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ABSTRACT We propose an end-to-end unpaired learning approach to screen-shot image demoiréing based
on cyclic moiré learning. The proposed cyclic moiré learning algorithm consists of the moiréing network and
the demoiréing network. The moiréing network generates moiré images to construct a pseudo-paired set of
moiré and clean images. Then, the demoiréing network is trained in a supervised manner using the generated
pseudo-paired dataset to remove moiré artifacts. In the moiréing network, the moiré generation is separately
learned as global pixel intensity degradation and moiré pattern generation for more realistic moiré artifact
generation. Furthermore, the moiréing network and the demoiréing network are integrated together to be
trained in an end-to-end manner. Experimental results on different datasets demonstrate that the proposed
algorithm significantly outperforms state-of-the-art unsupervised demoiréing algorithms as well as image
restoration algorithms.

INDEX TERMS Image demoiréing, unpaired learning, cyclic moiré learning, intensity degradation, moiré
pattern generation.

I. INTRODUCTION
Despite recent significant advances in digital imaging tech-
nologies, undesired artifacts still appear in captured images
and degrade the image quality, depending on the capturing
environment. For example, when we take pictures of screens
or scenes with high-frequency repetitive patterns, undesired
colorful artifacts, called moiré artifacts, may appear in cap-
tured images. These moiré artifacts have various and dis-
ruptive colorful patterns, such as stripes, curves, and ripples
in the captured image, which degrade the image quality.
Moiré artifacts can be categorized into two types. The first
screen-shot moiré artifacts are caused by frequency alias-
ing between the camera’s color filter array and the screen’s
subpixel layout. In a screen-shot moiré image, intensity
(or brightness) degradation appears alongside moiré patterns.
The second type is texture moiré artifacts, which are gen-
erated by the interference between the camera’s color filter
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array and high-frequency repetitive patterns, such as tex-
tures on clothes. The texture moiré artifacts are mixed with
the original textures of the scene without intensity degrada-
tion. Figure 1 shows examples of screen-shot moiré artifacts
(top row) and texturemoiré artifacts (bottom row). Because of
their different characteristics, different approaches have been
developed to remove screen-shot moirés [1], [2] and texture
moirés [3]–[7].

Extensive research has been conducted to remove moiré
artifacts particularly in screen-captured images. Early works
on image demoiréing exploited the prior information of
moiré artifacts based on moiré generation models. For exam-
ple, Pekkucuksen and Altunbasak [10] and Menon and
Calvagno [11] used multiscale color gradients of multi-
ple directions during demosaicing. Yang et al. [12] removed
moiré artifacts by dichotomizing a moiré image into back-
ground and moiré layers based on the assumption that moiré
artifacts can be represented as a sparsematrix in the frequency
domain. Yang et al. [13] further improved decomposition-
based demoiréing by exploiting the low-rank and sparse
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FIGURE 1. Examples of different moiré images. The images contain
(top row) screen-shot moiré artifacts [8] and (bottom row) texture moiré
artifacts [9].

constraints on the texture and moiré images, respectively.
However, since thesemodel-based algorithms rely on specific
priors of the moiré artifacts, they may fail to effectively
remove real-world moiré patterns, which are diverse and
spread over a wide range of regions in both the spatial and
frequency domains.

Recently, learning-based approaches using convolutional
neural networks (CNNs) have been developed and have
achieved significant performance improvements in image
demoiréing. For example, in [2], [14]–[16], multiscale CNNs
were employed for image demoiréing. In [17], multiple pri-
ors, including edge information and appearance attributes,
were exploited to consider various types of moiré patterns.
In addition to the spatial features, the frequency domain
information has been exploited. For example, Zheng et al. [1]
developed learnable multi-scale bandpass filters to deal with
the diversity of moiré artifacts in the frequency domain. Fur-
ther, in [6], [18], [19], different characteristics of moiré arti-
facts in both spatial and frequency domains were exploited.
However, the aforementioned approaches are based on super-
vised learning, which requires large amounts of clean and
moiré image pairs for training. To address this limita-
tion, unsupervised learning-based algorithms that use gen-
erative adversarial networks (GANs) have recently been
developed [20]–[22].

