
Received January 20, 2022, accepted February 3, 2022, date of publication February 7, 2022, date of current version February 15, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149755

On the Fractionalization of the Shift
Operator on Graphs
GUILHERME B. RIBEIRO1, JOSÉ R. DE OLIVEIRA NETO 2, (Member, IEEE),
AND JULIANO B. LIMA 1, (Senior Member, IEEE)
1Department of Electronics and Systems, Federal University of Pernambuco, Recife 50740-550, Brazil
2Department of Mechanical Engineering, Federal University of Pernambuco, Recife 50740-550, Brazil

Corresponding author: Juliano B. Lima (juliano_bandeira@ieee.org)

This work was supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant
310142/2020-2 and Grant 409543/2018-7, and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

ABSTRACT The theory of graph signal processing has been established with the purpose of generalizing
tools from classical digital signal processing to the cases where the signal domain can be modeled by an
arbitrary graph. In this context, the present paper introduces the notion of fractional shift of signals on graphs,
which is related to considering a non-integer power of the graph adjacency matrix. Among the results derived
throughout this work, we prove that the referred fractional operator can be implemented as a linear and shift-
invariant graph filter for any graph and verify its convergence to the classical fractional delay when a directed
ring graph is considered. Bymeans of a real-world example, we show that, using the proposed operator, graph
filters that approximate an ideal filter better than those designed using the ordinary adjacency matrix can be
obtained. An additional example dealing with noise removal from graph signals illustrates the gain provided
by the mentioned filter design strategy.

INDEX TERMS Graph signal processing, fractional graph shift operator, graph filter design, noise removal.

I. INTRODUCTION
Over the last decade, theory and applications related to graph
signal processing (GSP) have been widely developed and
attracted the attention of several scholars [1]–[3]. In short,
GSP aims to extend concepts and operations of classical
digital signal processing (DSP) to scenarios in which the
signals lie over irregular domains. Such scenarios include,
for instance, sensors arbitrarily positioned in a geographic
region and measuring some climatological variable, points of
a three-dimensional cloud representing some virtual object
and its attributes, people linked according to their inter-
ests and proximity relationships in a social network and so
on [4]–[16]. To be more specific, among the issues related to
the referred scenarios, one can cite segmentation and attribute
compression of 3D point clouds [5], [12], stochastic filter-
ing under asymmetric links in wireless sensor networks [8],
community detection in social networks [14], anomalous IoT
sensor data detection [15] and traffic prediction via attention
networks [16]. It is intuitive that the mentioned examples can
be modeled as graphs whose vertices are connected by edges
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inferred from a variety of influence or dependency criteria.
This contrasts with the discrete-time domain, over which the
samples of a signal are equidistantly placed and have left-
and right-side immediate neighbors only; something similar
happens in the case of digital images, where the pixels are
arranged in a regular rectangular grid.

Two main GSP approaches have been consolidated
throughout the last years. The first is based on the spec-
tral graph theory and analyzes signals on undirected graphs
with real and non-negative edge weights, by using the graph
Laplacian to construct a basis for the signal space [17]. The
second comes from the algebraic signal processing and uses
the weighted adjacency matrix A as elementary building
block [18], [19]; such an approach, which is adopted in
this paper, allows to deal with signals defined over both
directed and undirected graphs, and with real- and complex-
valued edge weights [20]. In any case, the aforementioned
approaches have used L and A as elementary building blocks
because, among other reasons, these matrices are well estab-
lished in graph theory and allow some meaningful physical
interpretation or some parallel with the classical DSP; while
A can be viewed as a generalization of the discrete-time unit
shift, L is a kind of discrete counterpart to the continuous
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Laplace-Beltrami (second order) derivative operator on a
manifold [21], [22].

Among the research fronts active in GSP, the one that
investigates alternatives to the operators usually employed
as building blocks to describe graph signals and systems
deserves to be highlighted [23]–[29]. In fact, when the pur-
pose is to consider linear operators in this context, any matrix
can be chosen to play the role of elementary building block;
multiplying a matrix by a graph signal represented as a vector
produces another signal whose samples result from a linear
combination of the samples of the original signal. In this
scope, the use of matrices other than the standard adjacency
matrix and the Laplacian for the mentioned purpose may
be more suitable in specific scenarios and to carry out spe-
cific (graph) signal processing tasks. Even when the focus is
on designing other graph operators (e.g., the graph Fourier
transform), the decision about which elementary operator to
use has an impact on the expected results.

