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ABSTRACT Infrared (IR) cameras have been important surveillance sensors for autonomous surface vessels;
however, their detection ranges are limited by low resolution. In this study, we collect maritime IR images,
analyze the characteristics of those images, and develop datasets for training and testing. Then, a new
maritime IR image super-resolution network, maritime infrared super-resolution using cascaded residual
network, is developed to reconstruct IR images using a scale of 4. Moreover, different loss functions have
different effects on output images; a loss function is set to be a combination of three loss functions, including
mean absolute error, mean squared error, and perceptual loss. Peak signal-to-noise ratio and structural
similarity index measure cannot effectively describe super-resolution performance. As the novel evaluation
metric, Canny edge detection method is used because edges are important for human and target detection
algorithms. Finally, experiments are conducted and the results demonstrate that the developed residual
network can achieve high-quality reconstructed maritime IR images.

INDEX TERMS Maritime infrared image, residual network, super-resolution.

I. INTRODUCTION
Infrared (IR) cameras are extensively used at sea in appli-
cations such as maritime search and rescue, waterway man-
agement, and sea farm management. Moreover, IR cameras
have been important surveillance sensors for autonomous
surface vessels on situational awareness and environmental
perception [1]. IR cameras can detect temperature differences
at night and compensate for radar and automatic identifi-
cation system (AIS) limitations in detecting targets at sea,
e.g., pirate/illegal fishing/smuggling boats, survival crafts,
and people falling into the water.

However, the resolution of shipborne thermal cameras is
considerably less than that of shipborne visible light cameras
because of the size of photosensitive detectors, manufacturing
process, and cost [2], [3]. Image resolution determines the
fine degree of image details. The higher the resolution of the
same image, the smaller the size represented by a pixel and
the clearer the details in the image. Typically, the pixels of
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shipborne IR cameras are <200,000, with the highest value
being ∼300,000 pixels. Small targets on seas only comprise
a dozen or dozens of pixels in images because of the low
resolution of IR sensors, making them difficult to be detected
by ship officers and detection algorithms. The detection range
of marine IR cameras for small ships is ∼2–5 nautical miles,
whereas that for men overboard is only ∼1–2 nautical miles.
The aforementioned detection distances are insufficient for
collision avoidance or human rescue. Therefore, research
on maritime IR image super-resolution is important; it has
considerable significance for situational awareness and envi-
ronmental perception.

Hence, in this study, we propose a model known as
maritime IR super-resolution based on a cascaded residual
network (MISR-CRN). In this study, four operations were
performed: (i) the characteristics of maritime IR images were
analyzed; (ii) The loss function and performance evaluation
metric were improved as per the characteristics of maritime
IR images; (iii) the network was designed to meet the super-
resolution (SR) requirement; and (iv) a confirmation experi-
ment was conducted.
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The remainder of this study is organized as follows: certain
related work on maritime IR intelligent surveillance and SR
are briefly introduced in Section II; the proposed method is
presented in Section III; results and analysis are presented in
Section IV; finally, the work is summarized in Section V.

II. RELATED WORK
A. INFRARED RESEARCH ON UNMANNED SHIPS
For unmanned ships, using IR cameras to compensate for the
limitations of radar and AIS in small target detection is a cur-
rent research hotspot. The European Union’s unmanned ship
research project, known as ‘‘MUNIN,’’ fused data from IR
cameras, visible cameras, radars, andAIS [4], [5]. To improve
and optimize the perception of the navigation environment,
Rolls-Royce’s advanced unmanned ship application develop-
ment plan used IR and visible cameras, radar, AIS, LIDAR,
and other technologies [6]. Yara Birkland, a zero emission
unmanned ship developed by KONGSBERG, was equipped
with IR and visible cameras. The Smart Ship Specifications
released by the China Classification Society proposed using
advanced sensing technology and sensor information fusion
technology to obtain and perceive status information required
for navigation [7].

B. IMAGE SUPER-RESOLUTION
Image SR reconstruction is known as image magnification; it
uses one or more frames of low-resolution images to develop
a high-resolution image, which is extensively used in satellite
and aerial image processing, medical image enhancement [8],
text image, and fingerprint image processing. SR reconstruc-
tion technology increases the number of image pixels and
detailed information that low-resolution images do not have.
SR reconstruction is a pathological task; the task can be pos-
itively definite by adding constraints to determine an optimal
solution [9].

SR can then be divided into three categories: interpo-
lation, reconstruction-based, and learning-based SRs. The
interpolation method is simple and includes nearest neigh-
bor, bilinear, cubic spline, and local adaptive zoom interpo-
lations. The interpolation method cannot reproduce image
details effectively and it generates blurry images. The
reconstruction-based method uses prior knowledge for image
SR reconstruction based on image degradation models such
as the convex set projection, maximum posterior probability,
and iterative back projection methods.

