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ABSTRACT In this paper, a high-order internal model based adaptive iterative learning control scheme is
proposed to solve the trajectory tracking problem for a class of nonlinear systems with time-iteration-varying
parametric uncertainties which are generated from a high-order internal model. A time-varying boundary
layer is constructed to remove the nonzero initial error condition in ILC design. An adaptive iterative
learning law is designed to deal with the time-iteration-varying parametric uncertainties. For improving
the robustness and safety, a barrier Lyapunov function is adopted to controller design, thus making the
filtering error constrained during each iteration. Even there exist nonzero initial state errors, the norm of
tracking error vector will asymptotically converge to a tunable residual set as the iteration number increases.
Simulation results show the effectiveness of the propose high-order internal model based filtering-error
constraint adaptive learning scheme.

INDEX TERMS High-order internal model, iterative learning control, iteration-varying parametric uncer-
tainties, barrier Lyapunov function, initial position problem.

I. INTRODUCTION
Iterative learning control (ILC) is an effective control strategy
for the systems undertaking repetitive tasks over a finite time
interval [1]–[12]. ILC utilizes the system invariance property
to improve tracking performance, such that it can be used
in many cases where the system modeling is difficult to
be carried out. In view of its good application prospects in
servo motors [13], traffic flows [14], robot manipulators [15],
batch reactors [16], etc, ILC has attracted increasing attention
during the past decades.

It is well known that adaptive iterative learning approach
is effective in estimating unknown time-invariant con-
stants and time-varying but iteration-independent parameters.

The associate editor coordinating the review of this manuscript and
approving it for publication was Min Wang.

Specifically, unknown time-variant constant parameters in
ILC systems may be estimated by using differential learning
approach [17], which is similar to the parameter estima-
tion strategy in adaptive control. Based on the principle of
parameter invariance, time-varying but iteration-independent
parameters may be estimated by using difference learning
approach [18]. In recent years, the exploration on how to
estimate and compensate for more general parametric uncer-
tainties in ILC has never ceased. As a significant progress in
this issue, Yin et al. [19] proposed two adaptive ILC schemes
for uncertain systems whose time-iteration-varying parame-
ters are generated by high-order internal model (HOIM) [20],
with zero initial error condition and alignment condition [21]
considered, respectively. It should be noticed that resetting
the controlled system to zero initial error at each iteration is
an impossible job in real applications. Hence, the application
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scope of many ILC algorithms based on zero-initial-error
assumptions is very limited. Once applying these ILC algo-
rithms in real systems, system divergence may happen even
if the initial error is very slight, which is the so-called the
initial position problem of ILC [22]–[24]. On the other hand,
a control system under alignment condition means its ref-
erence trajectory is smoothly closed, i.e., the initial state of
reference trajectory is equal to the final state of reference
trajectory. Up to now, for more general situations where
neither zero initial errors condition nor alignment condition
can be satisfied, how to design iterative learning controller
for uncertain systems with time-iteration-varying parameters
generated by HOIM is still unclear.

For the purpose of improving the robustness of system
and the safety of equipments, there exist the requirements of
constraining the system output, the system state, or the output
tracking error in some situations. During the past 30 years,
many experts and scholars carried out a great amount of
theoretical and experimental research at this topic and put
forward some theories and approaches, including maximal
output admissible set strategy [25], constrainedmodel predic-
tive control [26], reference governor approach [27], convex
optimization strategy [28] and barrier Lyaponov function
approach [29], [30]. These theories and approaches served
as solid references for implementing system constraints in
controller design. As far as the system constraint solution
in adaptive ILC is concerned, barrier Lyapunov function
approach plays an important role for its convenience and
effectiveness. The earlier studies have been reported in [31]
and [32]. Specifically, [31] discusses the output constraint
ILC design for SISO nonlinear systems under alignment
condition. Reference [32] proposes an error constraint ILC
algorithm for MIMO systems under alignment condition.
Later on, barrier Lyapunov function approach for nonpara-
metric systems with nonzero initial errors have been investi-
gated in [33] and [34]. Constrained spatial adaptive iterative
learning control are investigated in [35] and [36]. However,
none of these works consider the issue of estimating and com-
pensating for time-iteration-varying parameters during oper-
ations. How to develop an effective ILC scheme to solve the
tracking problem for nonlinear system with time-iteration-
varying parameters generated by HOIM, as well as to meet
the requirement of arbitrary initial errors and filtering error
constraint during operations, has not been addressed yet.

