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ABSTRACT The nuclear decay of uranium is one of the cleanest ways to meet the growing energy demand.
The uranium needed for power plants is mainly extracted by two methods in roughly equal amounts:
quarries (underground and open pit) and in-situ leaching (ISL). The effective use of ISL requires, among
other things, the correct determination of the filtration characteristics of the host rocks. In Kazakhstan, this
calculation is still based on methods that were developed more than 50 years ago, and in some cases, give
inaccurate results. At the same time, knowledge of filtration characteristics is necessary for the calculation
of recoverable reserves, prediction of production dynamics, calculation of the optimum number of wells, etc.
This paper describes a method for calculating the filtration coefficient of ore-bearing rocks using machine
learning. The proposed method is based on nonlinear regression models. It also allows the estimation of
the filtration properties of rocks within the process acidification zone, where the existing method is not
applicable. The proposed method applies to approximately half of the uraniummined in the world and makes
it possible to significantly (by 22 %–70%) increase the accuracy of the filtration coefficient determination
and, accordingly, improve the accuracy of recoverable reserves calculation and economic indicators of
mining processes.

INDEX TERMS Uranium mining, machine learning, regression model, filtration characteristics.

I. INTRODUCTION
Nuclear power, despite the environmental risks involved,
remains one of the cleanest ways to meet the growing demand
for energy without increasing greenhouse gas emissions.
Nuclear power plants require the mining of uranium ore to
power them. Uranium is mined in 28 countries, of which
ten countries account for more than 90% of the established
reserves [1] (Fig. 1).

According to the World Nuclear Association, in 2018,
the largest uranium mining companies produced 86% of
the world’s total uranium production [2], of which NAC
Kazatomprom JSC accounted for 21%. Companies use two
main mining methods: open pit (underground and open-
pit), which accounted for 45.9% of the production, and
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in-situ leaching (ISL), which accounts for 48.3% of the
world’s uranium production. Approximately 5.8%of uranium
is mined as a byproduct, such as in gold mining [3].
Appendix A provides a detailed overview of uranium mining
worldwide (https://www.dropbox.com/s/ijl3my3z9dhfg4z/
Appendix_A.pdf?dl=0).

The ISL is considered the most modern and environ-
mentally friendly technology, which is widely used in
Kazakhstan, Uzbekistan, the United States, and partly in
Canada, Australia, and China. However, despite the merits
of ISL, there are several challenges.

First, the application of this method requires a fairly
accurate determination of the lithological composition of
rocks, because uranium mining in this case is carried out in
the ore body, located between the impermeable layers and,
as a rule, below the groundwater level.
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FIGURE 1. Countries with the largest uranium reserves.

Second, the filtration properties of the rocks must be
known to estimate the reserves and extract the maximum
amount of uranium.

Inaccuracies in determining the lithological composition
and filtration characteristics lead to errors in the technological
process of filter installation and errors in determining ore
reserves. For example, economic losses from incorrect
lithological classification in the deposits of Kazakhstan can
be estimated to be approximately 1 to 4 million dollars per
year [4].

These inaccuracies are caused by both the technological
limitations of logging readings and, to a large extent, by the
methods used to determine the lithological composition
and filtration properties of rocks. When determining the
filtration properties of rocks in the field, the key aspect
is to determine the filtration coefficient (Kf ) at the stage
of exploratory drilling, which is further used to calculate
the filtration properties of technological wells. However, the
accepted methodology, based on analytical methods, has not
changed since the end of the last century [5]. Meanwhile, the
correct determination of Kf is necessary for the calculation
of recoverable reserves, prediction of production dynamics,
calculation of the number of wells, and the distance between
them (hexagonal cell diameter or distance between well
rows), and selection of optimal length and location of filter
by depth.

This study considers the application of machine learning
methods to estimate the filtration characteristics of ore-
bearing rocks. The method is based on the use of nonlinear
regression models and has shown results 22 %–70% better
than calculations using the existing methodology used in
Kazakhstan. The method also allows for the estimation of the
filtration properties of rocks within the technological acidi-
fication zone. The proposed method concerns approximately
half of the mined uranium in the world.

The work consists of the following sections:
- The first section briefly describes the existing techniques

for determining the filtration coefficient and its shortcomings.
- In the second section (related works), we provide an

overview of the work devoted to the application of machine
learning methods to mining problems.

TABLE 1. Rock type depending on prevailing fraction diameter.

- In the third section, we present the methodological
scheme of the study, describe the machine learning models
we applied, and the metrics for evaluating the quality of their
performance.

- The fourth section presents and discusses the results
obtained.

- The conclusion briefly describes the results obtained, the
limitations of the method, and formulates the objectives of
future research.

II. THE METHODOLOGY USED IN PRACTICE FOR
DETERMINING THE FILTRATION PROPERTIES OF HOST
ROCKS AND ITS LIMITATIONS
To determine the relationships between the filtration proper-
ties of host rocks and the value of apparent resistivity (AR),
hydrogeological studies (pumping) were carried out at the
stage of exploration, and sampling for the analysis of rock
grain size distribution (GS) was carried out.