In this work, we develop an end-to-end screen-shot image
demoiréing algorithm that uses an unpaired set of clean and
moiré images based on cyclic moiré learning. The proposed
algorithm is composed of two networks: the moiréing net-
work, which degrades clean images by adding moiré artifacts,
and the demoiréing network, which removes moiré artifacts
in moiré images. The moiréing network generates fake moiré
images by learning the intensity degradation and the distribu-
tion of moiré patterns in the real moiré images, constructing
pseudo-pairs of clean and moiré images. The demoiréing
network is trained with the generated paired dataset in a
supervised manner. In addition, we propose a two-stage train-
ing scheme for each network to improve training efficiency.

Experimental results show that the proposed algorithm pro-
vides higher demoiréing performance than state-of-the-art
unsupervised demoiréing algorithms [21], [22] and image
restoration algorithms [14], [23]–[26].

The main contributions of this paper are summarized as
follows:
• Wedevelop an end-to-end screen-shot image demoiréing
algorithm that uses an unpaired set of clean and moiré
images based on cyclic moiré learning. The proposed
cyclic moiré learning constructs a pseudo paired dataset
from a given unpaired set of clean and moiré images,
which is subsequently used to train the demoiréing
network in a supervised manner.

• We design two types of GANs for moiré generation
and demoiréing, respectively, and propose a two-stage
training scheme for each network to improve the training
efficiency.

• We develop a two-stage moiré artifact generation model
that separates moiré generation into intensity degrada-
tion and moiré pattern generation, for realistic moiré
generation. To this end, we employ an image histogram
and multiscale architecture for intensity degradation and
moiré generation, respectively, which makes the gener-
ation of moiré images more efficient and reliable.

• We experimentally show that the proposed unpaired
learning algorithm outperforms state-of-the-art unsuper-
vised image demoiréing algorithms [21], [22] and image
restoration algorithms [14], [23]–[27].

Note that this paper is an expanded version of our con-
ference paper [22], in which preliminary results have been
presented in part. In this paper, we improve the performance
of both moiréing and demoiréing networks by employing
an image histogram and multiscale architecture. To the best
of our knowledge, this is the first attempt to employ the
image histogram and multiscale generator architecture in
image demoiréing. Furthermore, we present new experi-
ments to verify the effectiveness and generalization ability
of the proposed algorithm, including comparisons using an
additional dataset, comparisons with more algorithms, and
more comprehensive ablation studies.

The remainder of this paper is organized as follows:
Section II reviews the related work. Section III describes
the proposed unpaired demoiréing algorithm. Section IV dis-
cusses the experimental results. Finally, Section V concludes
the paper.

II. RELATED WORK
A. MODEL-BASED IMAGE DEMOIRÉING
Model-based algorithms, which exploit moiré generation
models, have been developed based on particular prior infor-
mation and assumptions on moiré artifacts. For example,
Sasada et al. [28] and Sidorov and Kokaram [29] identified
moiré patterns based on the assumption that moiré patterns
have specific shapes, such as striped, dotted, or monotonous.
Pekkucuksen and Altunbasak [10] and Menon and
Calvagno [11] used multiscale color gradients of multiple
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directions during demosaicking. In [12], [13], [30], [31],
decomposition-based demoiréing algorithms were developed
based on the assumption that a moiré image can be decom-
posed into a background layer and a moiré layer. Giorgian-
Marius et al. [32] removed moiré artifacts in the frequency
domain by assuming that the moiré artifacts correspond to
noise components in an image. However, the model-based
algorithms typically demand high computational complexity.
Furthermore, because model-based algorithms rely on certain
priors of moiré artifacts, they are less effective at removing
real-world moiré with diverse characteristics in shape and
frequency.