In this work, a HOIM based adaptive ILC scheme is pro-
posed to solve the trajectory tracking problem for a class
of time-iteration-varying parametric systems with arbitrary
initial errors and filtering error constraint. We adopt a barrier
Lyapunov function to address the requirements on system
constraint. The technique of time-varying boundary layer
is applied for relaxing the zero initial condition in ILC
design, such that the reference trajectory is allowed to be
any non-repetitive smooth curve with an arbitrary initial
value, whether the initial state of reference trajectory is zero
or any other bounded nonzero value. Under the proposed
adaptive ILC scheme, the norm of tracking error vector will

asymptotically converge to a tunable residual set as the iter-
ation number increases, and the constraint to filtering error
can be guaranteed. The main contributions are summarized
as follows:

1) The initial position problem of ILC for nonlin-
ear systems with iteration-time-varying parameters is
considered.

2) The system constraint problem of HOIM based ILC
systems is addressed.

3) Iteration-varying trajectory tracking for nonlinear
systems with iteration-time-varying parameters is
considered.

The paper is organized as follows. Section II introduces the
problem formulation. In Section III, we propose a filtering-
error constrained adaptive ILC scheme for nonlinear systems
with iteration-time-varying parameters under nonzero initial
error condition, via using the technique barrier Lyapunov
function and time-varying boundary layer. The convergence
analysis of closed-loop iteration-time-varying parametric
systems is given in Section IV. In Section V, some simula-
tion results are illustrated to verify the effectiveness of the
proposed adaptive ILC scheme. Finally, Section VI concludes
this work.

II. PROBLEM FORMULATION
Let us consider a class nonlinear dynamic systems operating
over time interval t ∈ [0,T ] repetitively as follows:{

ẋi,k = xi+1,k , i = 1, 2, · · · , n− 1
ẋn,k = θθθTk (t)ξξξ (xxxk )+www

T (t)ζζζ (xxxk )+ g(t)u(vk ),
(1)

where k = 0, 1, 2 · · · is the iteration index, xxxk =

[x1,k , x2,k , · · · , xn,k ]T ∈ Rn and vk is the system vector.
The control system is defined over a finite time interval
[0,T ]. www(t) ∈ Rq is and iteration-independent unknown
bounded parameter vector. θθθk = [θ1,k , θ2,k , · · · , θp,k ]T ∈
Rp, where θj,k is an unknown bounded parameter with
respect to both t and k , for j = 1, 2, 3 · · · , p. θj,k is
defined in a bounded closed set �,. ζζζ (xxxk ) and ξξξ (xxxk ) =
[ξ1(xxxk ), ξ2(xxxk ), · · · , ξp(xxxk )]T is the basis function vector.
u(vk ) and vk are the input and the output of an unknown
deadzone nonlinearity. u(vk ) is unavailable for measurement,
whose value is determined according to

u(vk ) =


mr (vk − br ) vk ≥ br
0 bl ≤ vk < br
ml(vk − bl) vk < bl .

(2)

Here, mr = ml = m > 0, br > 0, bl < 0. m, br and bl are all
unknown. Let

bu,k =


br vk ≥ br
u(vk ) bl ≤ vk < br
bl vk < bl .

(3)
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Based on (2) and (3), (1) can be rewritten as{
ẋi,k = xi+1,k , i = 1, 2, · · · , n− 1
ẋn,k = θθθTk (t)ξξξ (xxxk )+www

T (t)ζζζ (xxxk )+ gmvk + gmbu,k .
(4)

Assumption 1: The time-iteration-varying parameter θi,k
satisfies the following kth-order internal model in the iter-
ation domain: For j = 1, 2, · · · , p,

θj,k = hj,1θj,k−1(t)+ · · · + hj,mjθj,k−mj (t), (5)

where hj,1, · · · , hj,mj are known constant coefficients.
θj,−1(t), · · · , θj,−mj (t) are unknown basis functions that are
linearly independent.

The control task is to let the system state xxxk (t) accurately
track the reference signal xxxd (t) under both nonzero initial
errors and filtering error constraint. For the sake of brevity,
the arguments in this paper are sometimes omitted when no
confusion is likely to arise.
Remark 1: The deadzone nonlinearity often exists in the

actuator of motion control, which has adverse effects on
the control performance and even may cause divergence and
instability to systems in severe cases. Therefore, for getting
better control performance, its is necessary to applying cor-
responding compensation in the process of controller design.
The deadzone input model considered in this work is similar
to the one discussed in [37].