Analysis of GS samples of rocks of productive horizons
in hydrogenous fields shows that the distribution of particle
sizes can be well approximated by the log-normal law, and to
characterize the rocks of productive horizons it is advisable
to allocate the following lithological types, each of which
is characterized by a certain range of particle fractions (in
millimeters) (Table 1) [6]:

If the mass fraction of clay-silty particles exceeds 50%,
the rock is identified as clay, and sand is subdivided into
fine, close, medium, and coarse grained depending on which
fraction exceeds 50% by mass fraction; if the mass fraction
of gravel particles exceeds 50%, the rock is identified as
gravel. If the mass fraction of none of the fractions exceeded
50%, the rock was identified by the fractions whose sum of
mass fractions of particles exceeded 50%. For example, if the
sum of the mass fractions of the fine- and medium-grained
fractions exceeds 50%, the rock is identified as fine-to
medium-grained sand. If the sum of the mass fractions of
three or more sand fractions exceeds 50%, then the rock is
identified as multigrained sand.

As a result of the joint processing of electric logging data,
the results of the analysis of particle size distribution and
data on filtration properties of rocks of productive horizons
in fields of infiltration type, the following regularities are
established:

- The most stable parameters that characterize individual
lithologic rock types are particle diameters de = d0,1
(the so-called effective diameter) and d0,6 - the average
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particle diameters with relative mass fraction of 0,1 and 0,6,
respectively;

- sands, as a rule, are characterized by a coefficient of
heterogeneity KH = d0,6/d0,1 ≤ 5, which allows us to
classify them as homogeneous rocks.

- effective diameter d0,1 (or d0,6 - mainly for sands) carries
the main information about the belonging of a rock to a
particular type.

- parameters d0,1 and d0,6 are connected by statistical
dependences with electric parameters ρκ and Spontaneous
Polarization (SP)

αρκ =
ρκ − ρ

(min)
κ

ρ
(max)
κ − ρ

(min)
κ

or αsp =
Uπc − U

(min)
πc

U (max)
πc − U (min)

πc
,

where max and min denote the maximum and minimum
values of the corresponding parameters (apparent resistivity
and potential) within the productive horizon, respectively.
As a rule, at small values of electric parameters, their
connection with values d0,1, is more stable, and at large, with
values d0,6;
- filtration coefficient Kf and parameters d0,1 (d0,6)

are statistically connected by the dependence of the form
Kf = Ad20,1 or Kf = A1d20,6, where A and A1 are
constant multipliers for a given productive horizon, which
are determined by the results of pilot pumping in hydroge-
ological wells with known values of d0,1 and d0,6 of rocks
comprising the productive horizon. Appendix B provides
a detailed explanation of physical aspects of logging data
acquisition (https://www.dropbox.com/s/8d26z0umi8s5gow/
Appendix_B.pdf?dl=0).

The statistical relationship between the parameters d0,1
and/or d0,6 and the electrical parameters ρκ , αρκ or αsp
allows to restore the values of d0,1 and/or d0,6, and therefore,
to identify the rock type and evaluate the filtration coefficient
Kf .

The obtained dependencies are given in the standards
and are used to calculate Kf based on the average apparent
resistivity within the allocated lithological interval.

To obtain data on the lithological structure of a sandstone
type uranium deposit, the following electrical logging
methods were used: induction log (IL), apparent resistance
logging (AR), and spontaneous polarization potential (SP).
During the logging process, a probe is lowered into the
drilled borehole, which, when lifted, provides measurement
data in 10-cm increments. Appendix C explains the pro-
cess of assessment of filtration properties at the explo-
ration stage (https://www.dropbox.com/s/wfwjnk8ufv675oo/
Appendix_C.pdf?dl=0).

By interpreting the logging data, the expert, by charac-
teristic points of the AR curve, identifies the boundaries of
lithological intervals, within which the average value of the
apparent resistivity is determined. Using the dependencies
the filtration coefficient is calculated [7]. Appendix D
(https://www.dropbox.com/s/vnlg2lfiw40bxb6/Appendix_D.
pdf?dl=0) provides an example.

By obtaining information about the rock distribution,
filtration properties, and depth of the ore body occurrence,
we can proceed to determine the optimal location of filters
for acid injection and pumping of the productive solution (the
filter position depends on whether the well is injection or
pumping) [8].

A significant drawback of Kf determination method used
in practice is that it uses data from only one logging
method. Consequently, it becomes inapplicable when the
record is distorted. This occurs most often in acidified blocks,
that is, where rocks have been exposed to acid and have
changed their physical properties. To control the process
of acidification with an interval of 1-2 years in the wells
of the geological site, IL logging was carried out, during
which the conductivity of rocks was measured and the
degree of acidification was determined by the increment
of conductivity, that is, the drop in resistance of rocks.
An example of such a sequential conductivity measurement
is presented in Fig. 2.

Induction log curves were recorded for 2018, 2020,
and 2021. We can see their consistent increment at the
acidification interval (205-235m), highlighted in yellow. The
increment is maximum (up to five times) for the reservoirs
with the highest filtration coefficients. Fig. 3 shows a passport
of the well with highlighted acidification intervals, for which
the AR curve values were underestimated, IL values were
overestimated, and SP curve values were not distorted.