Regarding the issue discussed in the last paragraph, some
works archived in the GSP literature can be brought to the
fore. In [23], for example, the authors propose an isometric
graph translation operator that is described in the spectral
domain as a phase shifting operator; this operator shares
key properties with the time shift and behaves reasonably
in the vertex domain. In [24], the authors define an energy-
preserving shift operator that satisfy many properties similar
to their counterparts in classical signal processing; the GSP
framework based on the referred operator enables the signal
analysis along a correlation structure defined by a graph shift
manifold. In [25] and [26], the authors employ different fea-
tures associated with a graph to generate a series of shift oper-
ators and design a graph-filter-based classifier. Although the
proposed method produces better results than those achieved
using conventional graph-filter-based classifiers, it requires
dealing with a non-convex optimization problem whose solu-
tion involves a relatively high computational cost. In [27],
motivated by the typical scenario of asymmetric communica-
tions in wireless sensor networks, the authors study the opti-
mal design of graph shift operators to perform decentralized
subspace projection for asymmetric topologies. Obtaining the
referred operators can be performed either by solving an opti-
mization problem or by employing a decentralized algorithm
based on an Alternating Direction Method of Multipliers
(ADMM). In [28] and [29], the goal is to construct a graph
Fourier transform for directed graphs (digraphs), such that
the corresponding orthonormal frequency components are as
spread as possible in the graph spectral domain. The method
uses the Laplacian of an undirected version of the digraph and
involves non-convex, orthonormality-constrained optimiza-
tion problems.

This paper is somehow related to the above mentioned
works, since its central theme refers to elementary operators
on graphs. To be more specific, we consider the possibil-
ity of computing a non-integer power Aa, a ∈ R, of the
adjacency matrix A, which is taken as the (unit) graph shift
operator [20]. With this, we introduce the notion of fractional

shift (or delay) of signals on graphs, which, to the best of
our knowledge, has not yet been addressed in the literature.
Differently from the referred papers, in which new operators
are created or standard operators are adjusted using strategies
potentially expensive from the computational point of view,
we propose a relatively simple generalization that fills a theo-
retical gap concerning the extension to the GSP framework of
a well-established concept in the classical signal processing.

In what follows, the main contributions of this paper are
listed:

• We introduce the fractional graph shift operator Aa and
discuss its several aspects. More specifically, we demon-
strate that Aa can be computed by using the theory of
matrix functions, considering the Jordan decomposition
of A.

• We demonstrate that Aa acts as a graph filter, give its
frequency response and discuss issues related to frac-
tionally shifting graph signals containing descontinuities
(Gibbs phenomenon).

• An analogy between the proposed graph fractional oper-
ator and that considered in the classical discrete-time
case is established; our result suggests that, when a
directed ring graph with N vertices is considered, the
response of the corresponding graph filter related to Aa

converges to that of the classical fractional delay filter
as N grows.

• We determine the polynomial representation of Aa and,
with that, we demonstrate that, for any graph, such
a operator can be implemented as a linear and shift-
invariant (LSI) graph filter.

This paper is organized as follows. Section II contains
a concise review of graph signal processing foundations.
In Section III, we introduce the concept of fractional shift
on graphs and develop our contributions in detail: we address
the computation of Aa in Subsection III-A, discuss its inter-
pretation in Subsection III-B, demonstrate its consistency
with the ideal fractional delay filter in Subsection III-C and
determine its polynomial representation in Subsection III-D.
Section IV is devoted to numerical results related to the
developed theory: we first present a small example regarding
the polynomial representation of Aa in Subsection IV-A; we
then consider a real-world graph signal (temperature mea-
sured by weather stations) and demonstrate that, using Aa,
we can obtain filters that approximate an ideal filter (in
the least-squares sense) better than those designed using A
(Subsections IV-B and IV-C); finally, this possibility is illus-
trated by means of an example involving the noise removal
from the same graph signal (Subsection IV-D). The paper
closes with concluding remarks in Section V.

II. FOUNDATIONS OF GRAPH SIGNAL PROCESSING
In this section, the main concepts and definitions related
to GSP are briefly presented. As previously remarked, the
GSP framework considered in this paper is the one based
on the adjacency matrix. In this sense, if one wishes for a
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deeper introduction on the matter, please refer to the works
of Sandryhaila and Moura [20], [30]–[34].

A. GRAPH SIGNALS AND FILTERS
Let G = {A,V} be a graph defined as a set of vertices
V = {v0, v1, . . . , vN−1} possibly connected by weighted
edges. The adjacency matrix A has in its entry Aij the weight
of the edge going from vj to vi, with Aij = 0 if and only if
there is no edge from vj to vi.

A signal x ∈ S over the graph G is defined as

x : V → CN ,

vn → x(vn) = xn, (1)

where S is the space of all signals over G, that is, the space
of discrete functions mapping the set of the N vertices of G
into an N -tuple of complex (or real) values. Given a suitable
labelling for the vertices of a graph, a signal x is represented
by the ordered sequence xn of its values. Graph signals can
then be written as ordered N -tuples lying in CN or RN .
Graphs can be directed or undirected, depending on

whether their edges have or do not have preferred direction.
By definition, an adjacency matrix is symmetrical if and only
if the corresponding graph is undirected.

