cars) to
avoid multiple plotting throughout the reconstruction. This is
depicted in Fig. 7b.

We compared the point clouds from the RTABMAP and the
STDyn-SLAM systems as a fourth experiment. The sequence
was carried out outdoors with a walking person and two
dogs. Since RTABMAP generates a point cloud of the scene,
we decided to compare it with our system. To build the
3D reconstructions from RTABMAP, we provided left and
depth images, camera info, and odometry as inputs for the
RTABMAP. We used stereo and depth images; the intrinsic
parameters are saved in a text file in the ORB-SLAM?2
package. Fig 8 shows the 3D reconstructions. In Fig. 8a our
system excludes the dynamic objects. On the other hand, Fig
8b RTABMAP plotted the dynamic objects on different sides
of the scene, resulting in an incorrect map of the environment.
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FIGURE 8. Experiment comparison between the STDyn-SLAM and the
RTABMAP [41]. Image a) shows the 3D reconstruction given by
STDyn-SLAM; it eliminates dynamic objects’ effect on the mapping. Image
b) shows the point cloud created by RTABMAP; notice how dynamic
objects are mapped along the trajectory. This is undesirable behavior.

TABLE 2. Comparison of Absolute Pose Error (APE) on KITTI dataset.

Sequence RMSE Mean

Dynal ORB2  Ours | Dynal ORB2  Ours
00 0.905 0.786  0.819 | 0.836 0.717  0.739
01 5.230 3.810 2168 | 4.794 3.469  2.040
02 5.728 2974 3.096 | 4.687 2.692 2835
03 0.297 0.256 0268 | 0.283 0.237  0.241
04 0.137  0.177 0.169 | 0.119  0.166 0.154
05 0370  0.558 0.836 | 0.323 0.525  0.766
06 0.547 0906 1.735 | 0.511 0.810  1.596
07 0594  0.406 0.448 | 0.540  0.406 0419
08 3.227 3318  3.224 | 2.793 2796  2.781
09 2.572 3432 1953 | 2.062 2.884  1.826
10 1.062 1.020  1.227 | 0.931 0901 1.132

C. COMPARISON OF STATE-OF-ART AND OUR SLAM
USING KITTI AND EurocMav DATASETS

We compare our VSLAM with DynaSLLAM1 [14] and ORB-
SLAM?2 approaches. We selected sequences with dynamic
objects, loop, and no-loop closure to evaluate the SLAM
systems. Therefore, we chose the 00—10 sequences from
the odometry KITTI datasets [42], furthermore all sequences
from the EurocMav dataset excepting the V1_03 and V2_03.
Moreover, we employed EVO [43] tools to evaluate the
Absolute Pose Error (APE) and the Relative Pose Error
(RPE), and RGB-D tools [44] to calculate the Absolute
Trajectory Error (ATE).

We present the results of APE, RPE, and ATE in different
tables. We divided the tables depending on the dataset
evaluated. Tables 3 and 4 show the APE experiments on
KITTI and EurocMav datasets, respectively. Tables 4 and 5
correspond to RPE, and tables 6 and 7 present the ATE results.
We did not evaluate the EurocMav with the DynaSLAMI1 due
to excessive processing time to compute the trajectories.
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TABLE 3. Comparison of Absolute Pose Error (APE) on Euroc-Mav dataset.

RMSE Mean
ORB2 Ours ORB2 Ours

Sequence

MH_01 0364 0.370 | 0.275  0.024
MH_02 0.067  0.037 | 0.043  0.024
MH_03 0.105  0.038 | 0.091  0.060
V1_01 0.145  0.086 | 0.132  0.022
V1_02 0331  0.060 | 0.259  0.022
V2_01 0.090  0.065 | 0.077  0.022
V2_02 0.132  0.054 | 0.111  0.022

TABLE 4. Comparison of Relative Pose Error (RPE) on KITTI dataset.

Sequence RMSE Mean

Dynal ORB2  Ours | Dynal ORB2  Ours
00 0.027 0.027  0.026 | 0.018 0.018  0.017
01 0.049 0.048  0.035 | 0.043 0.044  0.032
02 0.028 0.027  0.025 | 0.022  0.022  0.020
03 0.016 0.017  0.015 | 0.014 0.015 0.013
04 0.018 0.019 0.020 | 0.016 0.016 0.018
05 0.016 0.018 0.017 | 0.012 0.013 0.014
06 0.017 0.023  0.022 | 0.013 0.015 0.016
07 0.017 0.016 0.018 | 0.014  0.013 0.014
08 0.039 0.039  0.038 | 0242  0.025 0.024
09 0.021 0.019 0.023 | 0.018 0.017  0.020
10 0.020 0.020  0.018 | 0.015 0.014  0.013

TABLE 5. Comparison of Relative Pose Error (RPE) on Euroc-Mav dataset.