Because the conductivity increment indicates a resistance
drop, it is practically impossible to apply the existing method
to acidification intervals. Therefore, for these intervals, the
filtration coefficient values of the corresponding tracks were
deleted. At the same time, such intervals are present in
30%–40% of wells and, as a rule, in the ore-bearing
horizon, which is of the greatest interest for the interpreter.
It is difficult to use the IL curve to determine filtration
properties because such measurements are not taken at the
exploration stage; hence, they cannot be compared with
the pumping results. In addition, in Kazakhstan, IL is not
part of the standard set of measurements, that is, it is
not performed in all wells. Thus, the standard method for
determining the filtration coefficient has clear drawbacks that
prevent accurate determination of reserves and planning of
production processes.

III. RELATED WORKS. MACHINE LEARNING METHODS IN
MINING TASKS
Machine learning (ML) is a subset of artificial intelligence
techniques that allows computer systems to learn from previ-
ous experiences (i.e., from data observations) and improve
their behavior to perform a particular task [9]. ML solves
the problems of regression, classification, clustering, and
data dimensionality reduction. ML models are divided
into five classes [10], [11]: unsupervised learning (UL)
or cluster analysis [12], supervised learning (SL) [13],
semi-supervised learning (including self-learning) (SSL),
reinforcement learning (RL), and deep learning (DL).
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FIGURE 2. Conductivity measurements at different time periods.

UL models solve the problems of clustering and data
dimensionality reduction when a set of unlabeled objects is
partitioned into groups by an automatic procedure based on
the properties of these objects [14], [15].

SL models solve classification or regression problems.
A classification problem arises when finite groups of objects
in a potentially infinite set of objects are distinguished by
labeling [16]. Labeling is often performed by experts. The

classification algorithm, using this initial classification as a
pattern, must assign the unlabeled objects to this or that group
based on the properties of these objects. Regression is the task
of predicting a continuous quantity.

The SSL, RL, and DL models are often used for
classification and regression tasks. The peculiarity of DL is
the possibility of applying end-to-end learning (end-to-end),
which, in turn, requires large volumes of marked-up data.
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FIGURE 3. Well passport with highlighted acidification intervals.

ML models can be roughly divided into ‘‘classic’’ and
‘‘modern’’ (Table 2).

ML has been successfully used to solve problems in
medicine [32], [33], biology [34], robotics, urban [35]
and industry [36], [37], agriculture [38], modeling of
environmental [39] and geoecological processes [40], to cre-
ate a new type of communication system [41], astron-
omy [42], geological exploration [43], natural language
processing [44], [45], and problems in search, evaluation, and
mining.

ML methods are used in geological mapping to search
for ore deposits, risk assessment, and hydrological and
environmental modeling [46]. One of the most popular tasks
is lithological classification. For example, the work in [47]
deals with the lithological mapping of Hutti province in
India using AVIRIS-NG multispectral data. As a result of the
comparison, the Support Vector Classifier (SVC) algorithm
was chosen to solve this problem. In [48], it was shown
that SVC and Ensemble Methods (EM) showed the results
of classification of rock types better or equal to those
obtained using standard classification methods in 2D or 3D

modeling of geological objects. This article emphasizes the
high dependence of the results on the quality of expert
labeling. The lithological mapping task using SVÑ and
remote sensing data for the southern provinces of Morocco
was also considered in [49]. The lithological classification of
crystalline rocks based on logging data was also considered
in [50]. Again, the SVC algorithm was chosen as the best
algorithm.

Another popular direction is the analysis of remote sensing
data of the earth’s surface and the evaluation of mining
prospects.

For example, [51] discussed the applications of machine
learning to analyze remotely sensed data in mineral prospect-
ing. Classification of the covering surface near uranium
ore processing zones for nuclear nonproliferation treaty
compliance assessment using machine learning techniques
and remotely sensed earth surface data was considered
in [52]. In [53], a method for evaluating the prospectivity of
tungsten deposits using machine learning and deep learning
techniques. RF, SVC, ANN, and CNN were used to solve the
classification problem in this study. Based on the results of
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TABLE 2. ML models for data analysis.

the quality assessment of the methods, RF was chosen as the
main prediction method.

The application of machine learning to solve the problems
of stratigraphy at uranium deposits in Kazakhstan was
considered in [54]. Some papers by the authors of this
article are devoted to the problems of classifying lithological
types in uranium deposits using ‘‘classical’’ algorithms [55],
combining the results of several classification models [56],
comparative analysis of ‘‘classical’’ models and some deep
learning methods [8], [57], evaluation of the quality of
expert labelling of logging data in solving the problem of
lithological classification [58], [59]. In the papers mentioned
above, a quantitative assessment of the influence of experts
on the solution of the lithological classification problem was
carried out. Regression methods were used to estimate the
amount of silica and iron in the ore [60]. The authors have
shown that boosting methods and EM demonstrate good
prediction result (96-98%).