III. CONTROL SYSTEM DESIGN
By letting

νννj,k = [θj,k−mj+1, θj,k−mj , · · · , θj,k−1, θj,k ]
T (6)

and

Hj =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

hj,mj hj,mj−1 hj,mj−2 · · · hj,1

 ,
we can rewrite (5) as

νννj,k = Hjνννj,k−1 = · · · = H k
j νννj,0. (7)

Let ϕϕϕTj,k denote the last row of matrix H k
j . From (6) and (7),

we have

θj,k = ννν
T
j,0ϕϕϕj,k . (8)

Define eeek = [e1,k , e2,k , · · · , en,k ]T = xxxk − xxxd and
sk = c1e1,k + c2e2,k + · · · + cn−1en−1,k + en,k , where
c1, c2, · · · , cn−1 are the coefficients of a Hurwitz polynomial
1(D) = Dn−1 + cn−1Dn−2 + · · · + c1.
Combining (4) with (7), we get the tracking error dynamics

as 
ėi,k = ei+1,k , i = 1, 2, · · · , n− 1

ėn,k =
p∑
j=1

(νννTj,0ϕϕϕj,kξj,k )+www
T (t)ζζζ (xxxk )− ẋn,d

+ gmvk + gmbu,k

According to the definition of sk , the time derivative of sk
may be obtained as

ṡk = cccTeeek +
p∑
j=1

(νννTj,0ϕϕϕj,kξj,k )+www
T (t)ζζζ (xxxk )

+ gmvk + gmbu,k − ẋn,d . (9)

Let us choose a candidate barrier Lyapunov function as

Vk (t) =
s2φ,k

2(b2s − s
2
φ,k )

, (10)

in which

sφ,k (t) = sk (t)− φk (t)sat−1,1

(
sk (t)
φk (t)

)
, (11)

with

φk (t) = |sk (0)|e−µt , µ > 0. (12)

The saturation function sat·,·(·) in (11) is defined as follows:
For a scalar â, which is the estimation to a scalar a,

sata,ā(â) :=


ā, if â > ā
â, if a ≤ â ≤ ā
a, if â < a,

where a and ā are the lower bound and upper bound of the
scalar a, respectively. For a vector âaa = [â1, â2, · · · , âm] ∈
Rm, sata,ā(âaa) :=

[
sata,ā(â1), sata,ā(â2), · · · , sata,ā(âm)

]T .
Note that φk (0) = sk (0) leads to sφ,k (0) = 0, which is
useful to solve the initial position problem of ILC. Since
φk (t) converges to zero, it is a reasonable strategy to derive
|sk (t)| ≤ φk (t) by design iterative learning controller.

By taking the time derivative of Vk along (9), we have

V̇k (t) = σksφ,k
[
cccTeeek +

p∑
j=1

(νννTj,0ϕϕϕj,kξj,k )+www
T (t)ζζζ (xxxk )

+ gmvk + gmbu,k − ẋn,d − φ̇k (t)sgn
(
sφ,k

)]
, (13)

where σk =
b2s

(b2s−s
2
φ,k )

2 . By using (11), we have

sφ,k φ̇k (t)sgn
(
sφ,k

)
= sφ,kµφk (t)sat−1,1

(
sk
φk

)
= µsφ,k (sk − sφ,k ), (14)

Substituting (14) into (13) yields

V̇k (t)

= σksφ,k
[
cccTeeek +

p∑
j=1

(νννTj,0ϕϕϕj,kξj,k )+www
T (t)ζζζ (xxxk )+ gmvk

+ gmbu,k − ẋn,d + µ(sφ,k − sk )
]

= σksφ,kgm
[
(gm)−1cccTeeek + gm−1

p∑
j=1

(νννTj,0ϕϕϕj,kξj,k )

+ (gm)−1wwwT (t)ζζζ (xxxk )+ gmbu,k + vk + ρbsat−1,1

(
sk
φk

)
− (gm)−1ẋn,d + (gm)−1µ(sφ,k − sk )

]
(15)
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Define βββ = [gm−1, gm−1µ, (gm)−1wwwT (t)]T , ψψψk = [cccTeeek −
ẋn,d , sφ,k − sk , ζζζ T (xxxk )]T , ηηηj = gm−1νννj,0 and ρb =

sup(|bu,k |). Then, (15) can be rewritten as

V̇k (t) = σksφ,kgm
[
βββTψψψk +

p∑
j=1

(ηηηTj ϕϕϕj,kξj,k )+ vk
]

+ σk |sφ,k |gmρb. (16)

On the basis of (16), we design the control law and learning
laws as follows:

uk = −
γ1

σk
sφ,k − βββTkψψψk −

p∑
j=1

(ηηηTj,kϕϕϕj,kξj,k )

− ρb,ksat−1,1

(
sk
φk

)
, (17)

βkβkβk = satβ,β̄ (βββk−1)+ γ2σksφ,kψψψk ,β−1β−1β−1 = 0, (18)

ηηηj,k = satηj,η̄j (ηηηj,k−1)+γ3σksφ,kϕϕϕj,kξj,k , ηηηjjj,−111 = 0, (19)