In recent years, convolutional neural networks (CNNs)
have been used in image SR research [10]–[12]. Images have
been reconstructed well by training considerable amount of
data multiple times. In 2016, Dong et al. proposed the first
image SR (SRCNN) algorithm based on a CNN. SRCNN
directly trained high-resolution and low-resolution image
pairs, achieved end-to-end SR reconstruction of a single
image, and eliminated feature extraction and high-resolution
image block aggregation [13]. Kim et al. proposed a 20-layer
CNN to perform the SR reconstruction of a single image

and improved the calculation speed of the network via learn-
ing residuals and a large learning rate [14]. At the IEEE
International Conference on Computer Vision and Pattern
Recognition in the same year, Kim et al. proposed a deep
CNN for image SR reconstruction using loop supervision
and jump links. Shi et al. proposed a SR (ESPCN) method
for obtaining high-resolution images by rearranging the fea-
ture maps obtained using subpixel convolutional layers [15].
Huang et al. used a bidirectional CNN to redevelop the res-
olution of multi-frame images. Shared weights were used
to replace the complete connection in the recurrent neural
network, and they connected the previous input layer to the
current hidden layer by conditional convolution to enhance
time dependence [16].

Most SR research studies focus on visible images with few
studies focusing on IR images. First, visible images are easier
to obtain compared to IR images. There are multiple visible
images on the Internet. However, IR images are rare, par-
ticularly IR images on the sea for detecting and recognizing
ships [17]. Amodel trained on a small dataset can easily over-
fit. Second, because IR images have low contrast, low signal-
to-noise ratio, and blurred edges, the SR reconstruction of IR
images is extremely difficult compared to visible images.

Because of the lack of IR images, Choi et al. trained a CNN
on 91 visible images to enhance IR images and tested the net-
work on IR images [18]. Li trained a CNN on BSD100, a vis-
ible image dataset, to develop high-resolution IR images [9].
Two CNN-based models were trained on visible and IR
images; the results demonstrated that differences between
these two models was not extremely large [19]. He et al.
designed a cascaded deep network with multiple receptive
fields, which was abbreviated CDN_MRF. CDN_MRF was
trained on 120 IR images and had two different receptive
field deep neural networks (DNNs) to redevelop structural
and fine edges [20], [21]. As a part of the Perception Beyond
the Visible Spectrum 2020 workshop, the first challenge on
thermal image SR was organized in 2020 and six teams’
works were introduced [22], [23].

C. LOSS FUNCTIONS
Loss functions have been used to measure the difference
between reconstructed images and original high-resolution
images. Currently, various loss functions have been exten-
sively used in the SR field, including pixel loss, content loss,
texture loss, and adversarial loss. Different loss functions
have different impact on the reconstructed images [24], e.g.,
in early times, the pixel wise L2 loss was extensively used;
however, L2 loss can make the overall images to be more
even. In practice, researchers often combine multiple loss
functions using a weighted average. In this study, we use a
combination of three different loss functions: mean absolute
error (MAE), mean squared error (MSE), and perceptual loss
(P_loss). The combined loss function can avoid the limita-
tions caused by a single loss function. The loss function used
in this study can calculate the low level error between the
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ground truth images and generated images as well as the high-
level perceptual and semantic differences.

D. EVALUATION
Evaluation, including subjective and objective methods,
on the reconstructed images is known as image quality
assessment. Mean opinion score is one of the commonly
used subjective methods that people rate in the recon-
structed images [25]. In objective methods, peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM)
is extensively used in the SR field. Whether it is a sub-
jective or objective method, an image with a high score
reports that the reconstruction of the image is good. Usually,
the reconstructed images are used as input for other tasks;
therefore, in recent years task-based evaluation is gaining
popularity [26]. In this study, the edges of maritime IR images
are important to ship officer vision and target detection algo-
rithm; therefore, we propose a novel task-based evaluation
metric that measures the length of edges of reconstructed
images.

III. PROPOSED METHOD
A. MARITIME INFRARED IMAGE
We installed an IR camera (FLIR 617CS) on a ship and
collected IR images on the sea and near ports. Figure 1 shows
samples of maritime infrared images. The timestamps and
some icons can be removed by changing the camera settings
but others cannot be removed. These icons have clear edges,
whereas the sea targets have blurred edges. CNNs are apt
to identify clear edges; therefore, networks trained on those
images are suited better to recover icons rather than the IR
target.

FIGURE 1. Maritime infrared images.

Furthermore, the sky and sea occupy most IR images with
the target accounting to only a small portion of the image.
The grayscale of the sky and sea is almost identical; there are
no discernible edges. If these images are used to train a CNN,
the network will not be able to learn anything useful.