The analysis of the works shows a great interest of
researchers in solving the problem of classification and
regression in the mining industry using ‘‘classical’’ machine
learning algorithms. However, we have not been able to
identify works devoted to the calculation of the filtration
properties of rocks in uranium deposits of formation-
infiltration type using machine learning methods, despite
the fact that the analytical method used in practice yields
inaccurate results. At the same time, the correct estimation
of Kf is critical for calculating the amount of recoverable
reserves, predicting the dynamics of production, the number
of necessary wells, the choice of parameters, and the location
of the filter to be installed within the productive horizon.
Therefore, improving the accuracy of Kf estimation based
on the application of machine learning methods is the goal
of this research. This task can be solved using regression
models because of the problem of predicting continuous
values.

IV. METHOD
Given the shortcomings of the existing Kf estimation
methodology, we propose a machine learning model that
receives basic logging data as input and generates filtration
coefficients as output. Such a model can be trained on data
from exploratory wells that have actual (pumped out) Kfpo.
values. The trained model can then be used to calculate Kf of
the production wells.

The problem of estimating filtration properties from
logging data belongs to the class of example-based or super-
vised learning problems. Mathematically, it is reasonable
to consider the problem of learning by examples as an
optimization problem, which can be solved by searching for
the minimum value of the cost function J (θ ) on all available
examples, defined as the sum of squares of the difference
between the ‘‘predicted’’ value and the real value on the set
of examples m. In this case, a hypothesis hθ (x) is selected
that provides the minimum value of J (θ ) on a certain set of
parameters θi ∈ 2:

J (θ ) = min
1
2m

∑m

i=1
(hθ (x(i))− y(i))2,

where m is the set of training examples, hθ is the hypothesis
function, which can be linear (hθ = θ0 + θ1x) or nonlinear
(e.g., hθ = θ0+θ1x+θ2x2) with a different set of parameters
θi ∈ 2.
To find the optimal function hθ (x), the gradient descent

algorithm is used, the essence of which is to change the
parameters θ0, θ1 sequentially using the expression:

θj := θj − α
∂

∂θj
J (θ0, θ1),

where α is the learning parameter, and ∂
∂θj
J (θ0, θ1) is the

derivative of the cost function by θj. The sign = means
assignment as opposed to the equality sign (=) in algebraic
expressions.
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Two algorithms were chosen for the experiments: gradient
boosting (an ensemble of weak decision trees aggregated into
a meta-model by the boosting method) and a neural network
with a hidden layer.

The essence of the gradient boosting [26] is that after the
optimal values of the regression coefficients are calculated
and the hypothesis function hθ (x) is obtained using algorithm
(a), the error is calculated and a new function hbθ (x) is
selected, possibly using another algorithm (b) tominimize the
error of the previous one.

hθ (x(i))+ hbθ (x(i))− y(i)→ min

In other words, we are talking about minimizing the
function:

Jb =
m∑
i=1

L(y(i), hθ (x(i))+ hbθ (x(i)))

where L is an error function that considers the results of
algorithms a and b. If Jb(θ ) is still large, the third algorithm
(c) is chosen. Often, decision trees of relatively small depth
are used as algorithms (a), (b), (c), etc. The value of the
gradient L(y(i), hθ (x(i)))mi=1 is used to determine the minimum
of the function Jb(θ ). Given that the minimization of the
function Jb(hbθ (x(i)))mi=1 is achieved in the direction of the
antigradient of the error function, algorithm (b) is adjusted
such that the target values are not (y(i))mi=1, but the antigradient
(−L ′(y(i), hθ (x(i)))mi=1 ), that is, when training the algorithm
(b) pairs (x(i),−L ′(y(i), hθ (x(i))) are used instead of (x(i), y(i)).

Multilayer artificial neural networks (multilayer persep-
trons) are one of the most popular methods of supervised
learning, especially in the case of multiple classes. To adjust
the weights θ of the neural network (network training), a cost
function of the following form is used:

J (2) = −
1
m

[∑m

i=1
y(i)k log(h2

(
x(i)
)
)k +

(
1− y(i)k

)
log(1− h2

(
x(i)
)
)k
]
+

λ

2m

×

∑L−1

l=1

∑Sl

i=1

∑Sl+1

j=1
(2l

ji)
2,

where L is the number of layers of the neural network,
sl- number of neurons in layer l, K is the number of classes
(equal to the number of neurons in the output layer),2 is the
weight matrix, and the hypothesis function is often a sigmoid
(logistic) function.

hθ (x) =
1

1+ e−θT x
,

To minimize the loss function (learning) of a multilayer
ANN, the backpropagation error (BPE) algorithm [61] and
its modifications are used to speed up the learning process.

The quality of the constructed regression dependence was
assessed using a list of indices.

Coefficient of determination

R2 = 1−
SSres
SStot

,

SSres =
n∑
i=1

(y(i) − h(i))2

SStot =
n∑
i=1

(y(i) − ȳ)2, ȳ =
1
n

n∑
i=1

y(i),

where y(i)- actual value for the i-th sample;
h(i)− calculated (predicted) value (hypothesis function

value) for the ith sample of total n samples.
In existing libraries R2 is denoted by r2_score. The best

value of r2_score=1.
Root mean square error

RMSE = 2

√
1
n

∑n

i=1
(y(i) − h(i))2.