A particularly important graph is that shown in Fig. 1, the
directed ring graph with edges having unitary weights. Such
a graph can be used to model the discrete-time domain with
length N and periodic boundary conditions. Its adjacency
matrix is given by

C =


1

1
. . .

1

 , (2)

and plays an essential role in GSP: if a signal x =

(x0 x1 . . . xN−1)T defined on a ring graph is left multiplied
by the adjacency matix, one has x̃ = (sN−1 x0 . . . sN−2)T ;
that is,

x̃ = Cx (3)

is the result of circularly shifting x to the right. This property
suggests to generalize the unit shift of a signal on an arbitrary
graph as being the left product by the corresponding adja-
cency matrix,

x̃ = Ax, (4)

so thatA can be interpreted as the graph shift operator. In fact,
this operator is a delay filter for graph signals.

A filter for signals on a graph with |V| = N vertices can
be defined as being any matrix H ∈ CN×N [31]. Therefore,
every graph filter is linear. On the other hand,

HAx = AHx, ∀x ∈ S ⇔ HA = AH, (5)

that is,H is a linear and shift-invariant (LSI) filter if and only
if it commutes with the adjacency matrix A. The following

FIGURE 1. A directed ring graph.

theorem establishes an important property satisfied by every
LSI filter [31].
Theorem 1: Let A be the adjacency matrix of a graph.

Let us assume that the characteristic polynomial charA(x) of
A coincides with the respective minimal polynomial mA(x).
Therefore, H is a LSI filter if and only if H is a polynomial
in A, i. e.

H = h(A) =
L∑
`=0

h`A`, (6)

where A0 is the identity matrix and L < deg(mA).
The assumption on charA(x) and mA(x) in Theorem 1

does not hold for all adjacency matrices A. Nevertheless, the
result in the referred theorem can be extended to all matri-
ces using the concept of equivalent graph filters, as clearly
explained in [32]. In short, for any graph G = {A,V},
every LSI filter has polynomial representation in A. In this
sense, Theorem 1 suggests a convenient analogy with the
classical DSP, since every filter for discrete-time signals can
be represented as polynomials evaluated in z−1, the unit delay,
via the z-transform of its impulse response.

B. GRAPH FOURIER TRANSFORM
The graph Fourier transform of a signal is its projection on
a basis formed by functions invariant to linear and time-
invariant (LTI) filtering [35]. Analogously, the graph Fourier
transform (GFT) can be defined as the decomposition of a
signal on a basis formed by eigenvectors of LSI filtering.
Since LSI filters are polynomials in A (Theorem 1), and con-
sidering that a matrix and its integer powers share the same
eigenvectors, the referred basis coincides with that obtained
from the decomposition of A [33]. In this context, if the
corresponding graph has N vertices, A admits the Jordan
decomposition

A = VJV−1, (7)

in which V contains the N Jordan (generalized) eigenvectors
of A in its columns,

V = (v0 v1 . . . vN−1) , (8)

and J is a block diagonal matrix formed of the so-called Jor-
dan blocks. In particular, if A is diagonalizable, (7) coincides
with its eigendecomposition, so that J reduces to a diagonal
matrix whose entries are the eigenvalues of A.
In this manner, a signal x ∈ S can be decomposed into its

components on the basis V as

x = x̂0v0 + · · · + x̂N−1vN−1
= V(̂x0 x̂1 . . . x̂N−1)T

= V̂x. (9)
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The last expression is then defined as being the synthesis
equation of the graph Fourier transform. Consequently, the
GFT analysis equation is

x̂ = V−1x. (10)

For discrete-time signals, it has been remarked that the
corresponding domain can be modeled as a directed ring
graph with edges having unitary weights and, therefore,
with adjacency matrix C given in (2). Since C is circulant,
it is diagonalized by the discrete Fourier transform (DFT)
matrix F. Thus, one has

C = F−13CF, (11)

where

3C = diag
(
1 e−j

2π
N e−j

4π
N e−j

6π
N · · · e−j

2π(N−1)
N

)
.

In this case, the GFT matrix becomes V−1 = F, evidencing
the desirable property that the GFT of discrete-time signals
coincides with the DFT.

1) FREQUENCY RESPONSE OF GRAPH FILTERS
In order to understand how a graph filter acts on the GFT
domain, identified as frequency domain, (7) and Theorem 1
are used. The response of the filter H =

∑L
`=0 h`A

` to the
signal x is given by

Hx =
L∑
`=0

h`A`x =
L∑
`=0

h`
(
VJV−1

)`
x

= V

(
L∑
`=0

h`J`
)
V−1x. (12)

Taking the GFT of both sides of the last equation, one has

V−1Hx = h(J)̂x, (13)

so that the frequency domain equation corresponding to fil-
tering usingH is the multiplication by the matrix h(J), which
represents the frequency response of the filter H.