B. DATASET
The lack of sufficient data to train CNNs has always been a
major problem for the infrared image SR. Because of the slow
change of scene at sea, images are similar for a long time;
therefore, the quantity of images collected is not sufficient to
train a CNN and are used only for testing.

In this study, we used T91, BSD100 [27], and BSD200 [28]
as training and validation datasets, which are classical image
datasets used in SR. These datasets are composed of mul-
tiple images ranging from nature images to object specific
images such as plants, people, and food. First, we converted
the images to HSV and extracted the V channel. Then,
we cropped the images to patches with the size and step
of 44 to increase the number of training images. Finally,
we obtained 15707 images in the dataset. Note that 90% of
the patches were used for training, while the remaining 10%
were used for validation. IR images captured on the ship
were used for testing. We used bicubic interpolation to down-
sample the original images by a scale of 4 to obtain low-
resolution images. The network inputs low-resolution images
and outputs constructed images as follows:

ISR = SR(D · Iori), (1)

where Iori is the original image, D is the down-sampling
operation, and SR is the SR construction.

C. NETWORK STRUCTURE
Typically, a deep CNN is effective at extracting features but
suffers from the gradient vanishing problem during back-
propagation. In this study, a cascaded residual network was
developed to reconstruct low-resolution images; therefore,
we named the network MISR-CRN. In Figure 2, the net-
work’s operations are divided into three parts: feature extrac-
tion, reconstruction, and fine-tuning. To reduce computation
complexity, we used two transpose convolutions to process an
input image at the original size and increased the resolution
step by step. First, a transpose convolution increased an input
image by two; four convolutional blocks were used to extract
features; and a residual connect was adopted to learn high-
frequency parts between two images. The skip connection
can propagate an error to the front layers in a shortcut. Then,
to reconstruct the image, a transpose convolution and four
convolution blocks were used in the second part. Finally,
a convolution block was adopted for fine-tuning the output
image.

D. LOSS FUNCTION
A weighted combination of three different loss functions
is used: MAE, MSE, and P_loss. MAE denotes the mean
absolute error between a ground truth image and a generated
image and is defined as follows:

MAE =
1
N

N∑
p=1

∣∣Ip
ori
− Ip

SR

∣∣, (2)

where N is the total number of pixels in the images and Ip is
the value of pixel.

The MSE is used for maintaining consistency between
the input and output images [29] and can be mathematically
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FIGURE 2. Structure of the proposed network (MISR-CRN).

FIGURE 3. Super-resolution results on five typical maritime infrared images with factor 4: (a) original images, (b) bicubic, (c) super-resolution
convolutional neural network, (d) CDN_MRF, and (e) our method.

represented as follows::

MSE =
1
N

N∑
p=1

(
Ip
ori
− Ip

SR

)2
, (3)

P_loss measures the high-level perceptual and semantic
differences between Iori and ISR [30]. In our experiments, a
19-layer VGG network retrained on visual and IR datasets
is used as the loss network ϕ [31]. Then, P_loss is defined

as follows:

P_loss =
1

CjHjWj

∥∥ϕj(Iori)− ϕj(ISR)∥∥22 , (4)

where ϕj(I ) is the output of image I at the jth layer and C , H ,
andW are the channel, height, and width of the output of the
jth layer, respectively.

Total loss is a weighted sum of MAE, MSE, and P_loss;
they have different effects on the output image, e.g., the
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FIGURE 4. Qualitative comparison of algorithms for the ×4 scale SR.

reconstructed images obtained usingMSE as the loss function
are blurry. Moreover, the images obtained using P_loss will
have effects such as the mosaic effect.

The total loss is defined as

Total loss = α ·MAE + β ·MSE + γ · P_loss, (5)

where α, β, and γ are weights associated with every loss,
which have been empirically set. The network is supervised
using the proposed loss function in Eq. (5). Adam optimizer
is selected as the optimizer, the learning rate is set to 0.001,
and the batch size is set to 1,000. ReLu is used as the activa-
tion function in the network. To prevent overfitting, network
training is stoppedwhen the validation loss does not show any
improvement over 10 epochs. The network is trained on five
NVIDIA V100 GPUs with CUDA and cuDNN in parallel.

E. PERFORMANCE EVALUATION
There is no consensus on which metrics can best describe SR
performance. PSNR and SSIM are extensively used matrices
for determining the difference between ground truth and
outputs. However, they have been reported to have a poor
correlation with human perception of visual quality [30]. For
example, PSNR is defined as follows:

PSNR(Iori, ISR) = 10 log10

(
2552

MSE(Iori, ISR)

)
, (6)

where MSE(Iori, ISR) is the mean square error between Iori
and ISR. PSNR has a reciprocal relationship with MSE.When
MSE is used as the loss function, PSNR is possibly high.
Therefore, these metrics cannot be used to evaluate maritime

IR images because targets, such as ships at sea, only occupy
a small portion of images. The majority of IR image patches
are background patches with small grayscale variations; the
bicubic method produces good results in an entire image;
however, the edge of sea targets and sea horizon is blurred.
Figure 3 shows that the bicubicmethod performs best in terms
of PSNR and SSIM; however, the entire images are blurry.
Therefore, high PSNR and SSIM do not indicate that this
method is effective at recovering the details of maritime IR
images.