ρb,k = sat0,ρ̄b (ρb,k−1)+ γ4σk |sφ,k |, ρb,−1 = 0, (20)

where γ1 > 0, γ2 > 0, γ3 > 0 and γ4 >

0. The recommended value intervals for γ1 − γ4 are
[1, 10], [0.5, 5], [0.5, 5] and [0.01, 1], respectively. In this
work, the initial value of βββk , ηηηj,k and ρb,k are set as βββ−1(t) =
0, ηηηj,−1(t) = 0 and ρb,−1(t) = 0. In fact, βββ−1(t) and ηηηj,−1(t)
may be any two real numbers, and setting ρb,−1(t) to a small
positive number or zero is reasonable.
Remark 2: So far, some types of barrier Lyapunov func-

tions have been proposed for state constraint or error con-

straint in controller design, such as V = 1
2 log

k2b
k2b−e

2 , V =

k2b
tan( πeee

T eee
2k2b

)
, V = h

2 log
k2b

k2b−e
2 +

1−h
2 log k2a

k2a−e2
, V = 1

2 log
e2

k2b−e
2 ,

etc. These results promote the development of constraint
design methods in adaptive control and adaptive ILC.

IV. CONVERGENCE ANALYSIS
Theorem 1: Consider the closed-loop nonlinear system (1)

and control law and learning laws (17) -(20). Then, the fol-
lowing facts will hold:

(1) limk→+∞ sφ,k (t) = 0 and limk→+∞ |sk (t)| ≤
|sk (0)|e−µt hold for t ∈ [0,T ].

(2) |sφ,k (t)| < bs and |sk (t)| ≤ |sk (0)|e−µt + |sφ,k (t)| <
|sk (0)|e−µt + bs are ensured for k = 0, 1, 2, 3, · · · , t ∈
[0,T ].

(3) Let λ be the positive constant such that is 1(D− λ) is
still a Hurwitz polynomial, then

lim
k→+∞

‖eeek (t)‖ ≤ m8e
−λt
‖eeek (0)‖ + |sk (0)|

e−µt − e−λt

λ− µ

(21)

holds for λ 6= µ,

lim
k→+∞

‖eeek (t)‖ ≤= m8e−λt‖eeek (0)‖ + |sk (0)|e
−λt t (22)

holds for λ = µ; and

lim
k→+∞

|en,k | ≤
n∑
j=1

|cjej,k | + e−µt |sk (0)| (23)

for some positive constant m8 and t ∈ [0,T ], where eeek =
[e1,k , e2,k , · · · , en−1,k ]T .

(4) All adjustable control parameters βββk (t), ϑϑϑk (t),
ρk (t), %k (t), and internal signals xk (t), ek (t), uk (t) are
bounded ∀t ∈ [0,T ] and ∀k ≥ 0.

Proof: Firstly, let us analyze the difference of barrier
Lyapunov functional between the adjacent iterations. Define
a barrier Lyapunov functional as follows:

Lk = Vk +
gm
2γ2

∫ t

0
β̃ββ
T
k β̃ββkdτ +

p∑
j=1

mg
2γ3

∫ t

0
η̃ηηTj,kη̃ηηj,kdτ

+
gm
2γ4

∫ t

0
ρ̃2b,kdτ, (24)

where β̃ββk = βββ − βββk and η̃ηηj,k = ηηηj − ηηηj,k . While k > 0, it is
obvious that

Lk − Lk−1 = Vk − Vk−1 +
gm
2γ2

∫ t

0
(β̃ββ

T
k β̃ββk − β̃ββ

T
k−1β̃ββk−1)dτ

+

p∑
j=1

mg
2γ3

∫ t

0
(η̃ηηTj,kη̃ηηj,k − η̃ηη

T
j,k−1η̃ηηj,k−1)dτ

+
gm
2γ4

∫ t

0
(ρ̃2b,k − ρ̃

2
b,k )dτ. (25)

Substituting (17) into (16) leads to

V̇k = −γ1gms2φ,k + σksφ,kgm
[
β̃ββ
T
kψψψk +

p∑
j=1

(η̃ηηTj,kϕϕϕj,kξj,k )
]

+ σk |sφ,k |gmρ̃b,k (26)

According to (11), we can see that sφ,k (0) = 0 holds. From
(26), we have

Vk = −γ1mg
∫ t

0
s2φ,kdτ +

∫ t

0
σksφ,kgmβ̃ββ

T
kψψψkdτ

+

∫ t

0
σksφ,kgm

p∑
j=1

(η̃ηηTj,kϕϕϕj,kξj,k )dτ

+

∫ t

0
σk |sφ,k |gmρ̃b,kdτ. (27)