III. FRACTIONAL SHIFT ON GRAPHS
Since the unit shift of a graph signal can be defined as the
product by the adjacency matrix of the graph on which it lies,
in this work, we propose to define a fractional shift as the
product by a non-integer power of A. Precisely, the signal x
over the graph G = {A,V}, after being shifted by a ∈ [0, 1],
is given by

x̃a = Aax. (14)

Inwhat follows, we discuss aspects related to the computation
of Aa, the interpretation of its application to a graph signal
and the consistency of the proposed operator with the classi-
cal DSP approach (ideal fractional delay filter).

A. COMPUTATION OF Aa

The computation of Aa can be well established by employ-
ing results from the theory of matrix functions [36]. In this
context, we are interested in evaluating the originally scalar
function f (t) = ta, a ∈ R, but replacing t with A. The most
direct way to formally define a function like this uses the
Jordan canonical form.With this purpose, (7) is reconsidered;
in this equation, the block diagonal matrix J can be written as

J = diag(J1, J2, . . . , Jp), (15)

where the k-th Jordan block Jk is

Jk = Jk (λk ) =


λk 1

λk
. . .

. . . 1
λk

 ∈ Cmk×mk (16)

and m1 + m2 + . . . + mp = N . Denote by λ1, . . . , λs the
distinct eigenvalues of A and by ni the index of λi (the order
of the largest Jordan block in which λi appears). The function
f is said to be defined on the spectrum of A if the values

f (j)(λi), j = 0, 1, . . . , ni − 1, i = 1, 2, . . . , s, (17)

where f (j) denotes the jth derivative of f , exist. This is the
case of f (t) = ta. The computation of f (A) = Aa can then be
carried out as follows.
Definition 1: Let f be defined on the spectrum of A ∈

CN×N and let A have the Jordan decomposition (7). Then

f (A) := Vf (J)V−1 = Vdiag(f (Jk ))V−1, (18)

where

f (Jk ) :=


f (λk ) f ′(λk ) · · ·

f (mk−1)(λk )
(mk − 1)!

f (λk )
. . .

...

. . . f ′(λk )
f (λk )

 . (19)

In the present context, the last definition constitutes a prac-
tical way to calculate Aa, because the Jordan form of the
adjacency matrix, being necessary for the definition of the
corresponding GFT, may already have been computed and
thus be available to be used in (18) and (19).

B. INTERPRETING THE GRAPH FRACTIONAL SHIFT
In order to perform a meaningful interpretation of the graph
fractional shift, we consider (14) and the case in which A is
diagonalizable. Using the Jordan decomposition (7), the GFT
analysis equation (10) and the computation strategy described
in the last subection, we can write

Aax = V3aV−1x = V

λ
a
1

. . .

λaN

 x̂

= V(̂ha � x̂) = GFT−1{̂ha � x̂}, (20)
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FIGURE 2. Fractional shift by a = 0.3 of a sample of a signal on a directed
ring graph with unit weights. (a) Original signal on a directed ring graph.
(b) Graph in which the 5th sample delayed by a = 0.3 appears as an
interpolated sample between the 4th and the 5th samples of the original
signal. (c) Original discrete signal and the delayed sample.

where ĥa := (λa1 . . . λ
a
N ) and � represents the point-wise

vector product.
Equation (20) shows thatAa is a graph filter with frequency

response diag(̂ha); moreover, if x is an N -point discrete-time
signal (case in which the GFT coincides with the DFT), one
observes that the filter in the DFT domain is the vector ĥa
itself. In this case, it has been discussed that the adjacency
matrix of the respective graph is diagonalized according
with (11), where 3C has as entries the N roots of unity. The
fact that the matrix of eigenvectors of C is the Fourier matrix
imposes a specific order of the eigenvalues in3C, so that the
vector ĥa is

ĥa = (1 W a
N W 2a

N . . .W aR
N W−aR

′

N W a(−R′+1)
N . . .W−aN ),

whereWN = e−j
2π
N and

R =
N − 1

2
and R′ = R, if N is odd,

R =
N
2
− 1 and R′ = R+ 1, if N is even,

(21)

n = 0, 1, . . . ,N − 1. It can be shown that the inverse DFT of
ĥa has components given by (22), as shown at the bottom of
the next page.