Linear correlation coefficient (or Pearson correlation
coefficient)

R(y, h) =

∑n
i=1 (hi − h̄)(yi − ȳ)∑n

i=1 (yi − ȳ)
2∑n

i=1 (hi − ȳ)
2 ,

where

h̄ =
1
n

∑n

i=1
hi.

The methodological scheme of the study consists of the
following steps:

- Data collection and preprocessing. This step is necessary
to form a set of input variables and to select the target variable.

- Application of machine learning methods in two experi-
ments.

a) Experiment 1: ANN-based regression model based on
data from exploratory wells of the Budennovskoye field.

b) Experiment 2. Regression models based on ANN and
Extreme Gradient Boosting (XGBoost) use data from the
Inkai field.

- Verification of results using RMSE, R2, R.

V. DATA AND RESULTS
To increase the reliability of Kf estimation, it is desirable
to consider as much data as possible. However, during the
exploration phase, a limited set of geophysical surveys are
usually performed that do not include IL or neutron methods.
Therefore, the models had to be limited to rock code and AR
and SP log data (as a set of values in 0.1 m increments).
Experiment 1 (Calculation of Filtration Coefficients of
�Budennovskoye� Field):
To train the model, a dataset was generated containing

data for�Budennovskoye� field, part of which is shown in
Fig. 4. (AR and SP are given for 90 centimeter intervals, for
which, in turn, the actual values Kfpo. obtained by pumping
out (pump out) was determined. As a result, the input variable
set consisted of 19 values, including the rock code (AR, SP).
The target column is Kfpo. The full dataset with the obtained
calculation results is available in the following link [62].

The regression model was based on an ANN with one
hidden layer consisting of 31 neurons. Kf values were also
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FIGURE 4. Dataset for �Budennovskoye� field.

TABLE 3. Evaluation of the quality of Kf calculation by the existing
method (calculation) and by regression model (regression).

calculated for all intervals of the specified dataset using the
currently used procedure Kfc,.

The results showed that neither method fully agrees with
the actual data (Kfpo). However, the correlation of the results
of the regression model - Kfr with the actual data - Kfpo is
significantly higher than the correlation betweenKfpo andKfc.
Accordingly, the RMSE value of the regression model was
lower (Table 3).
Experiment 2 Calculation of Filtration Coefficients of
�Inkai� Field:

The experiment for the �Inkai� field was designed
so that the models were trained and verified on the data
of exploration wells as in Experiment 1. Then, the best
model according to R2 and RMSE estimates was used to
calculate Kf of technological wells. The calculation results
for the technological wells were compared with the debits
of the wells because there was no actual data (Kfpo) for the
technological wells.

A much larger dataset was used for training, containing
approximately 600 intervals for more than 30 exploration
wells. Table 4 shows the results of XGBOOST, ANN
(hidden_layer_sizes = 91), Support Vector Regressor (SVR)
and random forest regressor (RFR) for different input
datasets. The datasets differed in terms of input parameters.
Below, in Table 4 and Fig.5:

Input - set of input variables,
AR - set of input variables consisting of AR values for the

interval in consideration,
SP - set of input variables consisting of SP values,

FIGURE 5. Comparative assessments of regressors.

LC - lithological code set by the expert.
It can be seen that the best results were obtained using

AR and LC as the input parameters. The worst RMSE results
were obtained using the calculations. The model based on the
SP showed a weak correlation. It can be assumed that this
is due to the poor quality of SP curve recording, as high-
quality recording requires strict requirements for drilling
fluid preparation, which are often neglected in practice.
Because the size of the dataset was small, the training time for
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TABLE 4. Assessments of the performance of the models trained on the
exploration wells of the �Inkai� field.

all algorithms was less than 1 s. At the same time, methods
based on the use of decision trees learn faster.

Because the XGBoost regressor showed the best results
when using (AR, LC) as input parameters (Fig. 5), but
for acidified intervals, the values of both AR and LC
are incorrect, we propose a hybrid model. In this case,
XGBoost (AR, LC) is used for all non-acidified intervals, and
XGBoost (SP) for acidified intervals, as only SP preserves
true values on acidified intervals. Nevertheless, it is worth
noting that because of the poor quality of the SP record, the
error in estimating Kf of acidified intervals must be quite
high.

The XGBoost-based models were tested on eight tech-
nological wells that contained technological acidification
intervals. The calculation results for one of the wells are
presented in Table 5. The last column shows the results of
the hybrid model, in which multiple input variables (AR, SP)

were used at all intervals except the acidified intervals, and
the SP-based model on the acidified intervals, because the
AR and rock code on the acidified intervals are distorted.

The technological acidification interval is highlighted in
yellow (rock code 28). It can be seen that for this interval
the Kf , values calculated by the existing methodology are
significantly underestimated (1.1 m/day).

It is worth noting that this value (1.1 m/day) is actually
not the result of calculation, but was forcibly set for these
intervals as the minimum possible value for permeable
intervals.