RMSE Mean
ORB2 Ours ORB2 Ours

Sequence

MH_01 0.057  0.027 | 0.038  0.024
MH_02 0.052  0.027 | 0.029  0.024
MH_03 0.085  0.071 | 0.062  0.060
V1_01 0.035  0.025 | 0.027  0.022
V1_02 0.255 0.0s1 | 0.082  0.022
V2_01 0.022  0.019 | 0.018 0.022
V2_02 0.074  0.042 | 0.047  0.022

To evaluate the significative difference of the ATE evalua-
tion, we implemented the Score S, [45] over the sequences
of EurocMav and KITTI datasets of tables 6 and 7. The
results in table 8 show an improvement of our system against
ORBSLAM2 in the trajectories of the EurocMav dataset.
In the KITTI dataset, STDyn-SLAM and ORBSLAM?2 are
not significative different. In evaluating our system and
DynaSLAMI, the Dyna is slightly better.

D. PROCESSING TIME

In this section, we analyzed the processing time of this work.
For the study, we evaluate some datasets with different types
of images. The analysis consists of obtaining the processing
time of each sequence with the same characteristics and
calculating the average of the sequence’s mean. Table 9 shows
the times getting with the datasets. We use the KITTI and
EurocMav datasets for the RGB and Gray columns. Since
the sequences do not provide a depth image, we did not map
a 3D reconstruction. For the last column, we utilized our
trajectories. In addition, our dataset contains depth images,

18207



IEEE Access

D. Esparza, G. Flores: STDyn-SLAM: Stereo Vision and Semantic Segmentation Approach for VSLAM

TABLE 6. Comparison of Absolute Trajectory Error (ATE) on KITTI dataset.

Sequence RMSE (ATE)

Dynal ORB2 Ours
00 165.229 170.069  169.672
01 546.034  563.836  536.394
02 176.395 171.177  172.683
03 144.891 156.837 143.910
04 0.225 0.255 0.665
05 133.867 128.425 141.054
06 1.713 2.467 2.743
07 37.734 35.975 40.435
08 281.275  280.827  229.148
09 115.893  111.776  123.498
10 191.473  169.045  185.667

TABLE 7. Comparison of Absolute Trajectory Error (ATE) on Euroc-Mav
dataset.

RMSE (ATE)
ORB2 Ours

Sequence

MH_01 2336 2344
MH_02 2112 2.188
MH_03 2921  2.823
V1_01 1.831 1811
V1_02 1717 1.729
V2_01 2294 2.193
V2_02 2.092  2.063

TABLE 8. Comparison of Score S,(a, b) on the datasets.

Sequence p a b Sy(a,b)
0.01 ORBSLAM2  STDyn -0.3571

Euroc-Mav || 0.05 ORBSLAM2 STDyn  -0.2857
0.1 ORBSLAM2  STDyn -0.2142

0.25 ORBSLAM2 STDyn -0.0714

0.01 ORBSLAM2 STDyn 0.1818

KITTI 0.05 ORBSLAM2 STDyn  -0.0909
0.1 ORBSLAM2  STDyn 0
0.25 ORBSLAM2 STDyn  -0.0909

0.01 DynaSLAMI1
KITTI 0.05 DynaSLAMI
0.1 DynaSLAM1

STDyn 0.1363
STDyn 0.0454
STDyn  0.0454

0.25 DynaSLAM1 STDyn 0
TABLE 9. Processing time.
STDyn-SLAM RGB images Gray images ROS
(1241 x 376) (752 x 480) (1280 x 720)
Time (sec) 0.153662 0.0993046333 0.2683495

so we plotted a 3D reconstruction. For this reason, the

processing time is longer.

V. CONCLUSION

This work presents the STDyn-SLAM system for outdoor
and indoor environments where dynamic objects are present.
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The STDyn-SLAM is based on images captured by a stereo
pair for 3D reconstruction of scenes, where the possible
dynamic objects are discarded from the map; this allows a
trustworthy point cloud. The system capability for computing
a reconstruction and localization in real-time depends on
the computer’s processing power, since a GPU is necessary
to support the processing. However, with a medium-range
computer, the algorithms work correctly.

In the future, we plan to implement an optical flow
approach based on the last generation of neural networks
to improve dynamic object detection. The implementation
of neural networks allows replacing classic methods such
as geometric constraints. Furthermore, we plan to increase
the size of the 3D map to reconstruct larger areas and
obtain longer reconstructions of the scenes. The next step
is implementing the algorithm in an aerial manipulator
constructed in the lab.

SUPPLEMENTARY MATERIAL
The implementation of our system is released on GitHub
and is available under the following link: https://github.
com/DanielaEsparza/STDyn-SLAM

Besides, this letter has supplementary video material
available at https://youtu.be/3tnkwvRnUss, provided by the
authors.
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