The product by a fractional power of the adjacency matrix
produces the effect illustrated in Fig. 2, for a directed ring
graph; it can be seen, for example, how the 5th sample of
the signal shifted by a = 0.3 coincides with the value of
the continuous-time signal at the same position. On the other
hand, the analysis we can perform by observing the irregular
graph in Fig. 3 is mostly visual; as we vary the fractional
parameter from 0 (original signal) to 1, we see in the inter-
mediate snapshots how the signal gradually spreads out from
the vertices where, originally, there were already non-zero
samples. In this scope, although we employ terms such as
delay and shift, which are inherited from classical signal pro-
cessing, the process observed in the figure looks more like a

FIGURE 3. Fractional shift of a signal, (originally) with 10 non-zero
samples, defined on a graph formed by 80 cities of Pernambuco state,
Brazil. Note that the shifted signal is similar to the original signal, if a is
close to 0, and similar to the unit-shifted signal, if a is close to 1.

kind of (fractional) diffusion. In fact, diffusion on graphs have
been widely studied [37]–[39]; it is usually described in terms
of a system of ordinary differential equations in time, with
the Laplacian matrix of the graph as the coefficient matrix.
Fractional diffusion has been used to model certain phenom-
ena that allow long-range interactions and are non-local in
nature [40]–[43]. In future works, we intend to investigate the
possible relationships between the operator proposed in this
paper and the mathematical tools for fractional diffusion in
networks.

Finally, we draw attention to the fact that the signal to be
shifted has to be band-limited (see Fig. 4a). If the signal has
abrupt changes in its sample values, this can be viewed as a
kind of descontinuity and represents high frequency compo-
nents, when compared to the predominantly smooth behavior
of the signal (see Fig. 4b). As a consequence, we can observe
considerable fluctuations around the disparate samples when
the signal is fractionally delayed, an effect similar to the
Gibbs phenomenon.

C. CONSISTENCY WITH CLASSICAL APPROACH: THE
IDEAL FRACTIONAL DELAY FILTER
In the classical approach to the problem of fractionally shift-
ing a discrete-time signal, the continuous-time version of the
signal can be reconstructed by shifting and then resampling
with the same sample period [44], [45]. Due to the Nyquist-
Shannon Theorem, this procedure requires that the signal
is band-limited. In this context, it can be shown that, if a
discrete-time signal x is band-limited, its version shifted by
a ∈ [0, 1] is

x[n− a] =
∑
k

x[k]sinc(n−k − a),

so that the (ideal low-pass) filter used to perform the referred
shift has components

hLPF [n] = sinc(n− a). (23)

The filter hLPF is non-causal and unstable (it is not
BIBO – bounded input, bounded output, because its impulse
response has infinite energy) and, therefore, it is not physi-
cally realizable. In this way, fractional delay filter implemen-
tations should just approximate hLPF as much as possible.
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FIGURE 4. Fractional shift for a signal (a) without and (b) with abrupt
variations (descontinuities).

In order to evaluate how close to hLPF [n] = sinc(n−a), 0 ≤
a ≤ 1 , is ha[n], for oddN (see the first row of (22)), the point-
wise difference between these signals has been computed for
different values of N ∈ [101, 106]. In Fig. 5, we show the
relative error (ratio between the energy of the error (ha−hLPF )
and that of hLPF ), in terms of N and a.
The result suggests that, in fact, ha converges in the mean

in `2 to hLPF as N grows, with relative error less than 5% for
N ≈ 30 . Moreover, the error is greater when a is close to
0.5, being negligible or null when a is an integer. In fact, the
error is exactly zero for a = 0 (or a = 1) and n = a, since

lim
n→a

ha[n] = 1⇒ lim
n→a

(
ha[n]− sinc(n− a)

)
= 0. (24)

The same result is obtained for even N , starting from the
second row of (22). When a is non-integer, ha[n] is com-
plex, with imaginary part of constant modulus for a fixed a.
Considering the corresponding real part only, the error was
smaller than that taking into account also the contribution of
the imaginary part. Fig. 6 and Fig. 7 show that the errors with
and without the imaginary part equally decay as N grows,
but, using the real part only, the results are significantly
better.

FIGURE 5. Percent error (normalized by the energy of hLPF ) of ha related
to hLPF , for different (odd) values of N and the fractional shift
parameter a.

FIGURE 6. Relative mean error between Re{ha} and hLPF for N even,
in terms of the fractional shift parameter a.

D. POLYNOMIAL REPRESENTATION
The fractional shift matrix Aa necessarily commutes with A,
because AaA = A1+a

= AAa, so that Aa is an LSI filter
for signals on graphs having A as adjacency matrix (see (5)).
Therefore, according to Theorem 1, Aa admits a polynomial
representation like the one given in (6). In what follows,
we evaluate such a possibility for directed ring graphs and
for arbitrary graphs.