B. LEARNING-BASED IMAGE DEMOIRÉING
Learning-based image demoiréing algorithms that use CNNs
have recently been developed most actively. In [2], [14],
[15], multiscale CNNs were developed to remove complex
moiré patterns with different scales by learning the mapping
between moiré and moiré-free images. Guo et al. [16] added
multi-attention submodules to a multiscale network to focus
more on text content and suppress moiré patterns in those
regions. He et al. [17] developed a demoiréing algorithm
consisting of multiple submodules, each of which learns dif-
ferences between moiré and natural images in shape, color,
and frequency, respectively. In addition, attempts have been
made to remove moiré artifacts in the frequency domain.
For example, in [33], [34], demoiréing was performed in the
wavelet transform domain. Zheng et al. [1] addressed the
diversity of moiré artifacts by developing learnable bandpass
filters. In [6], [18], [19], [35], both the spatial domain and
discrete cosine transform domain were used to exploit the
complementary characteristics of moiré artifacts. Note that
all the aforementioned CNN-based demoiréing algorithms
require a large amount of aligned training pairs, and their
performances rely heavily on the characteristics of the pairs.

To address the limitations of CNN-based approaches,
unsupervised learning-based approaches using GANs have
been developed. Liu et al. [20] developed a GAN-based
demoiréing algorithm, inwhich a generator network is trained
first using a synthesized paired dataset, and then genera-
tor and discriminator networks are jointly trained using a
real-world moiré dataset. Yue et al. [21] converted unsu-
pervised demoiréing into an image-to-image translation by
developing two complementary discriminators to distinguish
moiré patterns and the image features at different scales.
While Yue et al. [21] generated demoiréd images using a
GAN with cycle consistency, we employ a GAN to generate
moiré images given clean images to construct a pseudo-paired
dataset from an unpaired dataset, which is subsequently used
to learn the demoiréing network in a supervised manner.

C. LEARNING-BASED IMAGE RESTORATION
The image restoration task is aimed at recovering a clean orig-
inal image from its corrupted observation caused by the poor
environmental conditions, physical limitations of the acqui-
sition systems, or postprocessing. In particular, extensive

research efforts have been made to remove undesired artifacts
in captured images. Recently, learning-based approaches
using CNNs have demonstrated excellent performance in
various image restoration tasks, such as dehazing [36]–[38],
deraining [39], [40], glare removal [41], and reflection
removal [42]. However, these supervised learning-based
algorithms require a large amount of paired datasets, which is
difficult, or even impossible, to construct in real-world image
restoration tasks.

To avoid the challenges associated with constructing large
paired datasets for real-world image restoration tasks, unsu-
pervised learning approaches are desirable for these tasks.
GAN [43] is one of the most successful algorithms for unsu-
pervised learning without a paired dataset. In particular,
a variant of GAN, CycleGAN [23], which learns to translate
an image from a certain domain to another without paired
data, has been widely adopted for image restoration tasks,
such as underwater image enhancement [24], denoising [25],
dehazing [44], deraining [45], and contrast enhancement [46],
[47]. Unsupervised or unpaired image demoiréing is essential
due to the difficulty of constructing paired moiré and moiré-
free images. Therefore, we develop an end-to-end unpaired
learning-based image demoiréing approach based on cyclic
moiré learning.

III. PROPOSED ALGORITHM
We develop an end-to-end demoiréing algorithm that uses an
unpairedmoiré and clean image dataset based on cyclic moiré
learning. Let X and Y denote the sets of moiré and clean
images, respectively, and X ∈ X and Y ∈ Y moiré and clean
images, respectively. Then, given X and Y , the objective of
unpaired image demoiréing is to learn a mapping from moiré
images to clean images.

Figure 2 illustrates the proposed algorithm, which consists
of two types of GANs: moiréing network and demoiréing
network. Themoiréing network in Figure 2(a) learns the map-
ping GM : Y → X , which degrades clean images by adding
moiré artifacts. On the other hand, the demoiréing network in
Figure 2(b) learns the mappingGD : X → Y , which removes
moiré artifacts in moiré images. In other words, given clean
images Y , the moiréing network constructs the pseudo-moiré
and clean image pairs {GM (Y),Y}. Then, the demoiréing
network learns the mappingGD using the constructed pseudo
pairs in a supervised manner. In addition, DM and DD in
Figures 2(a) and (b) denote the discriminators, which dis-
criminate between a real moiré image X and a generated fake
moiré image GM (Y ) and between a demoiréd image GD(X )
and a clean image Y , respectively. We describe each network
subsequently.