From (18), we obtain
gm
2γ2

(β̃ββ
T
k β̃ββk − β̃ββ

T
k−1β̃ββk−1)+ gmσksφ,kβ̃ββ

T
kψψψk

≤
gm
2γ2

[(βββ − βββk )T (βββ − βββk )− (βββ − satβ,β̄ (βββk−1))
T (βββ

− satβ,β̄ (βββk−1))]+ gmσksφ,kβ̃ββ
T
kψψψk

≤
gm
2γ2

(2βββ − βββk − satβ,β̄ (βββk−1))
T (satβ,β̄ (βββk−1)− βββk )

+ gmσksφ,kβ̃ββ
T
kψψψk

≤
gm
γ2

(βββ − βββk )T [satβ,β̄ (βββk−1)− βββk + γ2σksφ,kψψψk ]

= 0. (28)
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Substituting (27) and (28) into (25), we have

Lk − Lk−1

≤ −Vk−1 +
∫ t

0
σksφ,kgm

p∑
j=1

(η̃ηηTj,kϕϕϕj,kξj,k )dτ

+

∫ t

0
σk |sφ,k |gmρ̃b,kdτ +

gm
2γ4

∫ t

0
(ρ̃2b,k − ρ̃

2
b,k )dτ

+

p∑
j=1

mg
2γ3

∫ t

0
(η̃ηηTj,kη̃ηηj,k − η̃ηη

T
j,k−1η̃ηηj,k−1)dτ (29)

From (19), we have
gm
2γ3

(η̃ηηTj,kη̃ηηj,k − η̃ηη
T
j,k−1η̃ηηj,k−1)+ gmσksφ,kη̃ηη

T
j,kϕϕϕj,kξj,k

≤
gm
2γ3

[(ηηηj − ηηηj,k )T (ηηηj − ηηηj,k )− (ηηηj − satη,η̄(ηηηj,k−1))
T (ηηηj

− satη,η̄(ηηηj,k−1))]+ gmσksφ,kη̃ηη
T
j,kϕϕϕj,kξj,k

≤
gm
2γ3

(2ηηηj − ηηηj,k − satη,η̄(ηηηj,k−1))
T (satη,η̄(ηηηj,k−1)− ηηηj,k )

+ gmσksφ,kη̃ηη
T
j,kϕϕϕj,kξj,k

≤
gm
γ3

(ηηηj − ηηηj,k )T [satη,η̄(ηηηj,k−1)− ηηηj,k + γ3σksφ,kϕϕϕj,kξj,k ]

= 0. (30)

Similarly, from (20), we obtain
gm
2γ4

(%̃2b,k − %̃
2
b,k−1)+ gmσk |sφ,k |%̃b,k

≤
gm
2γ4

(2%b − %b,k − sat0,%̄(%b,k−1))(sat0,%̄(%b,k−1)− %b,k )

+ gmσk |sφ,k |%̃b,k

≤
gm
γ4

(%b − %k )
[
sat0,%̄(%b,k−1)− %b,k + γ4gmσk |sφ,k |%̃b,k

]
= 0. (31)

Substituting (30) and (31) into (29), we have

Lk − Lk−1 ≤ −Vk−1 (32)

By using the recursive relation (32) and the definition of
Vk−1, we can further obtain

Lk (t) ≤ L0(t)−
1
2

k−1∑
j=0

s2φ,k
b2s − s

2
φ,k

(33)

for k > 0.
Secondly, we will prove that b2s (t) − s2φ,k (t) > 0,∀k,∀t .

On the basis of the definition of Lk and (26), we can get the
time derivative of Lk as

L̇k = −γ1,kgms2φ,k + σkgmsφ,k (β̃ββ
T
kψψψk +

p∑
j=1

η̃ηηTj,kϕϕϕkξk )

+ σk |sφ,k |gmρ̃b,k +
gm
2γ2

β̃ββ
T
k β̃ββk +

p∑
j=1

gm
2γ3

η̃ηηTk η̃ηηk

+
gm
2γ4

ρ̃2b,k . (34)

By using (18), we have

σksφ,kgmβ̃ββ
T
kψψψk +

1
2γ2

gmβ̃ββ
T
k β̃ββk

=
gm
2γ2

(βββ − βββk )
T (2βββk − 2satβ,β̄ (βββk−1)+ βββ − βββk )

=
gm
2γ2

[−βββTk βββk + βββ
Tβββ − 2βββT satβ,β̄ (βββk−1)

+ 2βββTk satβ,β̄ (βββk−1)]

= −
gm
2γ2

[βββk − satβ,β̄ (βββk−1)]
T [βββk − satβ,β̄ (βββk−1)]