1) DIRECTED RING GRAPHS
The adjacency matrix C in (2) of the directed ring graph with
unitary weights satisfies charC = mC (due to the fact that
the eigenvalues of C are distinct). Therefore H = Ca can be
directly expressed as a polynomial of degree up to (N − 1)
in C. In order to do this, we consider (11) and the fact that
F−1 = FH , with H indicating the conjugate transpose. This

ha[n]=


1
N

sin(π (n− a))

sin
(π
N
(n− a)

) , if N is odd,

1
N

cot
(π
N
(n− a)

)
sin(π(n− a))+

j
N
(−1)n sin(πa), if N is even.

(22)
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FIGURE 7. Modulus of the relative mean error between ha and hLPF for
N even, in terms of the fractional shift parameter a.

allows to show that Ca
= FH3a

CF is a circulant matrix with
the first column given by ha in (22). Moreover, since the left
product of a matrix by C produces a circular down-shift in
each column of the matrix, theN powers ofC form a basis for
the space of N × N circulant matrices (note that CN

= C0 is
the identity matrix). From the above, we conclude that the
coefficients of the polynomial representation of Ca are the
entries of ha, i. e.

H = Ca
=

N−1∑
`=0

ha[`]C`. (25)

2) ARBITRARY GRAPHS
In order to demonstrate how to obtain the polynomial rep-
resentation of H = Aa for arbitrary graphs, we con-
sider another strategy to compute matrix functions. We first
remember that, by definition, the minimal polynomial mA(t)
of A is the unique monic polynomial of lowest degree such
that mA(A) = 0. By considering the Jordan canonical form
of A, it can be seen that

mA(t) =
s∏
i=1

(t − λi)ni . (26)

It follows immediately that mA is zero on the spectrum of A,
that is, the values computed in (17) are all zero for f (t) =
mA(t). Given any polynomial p and any matrix A ∈ CN×N ,
p is clearly defined on the spectrum of A and p(A) can be
defined by substitution. For polynomials p and q, p(A) =
q(A) if and only if p and q take the same values on the
spectrum. Thus the matrix p(A) is completely determined by
the values of p on the spectrum ofA. The following definition
can then be established.
Definition 2: Let f be defined on the spectrum of A ∈

CN×N . Then f (A) := p(A), where p is the unique poly-
nomial of degree less than

∑s
i=1 ni (which is the degree

of the minimal polynomial) that satisfies the interpolation
conditions

p(j)(λi) = f (j)(λi), j = 0 : ni − 1, i = 1 : s. (27)

The polynomial p above is known as the Hermite interpo-
lating polynomial. In particular, if ni = 1, i = 1, . . . , s, p
corresponds to the Lagrange interpolating polynomial

p(t) =
s∑
i=1

f (λi)li(t), li(t) =
s∏

j=1,j6=i

(
t − λj
λi − λj

)
. (28)

In any case, the results briefly presented above lead us to
conclude that Aa can be expressed as a polynomial in A and,
therefore, according to Theorem 1, the fractional shift of a
graph signal can be implemented as a LSI graph filter.

IV. NUMERICAL RESULTS
In the last section, we have discussed the effect of applying
a fractional shift to a graph signal and demonstrated that Aa

admits a polynomial representation. In the first part of this
section, we develop a small numerical example to illustrate
how the referred representation can be obtained. Secondly,
we consider a possibility that, for practical purposes, seems to
allow better exploiting the potential for generalization of the
proposed fractional operator: replacingAwithAa in (6) when
designing a graph filter. Naturally, the resulting filter, being
a polynomial in Aa, could also be expressed as a polynomial
in A and, therefore, it is a LSI filter.

A. EXAMPLE: POLYNOMIAL REPRESENTATION OF Aa

The graph considered in this example is shown in Fig. 8 and
has adjacency matrix

A =


5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2

 . (29)

The entries of A in (29) were chosen so that the Jordan
decomposition of such a matrix had integer entries only. The
referred decomposition is written using matrices

V =


−1 1 1 1
1 −1 0 0
0 9 −1 0
0 1 1 0

 ,

V−1 =


0 1 1 1
0 0 1 1
0 0 −1 0
1 1 1 0


and

J =


1 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4

 . (30)

Considering f (t) = t0.3 and Definition 1, f (A) = A0.3 can be
computed according to

A0.3
= V


f (1) 0 0 0
0 f (2) 0 0
0 0 f (4) f ′(4)
0 0 0 f (4)

V−1,

16474 VOLUME 10, 2022



G. B. Ribeiro et al.: On Fractionalization of Shift Operator on Graphs

FIGURE 8. Directed graph used to illustrate how the corresponding
fractional shift operator can be computed and represented in polynomial
form.

which gives

A0.3
=


1.6294 0.6294 0.3448 0.2311

0 1.0000 −0.2311 −0.2311
−0.1137 −0.1137 1.4020 0
0.1137 0.1137 −0.1709 1.2311

 .
The same result can be achieved by using Definition 2, which
gives

p(A) = f (A) = A0.3

= 0.6688I+ 0.3915A− 0.0654A2
+ 0.0051A3,

the polynomial representation of A0.3.