A. MOIRÉING NETWORK
1) CYCLIC MOIRÉ LEARNING
Because the proposed algorithm consists of two GANs with
reverse mapping, it cannot be guaranteed that the gener-
ated fake moiré images are mapped to desired real moiré
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FIGURE 2. Overview of the proposed unpaired demoiréing algorithm. (a) The moiréing network learns GM to construct the
pseudo-pairs {GM (Y),Y} given the trained generator GD, and (b) the demoiréing network is trained to learn GD with the
pseudo pairs {GM (Y),Y} in a supervised manner with learned GM .

images. To address this issue and stabilize the training of
the moiré network, we employ cyclic color consistency [22],
[47], which enforces similarity of the reconstructed image to
its origin. Specifically, the generator GM is learned to yield
reconstructed moiré images GM (GD(X )) that are similar to
the real moiré imagesX . This cyclic color consistency makes
the moiré network generate more realistic moiré artifacts
while preserving the original clean images’ information.

2) GENERATOR GM
In the screen-shot moiré image generation model [8], [20],
pixel intensities are decreased while moiré patterns are added.
Specifically, given a clean image Y , a moiré image X is
generated as

X = αY +M , (1)

where M denotes an image of moiré patterns, and an inten-
sity degradation parameter 0 < α ≤ 1 controls the decrease
in intensity. Therefore, we can separate the moiré generation
problem into two subproblems: pixel intensity degradation
and moiré pattern generation. Figure 3 shows the architecture

of themoiré generatorGM in Figure 2. Given a clean image Y ,
the intensity degradation module estimates the global inten-
sity degradation parameter α, whereas the moiré generation
module generates the moiré patternM .

a: INTENSITY DEGRADATION MODULE
The intensity degradation module first constructs a
256-dimensional histogram vector, of which the kth element
denotes the number of pixels with intensity k . The intensity
histogram contains the global information of the intensity dis-
tribution in the input image. Then, the neural network f takes
the histogram vector and estimates the intensity degradation
parameter α. The neural network f consists of three fully
connected (FC) layers. For the first and second FC layers,
a batch normalization layer and the Leaky-ReLU activation
are followed. A sigmoid function is used to normalize the
output of the last FC layer to constrain 0 < α ≤ 1.

b: MOIRÉ GENERATION MODULE
Figure 4 illustrates that moiré patterns are diverse and
spread over a wide range of regions in both the spatial and
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FIGURE 3. Architecture of the generator GM , which adds moiré artifacts to a clean image Y to generate a fake moiré image GM (Y ). The
generator GM consists of two modules; the intensity degradation module decreases pixel intensity, while the moiré generation module
generates moiré patterns.

FIGURE 4. Illustration of the diversity in shape and spread of moiré
artifacts in (b)–(d) the image domain and (e) the frequency domain.
Subfigure (f) shows the magnitude spectra of the clean images for the
moiré images in (a).

frequency domains. Furthermore, moiré patterns have dif-
ferent shapes and scales at different regions, even within an
image. Therefore, it is essential to consider contexts in the
images of various sizes to generate faithful moiré patterns.
To this end, we develop the moiré generation module using
a coarse-to-fine approach. Specifically, it consists of three
branches, each of which is responsible for the coarse, middle,
and fine scales, respectively.