Because it is difficult to obtain actual values of filtration
coefficients at technological wells, it is possible to estimate
the correctness of the calculated Kf only indirectly by
comparing it with the well flow rates (maximum volume
of injected/outflow fluid). It is logical to assume that the
higher the well flow rate, the better the filtration properties
of rocks in the near-filter zone and a longer filter length.
However, for calculations as a zone of solution movement
in Kazakhstan, it is accepted to use not the filter itself, but
the so-called zone of active movement of solutions (ZAMS).
It extends 2 m upward and 6 m downward relative to the
actual filter location. Therefore, the product of the average
Kf value within the filter (K̄f ) by the filter length (length of
filter - LF) and the product of the average Kf value within
ZAMS by the length of ZAMS (length of ZAMS -LZAMS)
was also used for comparison with well flow rates. Part
of the calculation results for the process wells is listed in
Table 6. The calculation results for all 46 wells are given in
Appendix E (https://www.dropbox.com/s/a8rtrgzohykcrob/
Appendix_E.pdf?dl=0).

Column K̄fr shows the results of the XGBoost-based
regression model using the set (AR, LC) as input parameters.
Column K̄frh shows the results of a hybrid model, which also
uses an XGBoost-based regression model, but uses only SP
data for areas containing acidic rocks.

Wells 42, 43, 45, and 46 contain zones of technological
acidification. It can be seen that the assessment of filtra-
tion properties, when calculated according to the current
instructions for them, is significantly underestimated, which
is clearly visible in the example of well number 45. Overall,
the assessment of filtration properties, obtained by means
of a hybrid model, correlates significantly better with actual
values of well flow rate after development (R = 0.550) in
comparison with the calculation based on the existing method
(R= 0.164), even if the acidulated wells were considered (the
last row of the table).

VI. DISCUSSION
According to the current methodology, the parameters of the
rock filtration properties and the actual value of the filtration
coefficient (Kf ) were identified at the exploration drilling
stage. Subsequently, the obtained parameters were used to
calculate the filtration properties of the technological wells.
Correct calculation ofKf affects the estimation of recoverable
reserves and parameters of the production process. However,
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TABLE 5. Results of Kf calculating using the existing method and using regression models.

TABLE 6. Results of applying machine learning models to calculate Kf for technological wells.

Kf estimation is inaccurate. A comparison of the calculated
data with actual data shows that the RMSE is 13.89 and the
linear correlation value is 0.584 (see Table 7). In addition,
the calculated values correlated poorly with the debits of the
wells (R = 0.164).

Based on the results of the experiments, a two-stage
scheme for determining filtration coefficients in the fields
of Kazakhstan using machine-learning models was proposed
(Fig. 6).

In the first stage, machine learning models were tuned
using data from exploratory wells. A hybrid model is formed
from the tuned models, which use the MLmodel for acidified
well sections, where the input data are SPs (XGBoost(SP)).

For non-acidified sections, the AR and LC data were used
(XGBoost(AR,LC)).

Because technogenic acidification intervals are found only
in production wells, they are not present in the dataset
generated from exploration wells. Therefore, it is impossible
to directly teach the correct predictions Kf for acidified
intervals. Because of the poor quality of SP curve recording,
adding it as an input regression parameter usually slightly
worsens the accuracy.

However, in acidified well sections, the AR curve is
too distorted, and the lithological code only indicates the
acidification interval (not the actual rock type). Moreover,
this distortion is dependent on the lithological composition of
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FIGURE 6. Scheme of Kf estimating Kazakhstan ISL fields using
machine-learning models.

the rocks and the amount of acid. Therefore, the only option
in this case is to use the SP, even though it has low accuracy.

The proposed model for determining the filtration coeffi-
cient is not only much more accurate (RMSE = 4.89, R2

=

0.59), but also correlatesmuch better with the actual well flow
rates (R = 0.550) (Table 7).

It can be noted that when using the approved methodology
on data from exploration wells (Table 4), very poor results
(RSME = 13.89) were obtained, which were significantly
inferior to the regression models. At the same time, when
using it on technological wells (Table 6), the correlation with
well flow rates, if not considering acidified wells, is not much
inferior to the results of the regression models. This is due to
the fact that the existing methodology is designed to use the
average value of resistivity within the allocated lithological
interval, and it can be correctly determined only for intervals
of at least 1.5 - 2m, as in the fields of Kazakhstan for
recording AR used downhole device with a distance between
the electrodes in 1m. Because the borehole device was used to
record AR in the fields of Kazakhstan, the distance between
the electrodes was 1.1 m.

During the training on data from exploration wells,
only intervals with a thickness of 0.5 m were used for
comparison with data from hydrogeological studies, which
led to a high RMSE value. In the technological well data,
lithologic intervals were mainly more than 2 m thick, so the
result of the approved methodology was relatively good (in

TABLE 7. Comparison of machine learning models and the existing
methodology for determining Kf in the �Inkai� field.

wells without acidified intervals, almost comparable with
regression models). Based on this, we can draw the following
conclusions.

1. Regression models work well for all intervals, while the
current methodology is only suitable for intervals greater than
1.5-2m.