B. LEAST-SQUARE APPROXIMATION OF LSI FILTERS
Before developing a numerical example illustrating the use
of Aa to filter graph signals, we first review a simple design
technique that are least-squares approximations of ideal LSI
filters [34]. Such a method consists of defining the (ideal)
filter by specifying the values of h(λi) (filter response in each
eigenvalue of the shift operator), instead of determining the
values of h` (filter coefficients). Describing the frequency
response of the filter for each eigenvalue λi, we obtain the
linear system of equations

h(λ0) = α0,

h(λ1) = α1,
...

h(λN−1) = αN−1, (31)

or, since h(·) is a polynomial of degree L,

h0 + h1λ0 + · · · + hLλL0 = α0,

h0 + h1λ1 + · · · + hLλL1 = α1,
...

h0 + h1λN−1 + · · · + hLλLN−1 = αN−1. (32)

Using a Vandermonde matrix constructed from the eigen-
values λi, the system (32) can be written in matrix

form as
1 λ0 λ20 . . . λL0
1 λ1 λ21 . . . λL1

...
...

1 λN−1 λ2N−1 . . . λLN−1



h0
h1
...

hL

=

α0
α1
...

αN−1

 .
(33)

More specifically, if one desires to design a low-pass fil-
ter (LPF) whose cutoff frequency is λicut , one could set{

αi = 1, for j = 0, . . . , icut,
αi = 0, for j = icut + 1, . . . ,N − 1.

(34)

Since one generally has N ≥ L + 1, the system of
equations (33) is overdetermined and does not have an exact
solution. A possible strategy is to find coefficients h`, ` =
0, . . . ,L − 1, that minimize, in the least-squares sense, the
deviation from the ideal filter response. This corresponds to
solve the optimization problem

min
{h`}0,...,L−1

(
N−1∑
n=0

h(λn)− αn

)2

. (35)

Our proposal is to replace A with Aa in (6). If this is
performed, the only adjustment needed in the technique
described above consists of replacing the eigenvalues λi with
their ath powers λai in (32). The effect of such a substitution
is illustrated and evaluated in what follows.

C. EXAMPLE: LS APPROXIMATION USING Aa

In this example, we consider a network formed by
230 weather stations that measure daily temperature across
the United States [46]. Such stations are represented by the
vertices of an undirected graph whose edges have been estab-
lished by using the 8-nearest neighbor criterion. The edge
connecting vertices vn and vm is weighted according with

An,m =
e−d

2
n,m√∑

k∈Nn
e−d

2
n,k
∑
`∈Nm

e−d
2
n,`

, (36)

where dn,m denotes the geodesical distance between the nth

and the mth sensors. The snapshot of all measurements taken
on February 1st, 2003 forms the signal indexed by the referred
graph, which is shown in Fig. 9. From the GFT of the signal,
which is plotted in Fig. 10, it can be seen that its spectral
content is concentrated in the low graph frequencies. Note
that such frequencies correspond to the eigenvalues of A,
which are marked along the horizontal axis of the figure;
additionally, the referred marking accompanies the fact that
low (resp. high) graph frequencies are associated with higher
(resp. lower) eigenvalues [34].

We then use the strategy explained in Subsection IV-B to
design a filter that approximates an ideal low-pass filter with
λicut = 0.2. In this case, icut = 39 so that the 40 lowest
graph frequencies are (ideally) preserved after the signal is
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FIGURE 9. Graph of a network formed by 230 weather stations measuring
the temperature across the United States. The snapshot of all
measurements taken on February 1st, 2003 is the corresponding graph
signal.

FIGURE 10. Magnitude of the graph Fourier transform of the signal in
Fig 9. The graph frequencies correspond to the eigenvalues of A; low
(resp. high) graph frequencies are associated with higher (resp. lower)
eigenvalues.

FIGURE 11. Fractional parameters providing the minimum approximation
errors, for different values of L, between the ideal LPF and the filter
designed by using the fractional graph shift operator Aa.

filtered. We considered approximations with L ranging from
1 to 19, that is, filters with 2 to 20 coefficients. For each of
these values, we varied the fractional parameter a from 0 to
1 and, in (33), after replacing λi with λai , i = 0, 1, . . . ,N −1,
and solving (35),1 we registered the value of a providing the
minimum error between the designed filter and the ideal filter.
At the end of this procedure, the graph shown in Fig. 11

1The optimization problem (35) has been solved using the Linear Algebra
module linalg for Scipy, a free and open-source Python library used for sci-
entific and technical computing. In all experiments performed, the least mean
squares algorithm converged and the time required for this was negligible,
considering the addressed application scenario.