As shown in Figure 3, an clean input image is first down-
sampled recursively, twice, by a factor of 2. Then, at the
ith scale, we obtain the intensity degraded image αYi.
Since α is estimated using the intensity histogram of the
input image and is thus scale-invariant, we estimate α only
at the coarsest level and use it at all scales to obtain αYi
for i ∈ {1, 2, 3}. Each branch contains a CNN gi to generate

moiré patterns Mi. At the coarsest level, CNN g1 generates
global moiré patterns with larger receptive fields. As the input
size increases, the CNN gi tends to generate smaller patterns
by reducing the receptive field. The network gi estimates
moiré patternsMi from an intensity-degraded image αYi and
the generated moiré patterns from the previous scale Mi−1.
Because the coarsest-scale branch has no previous moiré
pattern map, it uses random noise sampled from a uniform
distribution in [0, 1].

c: ARCHITECTURE OF THE GENERATOR gi
Figure 5 shows the architecture of the CNN gi in Figure 3,
which is designed as a U-Net-like structure [26]. The gener-
ator consists of an encoder, a decoder, and skip connections.
The encoder progressively downsamples the input features to
increase the receptive fields, whereas the decoder upsamples
these features to generate a moiré image. The main difference
between U-Net [26] and the proposed gi is the use of a
global average pooling layer (GAP), which extracts global
features [46] of moiré patterns spread over the entire image.

The encoder takes an intensity degraded image αYi and a
moiré pattern Up(Mi−1) as inputs, which constitutes a tensor
of size H × W × 6, where H and W are the height and
width, respectively. The encoder consists of 11 convolutional
blocks, each of which has convolution filters of a size of
3 × 3 with ReLU activation, and GAP layers. The spatial
resolution of feature maps is halved after the third, fifth,
seventh, ninth, and tenth convolutional blocks. The decoder
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FIGURE 5. Architecture of the moiré artifact generator gi . The generator takes a clean image and generated moiré patterns from the previous scale as
input and outputs moiré artifacts.

FIGURE 6. Architecture of the discriminator DM .

has six upsampling blocks, each of which contains a bilinear
interpolation layer for upsampling and convolution filters
followed by ReLU activation. Finally, skip connections are
used to restore feature maps at each scale.

3) DISCRIMINATOR DM
Figure 6 shows the architecture of the discriminator DM ,
which learns to discriminate between a real moiré image X
and a generated fake moiré image GM (Y ). As shown in
Figures 4(e) and (f), moiré artifacts correspond to
high-frequency components. To take advantage of this prop-
erty and make the discriminator focus more on moiré pat-
terns, we first extract its high-frequency components using
a high-pass filter. Then, we use both a moiré image and
its high-frequency components as inputs for the discrimina-
tor. Next, the discriminator predicts a score, which denotes
whether the input is real or generated, through eight convo-
lutional blocks and an FC layer. The convolutional blocks
consist of convolution filters followed by Leaky-ReLU
activation.

B. DEMOIRÉING NETWORK
Once the moiré network constructs the pseudo-pairs
{Y,GM (Y)}, the demoiréing network is trained to remove
moiré artifacts in a supervised manner using the learned
generator GM , as shown in Figure 2(b). The overall struc-
ture of the demoiréing network is similar to that of the
moiréing network. The main difference is that the cyclic color

consistency is computed between Y and GD(GM (Y )), which
we call the content loss.

1) GENERATOR GD
From the moiré generation model in (1), the demoiréing can
be modeled as

Y =
1
α
(X −M ). (2)

Therefore, similar to the moiréing network in Section III-A,
we can separate the demoiréing problem into two subprob-
lems: moiré artifact removal and global intensity restora-
tion. Figure 7 shows the architecture of the generator GD
in Figure 2. Given a moiré image αY +M , the moiré removal
module removes the moiré pattern M , and the intensity
restoration module estimates the global intensity restoration
parameter α.

a: MOIRÉ REMOVAL MODULE
The moiré removal module, which is similar to the moiré
generation module in the generator GM in Figure 3, consists
of three branches for the coarse, middle, and fine scales,
respectively, for coarse-to-fine generation. The ith branch
includes the CNN hi, which is responsible for moiré artifact
removal. We employ the architecture of gi in Figure 5 for hi.

b: INTENSITY RESTORATION MODULE
The intensity restoration module is similarly designed to the
intensity degradation module in Figure 3. Specifically, it first
constructs a 256-dimensional histogram vector. Then, the
neural network i takes the histogram vector and estimates the
intensity restoration parameter α. We employ the architecture
of f in Figure 3 for i.