2. The current methodology is not applicable to wells
containing acidified intervals.

3. Hybrid can be applied to wells containing acidified
intervals.

VII. CONCLUSION
Uranium mining by in situ leaching requires a fairly accurate
assessment of the lithological composition and filtration
properties of ore-bearing rocks. The methodology used in
Kazakhstan to estimate filtration properties is based on the
fact that at the stage of exploratory drilling, the parameters
are determined, which are then used to calculate the filtration
properties of technological wells. However, the existing
methodology yields inaccurate results and cannot be used
in technological acidification zones, which account for up
to 40% of all considered data. Inaccuracies in determining
the filtration coefficient lead to errors in the technological
production process and inaccurate calculation of recoverable
reserves.

To overcome the shortcomings of the existing approach,
we propose a method for calculating the filtration coefficient
based on the use of regression models. The proposed model
receives electric logging data as an input and the calculated
filtration coefficient as an output. To improve the quality of
the model, it is made hybrid; that is, it is formed from two
models. For non-acidic areas, a model with AR and LC as
the input variables was used. For acidified sites, a model with
input variables consisting of SP data was used.

The analysis shows that the proposed method yields a
much smaller mean square error of filtration coefficient
determination, correlates better (by 70%) with well debits,
with actual filtration coefficient values (by 27%) applicable
for small intervals, and can also be used for calculation of the
filtration coefficient in acidified zones.

A. LIMITATION OF THE METHOD
Application of the method may be limited when analyzing
data from fields explored 20-30 years ago. In such cases, it is
not possible to obtain hydrogeological data, and the logging
data are often fragmentary and unsuitable for the formation
of a training dataset.
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B. FUTURE RESEARCH
In future studies, we plan to analyze the possibility of
applying pre-trained models for such cases. In other words,
it is planned to investigate the possibility of using transfer
learning methods to calculate the filtration coefficient of
technological wells in fields where data from exploration
wells are incomplete.

The second direction of research is to develop methods
for interpolation of Kf in the interwell space, which can
improve the accuracy of estimatingKf using data from nearby
wells.

APPENDIX A. A BRIEF OVERVIEW OF THE RESERVES AND
PRODUCTION OF NATURAL URANIUM IN THE WORLD
All over the world, uranium is the main resource for the
operation of nuclear power plants. Deposits of uranium ores
are not evenly distributed around the globe. Today, only
28 countries of the world extract valuable raw materials in
their bowels. Themainworld reserves of uranium in theworld
are located in 10 countries.Wewill tell you a little more about
the countries with the largest uranium reserves.

Table 8 below contains a summary of the uranium reserves,
the number and names of deposits in the leading countries in
terms of uranium reserves according to [1], [2].

Analysis of information related to the leadership of
countries in uranium reserves does not allow us to conclude
that these same countries are leaders in uranium mining.

In 2018, the world’s largest uranium miners produced
86% of the world’s uranium mined, according to the World
Nuclear Association. The main uranium mining companies
are mining corporations fromKazakhstan, Canada, Australia:
they account for two-thirds of the world’s production [2]
(Fig. 7)

Table 9 shows the top ten uranium mines based on
2018 production results. At least three of these top ten mines
(Rössing, Arlit (SOMAÏR) and Ranger), representing 10% of
2018 production, are scheduled/expected to close before the
end of the 2020s and will need to be replaced by new mine
capacity by then, in order not to cause further reduction of
primary uranium production [3].

During the development of the uranium market, the
technology ofmining processing itself has changedmore than
once. Basically, uranium ore is mined in two ways - mine or
open pit, depending on the depth of the layers with uranium
ore. The career path means less radiation and higher safety.
Underground (mine) allows you to extract higher quality
uranium ore, but it is also more dangerous because of radon -
a radioactive gas that accumulates in mines.

Underground leaching of uranium ores is the most
advanced uranium mining technology, first used since 1957.
The method is the injection of a special chemical solvent
underground into the layer of uranium ores, which reacts
to uranium compounds. Then this solution is brought to
the surface and processed already. The disadvantage of this
method is the ability to use it only in sandstone and below the
groundwater level.

The method has gained particular popularity in Kaza-
khstan, Uzbekistan and the United States, although this
method of production is used in Canada, Australia and
China. The geography of the in-situ leaching method is
steadily increasing its share of the total volume, mainly due
to Kazakhstan (this method covers more than half of the
production). Since 2015, global production has proceeded as
follows:

Conventional mines had a mill where the ore was crushed,
crushed, and then leached with sulfuric acid to dissolve
uranium oxides. In a conventional mine mill or sewage
treatment plant with ISL operation, the uranium is then
separated by ion exchange before drying and packaging,
usually as uranium oxide (U3O8). Some mills and ISL
operations (especially in the US) use carbonate leaching
instead of sulfuric acid, depending on the orebody.

Today, the approximate distribution of uranium mining
methods is as follows [3] (Table 10). According to the table,
the method of underground leaching of uranium ores is
used approximately equally along with two methods – mine
or quarry. The extraction of uranium using underground
leaching causes significantly less damage to the environment
than the methods described above.

Over time, reclamation processes occur on the developed
land plot. The use of this method can reduce economic costs.
But it has its limitations. It is not used only in sandstone and
below the water table.

Almost all the uranium mining companies listed above
have all the existing mining technologies, depending on the
characteristics of specific deposits and mines.