FIGURE 12. Minimum approximation (mean squared) errors, for different
values of L, between the ideal LPF and the filters designed by using the
fractional graph shift operator Aa and the non-fractional operator A.

FIGURE 13. Ideal filter response superimposed on the responses
obtained when A and Aa, a = 0.855, are used to design a filter with
L + 1 = 10 coefficients.

was produced. Observing the figure, we verify that, for any
value of L, the best approximation is provided when a 6= 1.
This is enough to conclude that, for the graph considered
in the example, the use of a fractional version Aa, a 6= 1,
of A always provides a better result than the one obtained
with the non-fractional matrix. A visual comparison between
these alternatives can be performed from Fig. 12, where we
show the (minimum) errors we have just referred to together
with the errors when the original (non-fractional) matrix A is
employed.

In Fig. 13, we can observe the ideal filter response super-
imposed on the responses obtained when A and Aa are used
to design a filter with L + 1 = 10 coefficients. In this
case, the fractional parameter providing the minimum error
is a = 0.855. In the figure, we notice that the filter designed
withAa has fluctuations that deviate less from the ideal filter,
when compared to those related to the filter designed usingA.
This can be observed mainly in the passband and constitutes
a visual result coherent with the obtained approximation
errors. Graphs with similar behaviour are obtained for other
values L.

D. EXAMPLE: NOISE REMOVAL
In this example, we start from the same graph signal consid-
ered in Subsection IV-C.We add to the samples of the referred
signal random uniformly-distributed values whose amplitude
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FIGURE 14. Reconstruction (mean squared) errors after a noise removal
procedure is performed by using graph filters with L + 1 = 10 coefficients
and designed from A and Aa, a = 0.855.

corresponds to a percentage of the range of the signal itself.
Such a synthetic noise addition is intended to simulate what
happens in many practical scenarios, in which measurements
performed on a sensor network are subject to different sources
of distortion. The resulting noisy signal is then filtered by
using the filters shown in Fig. 13, as an attempt to reduce
the influence of the noise and recover the original signal.

In our experiment, we varied the aforementioned per-
centage from 1% to 50% and, for each of these values,
we generated 100 noisy signals. We then filtered such signals
and compared the resulting signals with the original (non-
noisy) signal by the computation of mean-squared errors. The
results, which can be viewed in Fig. 14, show that the filter
designed using A0.855 allows to recover the signal with aver-
age reconstruction error always smaller than that related to the
filter designed usingA. In this context, it is relevant to remark
that the (best) fractional parameter a = 0.855 has been
found using the strategy described in the second paragraph
of Subsection IV-C, which depends on the error between the
designed filter and the ideal filter only. Therefore, the referred
choice does not require us to know the original signal, which
is not available in the real-world. This illustrates the potential
gain that can be achieved, in this application scenario, when
considering the possibility of fractionalization of the graph
shift operator.

Finally, it is also interesting to mention that only one or a
few nodes could have had their measurements corrupted by
noise or changed due to other factors; this would represent
a scenario in which certain sensors would be malfunction-
ing. In order to obtain some preliminary results taking into
account the above described assumption, we carried out addi-
tional simulations. To be more specific, we basically repeated
our previous tests, but assuming that only a number from 1 to
12 nodes had their values nullified or increased by 20 times.
We then performed a low-pass filtering, expecting that the
high-frequency component associated with the referred mea-
surement changes would be attenuated and that the smooth
behavior of the signal would be recovered. In general, the
results obtained using the proposed fractional operator were

better or at least equivalent to those obtained with the cor-
responding ordinary operator. In a future work, we intend to
address this issue in more detail.

V. CONCLUDING REMARKS
In this paper, we have investigated the fractional shift of graph
signals. The key-point for our developments is the fact that,
in the GSP theory, the unit shift is defined from the adjacency
matrix of a graph. Interpreting the fractional shift as a filtering
operation, we demonstrated that, for ring graphs, its applica-
tion produces the expected effect of approximating the clas-
sical ideal interpolating filter, exhibiting satisfactory results
for band-limited signals.We have also shown that the referred
fractional operator can be implemented as an LSI graph filter
for arbitrary graphs and developed real-world examples that
illustrated the benefits of using Aa to design graph filters
for noise removal. Our current investigations include the
study of the fractionalization of other operators on graphs
(e.g., graph Fourier transform and Laplacian), other types of
generalization for the same operators and further applications
of the fractional graph shift. In particular, we have been
studying the use of Aa to design filters for anomaly detection
on graphs (malfunctioning nodes in a sensor network, for
instance) and evaluating the feasibility of introducing a kind
of generalized degree index, so that long range interactions
can be considered.
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