2) DISCRIMINATOR DD
The discriminator DD takes a clean image and its
high-frequency components as input and then predicts a
score to discriminate if the input is a real clean image Y
or a demoiréd image GD(X ). We use the architecture of the
discriminator DM in Figure 6 for DD.
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FIGURE 7. Architecture of the generator GD, which removes moiré artifacts in a fake moiré image GM (Y ) to generate a
clean image Y . The generator GD consists of two modules; the moiré removal module removes the moiré patterns, while
the intensity restoration module enhances the pixel intensity.

C. LOSS FUNCTIONS
We train two networks: the moiréing network and the
demoiréing network. More specifically, in the moiréing net-
work, the generator GM and discriminator DM are trained,
whereas in the demoiréing network, the generator GD and
discriminator DD are trained. For stable training, we employ
the least squares GANs [48] (LSGANs) and cyclic color
consistency [47]. The loss functions to train the two networks
are described subsequently.

a: MOIRÉING NETWORK
To train proposed moiréing network, we define the moiréing
loss LM by

LM = LGM + ωMLcycle, (3)

where LGM and Lcycle are the generator loss and the cyclic
color loss, respectively. The hyperparameter ωM controls the
relative impact between the two losses.

We define the generator loss LGM and discriminator
loss LDM , respectively, of LSGANs as

LGM = EY
[
(DM (GM (Y ))− 1)2

]
, (4)

LDM = EX
[
(DM (X )− 1)2

]
+ EY

[
DM (GM (Y ))2

]
. (5)

In addition, we define the cyclic color loss Lcycle as the
`1-norm between the reconstructed moiré image and the

original moiré image, given by

Lcycle = EX [‖GM (GD(X ))− X‖1] . (6)

b: DEMOIRÉING NETWORK
Similarly to themoiréing loss in (3), we define the demoiréing
loss LD as the sum of the generator loss LGD and two losses,
Lcontent and LASL, for cyclic consistency, given by

LD = LGD + ωD,cLcontent + ωD,ALASL, (7)

where the hyperparametersωD,c andωD,A control the balance
among the three losses.

We define the generator and discriminator losses of
LSGANs for GD and DD, respectively, as

LGD = EX
[
(DD(GD(X ))− 1)2

]
, (8)

LDD = EY
[
(DD(Y )− 1)2

]
+ EX

[
DD(GD(X ))2

]
. (9)

Note thatLGD andLDD in (8) and (9) are identical toLGM and
LDM in (4) and (5), respectively, except for the inputs. Next,
we compute the content loss Lcontent as the `1-norm between
Y and its cyclically generated version, given by

Lcontent = EY [‖GD(GM (Y ))− Y‖1] . (10)

Finally, unlike with the moiréing network, we employ an
additional cyclic loss to train the demoiréing network, called
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TABLE 1. Quantitative comparison of the proposed algorithm with CycleGAN [23], CWR [24], UID-Net [25], ERRNet [27], U-Net [26], DMCNN [14],
MR-GAN [21], and Park et al .’s algorithm [22] on the LCDMoire, TIP2018, and MRBI datasets. The boldface values denote the highest scores for each
metric.

the advanced Sobel loss (ASL) [1], given by

LASL = EY

[
4∑
i=1

‖Si(GD(GM (Y ))− Si(Y )‖1

]
, (11)

where Si(·) denotes the edge map obtained by the ith filter
in the Sobel filtering among the horizontal, vertical, and
two diagonal filters. Therefore, LASL in (11) quantifies the
cyclic color consistency between the edge maps of the recon-
structed and original clean images. Since natural images
include meaningful edge information, the ASL encourages
the removal of moiré artifacts that have been detected as
spurious edges. Note that, since the edge maps of moiré
images contain a large amount of noise, corresponding to
moiré artifacts, it is difficult to compare the edge maps of
real and generated moiré images. Thus, we only use the ASL
for training the demoiréing network.