+
gm
2γ2

[satβ,β̄ (βββ
T
k−1)satβ,β̄ (βββk−1)+ βββ

Tβββ

− 2βββT satβ,β̄ (βββk−1)]

≤
gm
2γ2

[satβ,β̄ (βββ
T
k−1)satβ,β̄ (βββk−1)+ βββ

Tβββ

− 2βββT satβ,β̄ (βββk−1)] (35)

Obviously, each term in g
2γ2

[satβ,β̄ (βββ
T
k−1)satβ,β̄ (βββk−1) +

βββTβββ − 2βββT satβ,β̄ (βββk−1)] is bounded. Therefore, there exits
a positive number cβ , which satisfies

σkgmsφ,kβ̃ββ
T
kψψψk +

g
2γ2

gmβ̃ββ
T
k β̃ββk ≤ cβ . (36)

Similarly, by using (19) and (20), there exist positive numbers
cη,j and cρ , which meet

σksφ,kgmη̃ηη
T
j,kϕϕϕj,kξj,k +

gm
2γj
η̃ηηTj,kη̃ηηj,k

=
gm
2γj

[−ηηηTj,kηηηj,k + ηηη
T
j ηηηj − 2ηηηTj satηj,η̄j (ηηηj,k−1)

+ 2ηηηTj,ksatηj,η̄j (ηηηj,k−1)]

= −
gm
2γj

[ηηηj,k − satη
j
,η̄j (ηηηj,k−1)]

T [ηηηj,k − satη
j
,η̄j (ηηηj,k−1)]

+
gm
2γj

[satη
j
,η̄j (ηηη

T
j,k−1)satηj,η̄j (ηηηj,k−1)+ ηηη

T
j ηηηj

− 2ηηηTj satηj,η̄j (ηηηj,k−1)]

≤
gm
2γj

[satη
j
,η̄j (ηηη

T
j,k−1)satηj,η̄j (ηηηj,k−1)+ ηηη

T
j ηηηj

− 2ηηηTj satηj,η̄j (ηηηj,k−1)]

≤ cη,j (37)

and

σk |sφ,k |ρ̃b,k +
1
2γ5

ρ̃2k

=
1
2γ5

[−ρ2k + ρ
2
b − 2ρsatρb,ρ̄b (ρb,k−1)

+ 2ρksatρb,ρ̄b (ρb,k−1)]

=
1
2γ5

[satρb,ρ̄b (ρb,k−1)satρb,ρ̄b (ρb,k−1)+ ρ
2
b

− 2ρsatρb,ρ̄b (ρb,k−1)]−
1
2γ5

[ρk − satρb,ρ̄b (ρb,k−1)]
2

≤
1
2γ5

[satρb,ρ̄b (ρb,k−1)satρb,ρ̄b (ρb,k−1)+ ρ
2
b

− 2ρsatρb,ρ̄b (ρb,k−1)]
≤ cρ, (38)
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respectively. Substituting (35)-(38) into (34) yields

L̇k ≤ cβ +
p∑
j=1

cη,j + cρ . (39)

Due to Lk (0) = 0, it follows from (39) that

Lk (t) ≤ t(cβ +
p∑
j=1

cη,j + cρ) (40)

Further, we have

Vk (t) =
s2φk (t)

2(b2s − s
2
φ,k (t))

≤ t(cβ +
p∑
j=1

cη,j + cρ). (41)

Since s2φ,k (0) = 0 for any k , once s2φ,k (t) increases nearly to
b2s for any t ∈ (0,T ], which is contrary to the inequality (41).
Therefore,

s2φ,k (t) < b2s (42)

holds for t ∈ [0,T ], which is equivalent to the fact that

|sφ,k (t)| < bs (43)

holds for t ∈ [0,T ]. Then, according to the definition of sφ,k ,
we have

|sk (t)| ≤ |sk (0)|e−µt + |sφ,k (t)| < |sk (0)|e−µt + bs. (44)

Meanwhile, from (42), we can also see that Vk (t) ≥ 0 and
Lk (t) ≥ 0 hold. Thus, from (40), we can conclude that both
Lk (t) is a negative bounded number. Based on this and (33),
we have

Lk (t) ≤ L0(t)−
1
2b2s

k−1∑
j=0

s2φ,k , (45)

which leads to

lim
k→+∞

sφ,k (t) = 0, (46)

and

lim
k→+∞

|sk (t)| ≤ |sk (0)|e−µt . (47)

According to the definition of sk , we have

ėeek = Aceeek +BBBcsk , (48)

where BBBc = [0, 0, · · · , 0, 1]T and

Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−c1 −c2 −c3 · · · −cn−1

 .
The solution of (48) in time domain is given by

eeek (t) = 8(t)eeek (0)+
∫ t

0
8(t − τ )Bcsk (τ )dτ, (49)

where the state transition matrix satisfies ‖8(t)‖ ≤ m8e−λt

for some suitable positive constantm8. Taking norms on (49),
we have

‖eeek (t)‖ ≤ m8e
−λt
‖eeek (0)‖ +

∫ t

0
e−λ(t−τ )‖Bc‖|sk (τ )|dτ.