APPENDIX B. PHYSICAL ASPECTS OF LOGGING DATA
ACQUISITION
Measurements of apparent resistivity (AR) method are
performed using a four-electrodeAMNBunit. Two electrodes
A and B (supply electrodes are connected to the current
source). M and N (measuring electrodes) are connected to the
meter. The electric probe consists of three electrodes set at a
strictly defined distance from each other. The fourth electrode
is mounted on the surface and is called a ‘‘fish’’. Electrodes
AB and MN are called paired electrodes, and electrodes AM,
AN, BM and BN are unpaired.

Gradient probes and potential probes are mainly used to
measure ρk of rocks in resistivity logging in the sedimentary
section. Gradient probes are probes in which the distance
between paired electrodes M and N (A and B) is at least
7 times less than the distance between unpaired ones. The
distance from the middle of the paired electrodes close
together which is called the recording point, to the unpaired
electrode is called the length of gradient probe. Potential
probes are probes in which the distance between unpaired
electrodes is small compared to the distance between
paired electrodes. The length of the potential probe is the
distance between the unpaired electrodes. The essence of
measurements is briefly that a current I is passed through
supply electrodes of the probe located in the borehole, which
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TABLE 8. Leading countries in terms of natural uranium reserves in the world.
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FIGURE 7. World natural uranium production structure by major market players.

TABLE 9. Ten largest world uranium mines, Ranked by 2018 production, TU.

TABLE 10. Evaluation of uranium mining methods.

creates an electric field in the medium under study. Using
measuring electrodes M and N, the potential difference 1U
between two points of this electric field is measured.

Consequently, the resistivity, which is called apparent
resistivity, is equal to:

ρκ = K
1U
I

(1)

where 1U is the potential difference between the measuring
electrodes, I is the current supplying the probe, K is the

probe coefficient (a constant value depending on the distance
between the electrodes). The probe coefficient K is calculated
by the formula:

K =
4π ∗MA ∗MB

AB
(2)

where MA, MB and AB are distances between electrodes.
The spontaneous polarization potential (SP) measurement

is reduced to the measurement of the natural potential
difference between the M electrode moving along the
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FIGURE 8. A plantar gradient probe.

FIGURE 9. Flow meter.

borehole and the N electrode located on the surface near the
borehole head.

We used a model of a plantar gradient probe, with a probe
length of 1m, which is mainly used for logging in the uranium
deposits of Kazakhstan. Its scheme is shown in (Fig. 8).
A, B, M- electrodes, electrode N is on surface, L-length of
probe (in our case 1m), the point of recording of AR is
between electrodes A and B, the point of recording of SP is
on electrode M.

Distance between AR and SP recording points is 1m (ten
10-cm interlayers).

FIGURE 10. The flow-metric graph.

TABLE 11. Dependence of filtration properties on the apparent resistivity
of host rocks.

The registered value of SP depends only on the value at
point M, the registered value of AR depends on the values of
all the interlayers located between electrodeM and themiddle
between electrodes A and B.

APPENDIX C. ASSESSMENT OF FILTRATION PROPERTIES
OF ROCKS AT THE EXPLORATION STAGE
At the stage of exploration in uranium deposits of Kaza-
khstan, a set of hydrogeological studies is carried out to assess
the filtration properties of the host rocks. The average filtra-
tion coefficient of the water-bearing horizon is determined by
the rate of water level recovery in the well after its pumping.
Then, to determine layer-by-layer filtration coefficients, flow
velocity is measured with a flow meter (Fig. 9).

The method of determining layer-by-layer filtration prop-
erties of rocks in the uranium deposits of Kazakhstan is
described in detail in [1]. The essence of flowmetry is that
the flow rate of axial water flow measured in the wellbore

1Grinbaum I.I., Flow measurement of hydrogeological and engineering-
geological wells, Nedra, Moscow, 1975, 271 pp.
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TABLE 12. Results of applying machine learning models to calculate Kf for technological wells (full).

in spouting, pumping, filling or injecting mode changes only
in intervals of permeable (water-bearing) rocks, and within
water-bearing rocks remains constant or equal to zero. As a
consequence, the flow-metric graph Q′ = f(h), constructed
based on the results of a set of water flow measurements
in the experimental well, allows to determine the depth,
thickness and hydrodynamic characteristics of permeable
(water-bearing) formations. The boundaries of formations,

which differ in their filtration properties, are fixed by the
breakpoints of the flow-metric graph (Fig. 10)

Fig. 10 Scheme of the flow-metric study of the well
during pumping: (a) - flow diagram of fluid flows along
the wellbore; (b) - flow chart Q′ = f (h); (c) - differential
flow chart 1Q′ = f(h); ho - steady-state combined water
level in the well; h∂ - dynamic water level in the well during
pumping.
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The water inflow rate (water absorption) of any permeable
layer is determined by the difference between the flow
rate of water circulating in the borehole in its top and
bottom.

APPENDIX D. THE DEPENDENCE OF Kf ON ρκ

See Table 11.

APPENDIX E. RESULTS OF APPLYING MACHINE
LEARNING MODELS TO CALCULATE Kf FOR
TECHNOLOGICAL WELLS
See Table 12.
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