The edges are important in human vision, target detection,
tracking, and classification. If an image is reconstructed well,
it should have clear edges; therefore, we extract the edges
from images and use the length of edges as an evaluation
metric. Canny edge detection is a popular edge detection
algorithm. It can reduce the noise in IR images and sup-
press non-maximum; therefore, it is used to detect edges.
In hysteresis thresholding, we set the minimum and maxi-
mum thresholds to 50 and 150, respectively. Edges with an
intensity gradient less than the minimum value are not edges
and should be discarded. Those that fall between these two
thresholds are classified as edges if they are connected to
‘‘sure edge’’ pixels; otherwise, they are discarded.

IV. RESULTS AND DISCUSSION
To confirm the efficiency of our proposed method, we used
three state-of-the-art methods for comparison, including a
classic method (Bicubic interpolation), deep-learning-based
methods (SRCNN [13] and CDN_MRF [20], [21]). The
source codes of SRCNN and CDN_MRF are provided by
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FIGURE 5. Canny detections on maritime infrared images: (a) Canny on original images, (b) Canny on Bicubic, (c) Canny on SRCNN, (d) Canny on
CDN_MRF, and (e) Canny on our method. The numbers are the lengths of the edges.

their authors and the weights are unchanged. We use those
codes to reconstruct the test images and evaluate them in our
code.

We performed quantitative experiments to evaluate all
models using five representative images, which were cap-
tured on the ship. Figure 3 shows the results for ×4 scale
SR. Moreover, qualitative comparisons are included, and the
results are shown in Figure 4. The images reconstructed
through bicubic interpolation have the highest PSNR and
SSIM; however, the edges are more blurred compared to
others. As described in Section III, PSNR and SSIM are eval-
uations performed on the overall images. The results confirm
that PSNR and SSIM are unsuitable for evaluating maritime
IR image reconstruction. SRCNN is ineffective on these
images, indicating that the reconstructed IR images have
blurred edges. The image generated by CDN_MRF has good
contrast; however, the reconstruction of the edges is poor,
resulting in multiple curved shapes. Although the images
reconstructed by our method have lower PSNR and SSIM
than the bicubic interpolation method, they have sharper

edges that are important to humans and additional study. The
small targets in the reconstructed images exhibit consider-
able brightness, which is important for the target detection
algorithm.

We use Canny to detect the edges of reconstructed images
and edges’ lengths to evaluate SR. Figure 5 shows the quan-
titative comparisons. The results show that the images recon-
structed using our method have the longest edges in the
first two and fourth images. In the second and fifth images,
although the length of the reconstructed images using our
method is slightly lower than that of CDN_MRF, the hori-
zon and outer boundaries of the ship are more complete in
our reconstructed images than that of CDN_MRF. Because
we use clear visual images to train our network, the qual-
ity of the reconstructed images is better than the original
images.

In Canny, there are two thresholds, a minimum thresh-
old and a maximum threshold. The different thresholds for
edge detectors can produce different results. To confirm that
our method can work for different thresholds, we consider
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FIGURE 6. Lengths of the Canny edges on different thresholds. The
vertical axis is the length of the edges and the horizontal axis is the
minimum threshold.

the first image in Figure 3 as an example to confirm the
edge length at different minimum thresholds. The maximum
threshold is set to be 100 greater than the corresponding min-
imum threshold. The comparisons are depicted in Figure 6;
the results demonstrate that when the minimum threshold is
between 30 and 50, the edge length of the reconstructed image
achieved by our method is greater than that of the original
image. Our method reconstructs the images and improves the
quality of original images. When the minimum threshold is
between 60 and 80, the edge length of image reconstructed
by this method is slightly smaller than the original image and
significantly larger than other methods.

V. CONCLUSION
This study demonstrated a novel CNN-based approach for
the maritime image SR. The characteristics of maritime IR
images were analyzed. The network comprised three parts:
feature extraction, reconstruction, and fine-tuning. It was
trained on three extensively used visual image datasets.
A combination of MAE, MSE, and P_loss was used to
develop images with clear and natural appearances. For these
experiments, Canny was a novel metric for evaluating image
reconstruction compared to PSNR and SSIM. The experi-
mental results demonstrated that the reconstructed images
had improved quality. Moreover, future work will focus on
identifying other evaluation metrics for evaluating maritime
IR images.
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