(50)

While k →+∞, from (47) and (50), if λ 6= µ,

‖eeek (t)‖ ≤ m8e−λt‖eeek (0)‖ +
∫ t

0
e−λ(t−τ )e−µt |sk (0)|dτ

≤ m8e−λt‖eeek (0)‖ + |sk (0)|
e−µt − e−λt

λ− µ
(51)

holds; if λ = µ,

‖eeek (t)‖ ≤ m8e−λt‖eeek (0)‖ +
∫ t

0
e−λ(t−τ )e−µτ |sk (0)|dτ

≤ m8e−λt‖eeek (0)‖ + |sk (0)|e
−λt

∫ t

0
e(λ−µ)τdτ

= m8e−λt‖eeek (0)‖ + |sk (0)|e
−λt t (52)

holds. This concludes (21) and (22). Then, tracking perfor-
mance shown in (23) can be easily derived by using the
definition of sk .

On the other hand, from (34) and (39), we can see that
sφ,k ,βββk ,ψψψk ,ηηηj,k ,ϕϕϕk , ξk , ρb,k and βββk are bounded. Further,
the boundedness of sk , eeek , vk , uk and other signals can be
ensured.
Through constraining sφ,k , we implement the constraint to

sk during each iteration cycle. It should be noted that the refer-
ence trajectory is allowed to be iteration-varying in this work.
Since ρb = max(mbr ,m|bl |), a larger max(br , |bl |) will
bring about a worse adverse effect in control performance.
To mitigate the damage caused by deadzone nonlinearity,
we design the difference learning law (20) to estimate and
compensate for ρb.

V. NUMERICAL SIMULATION
Consider a one-link robotic manipulator [19] ẋ1,k = x2,k ,

ẋ2,k =
MkgG l
J

sin(x1,k )− α(t)x2,k +
1
J
u(vk ),

(53)

where x1,k and x2,k are the joint angle and the angular
velocity, respectively. J and α(t) are unknown parame-
ters. l and gG are known parameters. Mk = mo −
v0t + ωk , where mo − v0t are unknown iteration-
independent parameter, ωk = −0.2ωk−1 − 0.3ωk−2,
ω−1(t) =

∫ t
0 0.08 cos(

πτ
10 )dτ, ω0(t) = −

∫ t
0 (0.96 sin(1.2τ )+

0.8 cos(2τ ))dτ . By letting θk (t) = 1
J ωk , ξk = gG l sin(x1,k ),

www = [(mo − v0t)/J ,−α(t)]T , ζζζ k = [gG l sin(x1,k ), x2,k ]
T and

g(t) = 1/J , we can transform (53) to the form of (1) with
n = 2, p = 1.
In the simulation, model parameters are set as J =

1.667kg m2, l = 0.9m, gG = 9.8ms−2, α(t) = 0.2/(1 +
t/10), mo = 23kg, v0 = 4.5kg · s−1, br = 0.5, bl =
−0.6,mr = 1.2,ml = 1.2. The reference signal and
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FIGURE 1. x1 and x1,d (constraint ILC).

FIGURE 2. x2 and x2,d (constraint ILC).

FIGURE 3. The error e1 (constraint ILC).

initial system state are xxxd (t) = [x1,d (t), x2,d (t)]T =

[(0.05 − 0.1rand1(k)) + 0.5 cos(0.5π t),−0.25 sin(0.5π t)]T

and xxxk (0) = [1.2 + 0.1rand2(k), 0.05rand3(k) − 0.05]T ,
respectively, where rand1(k)-rand3(k) represent randomnum-
bers between 0 and 1. The control law and learning laws are
constructed according to (17)-(20) is

uk = −
γ1

σk
sφ,k − βββTkψψψk − ηηη

T
k ϕϕϕkgG l sin(x1,k )

− ρb,ksat−1,1

(
sk
φk

)
, (54)

βkβkβk = satβ,β̄ (βββk−1)+ γ2σksφ,kψψψk ,βββ−111 = 0, (55)

ηηηk = satη,η̄(ηηηk−1)+ γ3σksφ,kϕϕϕkgG l sin(x1,k ), ηηη−111 = 0,

(56)

FIGURE 4. The error e2 (constraint ILC).