IV. EXPERIMENTAL RESULTS
A. DATASETS
Weevaluate the performance of the proposed algorithm on the
LCDMoire [8], TIP2018 [14], and MRBI [49] datasets. The
LCDMoire dataset contains 10,100 synthetic moiré and clean
image pairs, which are composed of 10,000 training pairs and
100 validation pairs. To construct the unpaired moiré dataset,
we divided 10,000 training pairs evenly into two groups
and then picked 5,000 moiré images from the first group
and 5,000 clean images from the second group. We use the
unpaired moiré dataset to train the proposed networks and the
100 validation pairs for the test. The TIP2018 dataset contains
135,000 captured real moiré and clean image pairs, which
are composed of 125,000 training pairs and 10,000 testing
pairs. In this work, we randomly chose 100 testing pairs for
the test. The MRBI dataset also contains captured real moiré
images, composed of 352 pairs for training and validation and
340 pairs for testing. Note that, although we only use a single

training dataset, we evaluate the performance of the proposed
algorithm on all the three datasets.

B. IMPLEMENTATION DETAILS
We train the proposed networks using the AdamW opti-
mizer [50] with a learning rate of 10−4, β1 = 0.5, and
β2 = 0.999. The batch size is fixed to 4. The training is
iterated for 100 epochs and takes about 4 days using anNvidia
GeForce RTX 3090 GPU. During training, we randomly
crop patches of size 256 × 256 and shuffle moiré and clean
patches after every epoch. In the test, the test images of the
original resolution (1, 024× 1, 024) are used as inputs to the
networks. The hyperparameters ωM in (3) and ωD,c and ωD,A
in (7) are fixed to 50, 50, and 25, respectively. Also, the kernel
size for high-pass filtering in the discriminators is 3× 3. For
reproducibility, we provide the source codes and pretrained
models on our project website.1

C. QUANTITATIVE AND QUALITATIVE EVALUATION
We evaluate the performance of the proposed algorithm
against those of two existing unpaired image demoiréing
algorithms: MR-GAN [21] and Park et al.’s algorithm [22].
To the best of our knowledge, they are the only two exist-
ing attempts for unpaired image demoiréing. Since unpaired
image demoiréing can be regarded as an image-to-image
translation task [21], we compare the proposed algorithm
with three image-to-image translation algorithms, Cycle-
GAN [23], CWR [24], and UID-Net [25], as a benchmark for
unpaired image-to-image translation. Finally, we compare the
proposed algorithm with the supervised image demoireing
algorithm (DMCNN) [14], image restoration algorithm (U-
Net) [26], and reflection removal algorithm (ERRNet) [27].
For unpaired demoiréing, the networks DMCNN, U-Net,
and ERRNet are used as generators of GANs. We retrained

1https://github.com/Hideinlab/Unpaired_image_demoireing
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FIGURE 8. Qualitative comparison of demoiréing results for the validation set in the LCDMoire dataset [8]: (a) moiré image, (b) ground-truth, and outputs
of (c) CycleGAN [23], (d) CWR [24], (e) UID-Net [25], (f) ERRNet [27], (g) U-Net [26], (h) DMCNN [14], (i) MR-GAN [21], (j) Park et al .’s algorithm [22], and
(k) the proposed algorithm. The second, fourth, sixth, and eighth rows show the magnified parts of the red squares in the first, third, fifth, and seventh
rows, respectively.

all the conventional algorithms with the parameter set-
tings recommended by the authors using the same dataset
in Section IV-A.

1) COMPARISON ON THE LCDMoire DATASET
For quantitative assessment, we employ the PSNR, structural
similarity index (SSIM) [51], and learned perceptual image
patch similarity (LPIPS) [52] metrics. Table 1 shows the
average PSNR, SSIM, and LPIPS scores over all images on
the validation set in LCDMoire. Table 1 also compares the
numbers of network parameters and the average execution
times obtained by applying different demoiréing algorithms
to the test images in LCDMoire. The numbers of network
parameters for all the algorithms listed in Table 1 correspond
to those of the entire network architectures, including gener-
ators and discriminators.