FIGURE 5. sφ,k during 15th iteration (constraint ILC).

FIGURE 6. Control input (constraint ILC).

ρb,k = sat0,ρ̄b (ρb,k−1)+ γ4σk |sφ,k |, ρb,−1 = 0, (57)

where sφ,k = sk − φksat−1,1
(
sk
φk

)
, φk = |sk (0)|e−5t , sk =

2e1,k+e2,k ,ψψψk = [cccTeeek−ẋn,d , sφ,k−sk , gG l sin(x1,k ), x2,k ]
T ,

ϕϕϕk is the last row of matrix
[

0 1
−0.3 −0.2

]k
. The control

parameters and learning gains in control law (17) and learning
laws (18)-(19) are set as follows: µ = 5, γ1 = 10, γ2 =
1, γ3 = 1, µ4 = 0.05, bs = 0.4,T = 6, η̄ = 100,
η = −100, ρ̄b = 10.
After 15 iteration cycles, the simulation results are shown

in Figs. 1-7. Figs. 1-2 show the profiles of angle position
and angular velocity at the 15th learning cycle, respectively.
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FIGURE 7. max
t∈[0,T ]

|sφ,k (t)| along iteraion axis (constraint ILC).

FIGURE 8. max
t∈[0,T ]

|sφ,k (t)| along iteraion axis (no-constraint ILC).

FIGURE 9. x1 and x1,d (D-type ILC).

The angle tracking error profile and angular velocity tracking
error profile are respectively given in Figs. 3-4. The pro-
file of sφ,k at the 15th iteration is shown in Fig. 5. From
Figs. 2-5, we can see that good asymptotic tracking conver-
gence from xxxk to xxxd (t) has been obtained as the iteration
number increases. The control input at the 15th iteration is
shown in Fig. 6. Fig. 7 gives the convergence history of sφk ,
where Jk , maxt∈[0,T ] |sφ,k (t)|. From Fig. 7, we can see
|sφ,k | < bs holds during each learning cycle.
Comparison A: The no-constraint adaptive ILC algorithm

is adopted to simulation as follows:

uk = −γ1sφ,k − βββTkψψψk − ηηη
T
k ϕϕϕkgG l sin(x1,k )

− ρb,ksat−1,1

(
sk
φk

)
, (58)

FIGURE 10. x2 and x2,d (D-type ILC).

FIGURE 11. max
t∈[0,T ]

|sφ,k (t)| along iteraion axis (D-type ILC).

βkβkβk = satβ,β̄ (βββk−1)+ γ2sφ,kψψψk , βββ−1 = 0, (59)

ηηηk = satη,η̄(ηηηk−1)+ γ3sφ,kϕϕϕkgG l sin(x1,k ), ηηη−1 = 0,

(60)

ρb,k = sat0,ρ̄b (ρb,k−1)+ γ4|sφ,k |, ρb,−1 = 0, (61)

The values of learning gain and control parameters in
(58)-(61) are set to the same as the the corresponding ones
in (54)-(57), respectively. The convergence history of sφ,k in
this algorithm is shown in Fig.8, where the definition of Jk is
the same as that in Fig. 7. By contrast, the maximum of |sφ,k |
during each iteration of no-constraint ILC does not possess
the barrier property.
Comparison B: Traditional D-type learning law [38] is

adopted to simulation as follows:

uk = uk + γ5(ẋ1,d − ẋ1,k ) (62)

where γ5 = 0.9 is the learning gain. The position tracking
and velocity tracking during the 15 iteration are illustrated in
Figs. 9 and 10, respectively. From them, we can see the track-
ing error can not converge to zero or the small neighborhood
of zero even if after so many iterations. The maximum of sφ,k
during each iteration is shown in Fig. 11, where the definition
of Jk is the same as that in Fig. 7. According to Figs. 9-11,
we conclude that the D-type ILC algorithm is not suitable for
the considered time-iteration-varying parametric system with
nonzero initial errors. The above simulation results verify the
effectiveness of theoretical analysis in this work.
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VI. CONCLUSION
A filtering-error constrained adaptive ILC scheme is pro-
posed to solve the tracking problem for nonlinear systems
with nonzero initial errors and time-iteration-varying parame-
ters generated by HOIM in this paper. To achieve the filtering
error constraint during each iteration, a barrier Lyapunov
function is introduced for controller design. The problem of
nonzero initial state errors is handled by using the technique
of time-varying boundary layer. The state tracking errors
can asymptotically converge to a tunable residual set as the
iteration number increases. In the future, we will study the
adaptive ILC for time-iteration-varying parametric systems
with nonsymmetric deadzone.
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