The image-to-image translation algorithmsCycleGAN [23],
CWR [24], and UID-Net [25] show the lowest scores because

they do not consider the diverse global and local struc-
tures of moiré artifacts despite using cyclic consistency.
The reflection removal algorithm ERRNet [27] yields higher
scores than some image-to-image translation algorithms but
lower than those of most demoiréing algorithms because it
does not restore degraded pixel intensities. DMCNN and
U-Net yield higher PSNR scores than CycleGAN, CWR, and
UID-Net. MR-GAN [21] and Park et al.’s algorithm [22]
provide higher scores than the other conventional algo-
rithms with large margins because they exploit the proper-
ties of moiré artifacts. The proposed algorithm outperforms
all conventional algorithms, yielding a higher PSNR score
than MR-GAN and Park et al.’s algorithm with margins of
2.79 and 1.77 dB, respectively. The proposed algorithm also
provides the best demoiréing performance in terms of SSIM.
This indicates that the proposed cyclic moiré learning with
the two-stage training scheme is effective for unpaired image
demoiréing.

16262 VOLUME 10, 2022



H. Park et al.: Unpaired Screen-Shot Image Demoiréing With Cyclic Moiré Learning

FIGURE 9. Qualitative comparison of demoiréing results for the testing set in the TIP2018 dataset [14]: (a) moiré image, (b) ground-truth, and outputs of
(c) CycleGAN [23], (d) CWR [24], (e) UID-Net [25], (f) ERRNet [27], (g) U-Net [26], (h) DMCNN [14], (i) MR-GAN [21], (j) Park et al .’s algorithm [22], and
(k) the proposed algorithm.

FIGURE 10. Qualitative comparison of demoiréing results for the testing set in the MRBI dataset [49]: (a) moiré image, (b) ground-truth, and outputs of
(c) CycleGAN [23], (d) CWR [24], (e) UID-Net [25], (f) ERRNet [27], (g) U-Net [26], (h) DMCNN [14], (i) MR-GAN [21], (j) Park et al .’s algorithm [22], and
(k) the proposed algorithm.

VOLUME 10, 2022 16263



H. Park et al.: Unpaired Screen-Shot Image Demoiréing With Cyclic Moiré Learning

TABLE 2. Impacts of the cyclic moiré learning and vanilla GAN on the
demoiréing performance.

Figure 8 compares demoiréing results qualitatively. The
image-to-image translation algorithms CycleGAN, CWR,
and UID-Net in Figures 8(c), (d), and (e), respectively,
fail to remove complex and globally spread moiré patterns,
as shown in the first and seventh rows. In addition, in the third
and fifth rows, CycleGAN loses the original colors, whereas
UID-Net generates severe visible artifacts in the third and
seventh rows. The reflection removal algorithm ERRNet in
Figure 8(f) removes moiré patterns more effectively than
the image-to-image translation algorithms, but it does not
restore degraded pixel intensities. U-Net and DMCNN in
Figures 8(g) and (h), respectively, also fail to remove globally
spread moiré patterns, since they consider only pixel-level or
local information. Further, they fail to restore color inten-
sity faithfully, as shown in the first and seventh rows.
MR-GAN in Figure 8(i) effectively removes small local
moiré patterns in the third and fifth rows, but, similarly to
the image-to-image translation algorithms, it preserves global
moiré patterns and loses the original colors, as shown in
the first and seventh rows. Park et al.’s algorithm provides
better results in terms of both pixel intensity restoration and
moiré pattern removal. Nevertheless, in the magnified parts
in the second and eighth rows in Figure 8(j), parts of the
large moiré patterns appear because Park et al.’s algorithm
employs single-scale generators and thus has difficulties in
removing both local and global moiré patterns. On the con-
trary, the proposed algorithm in Figure 8(k) outperforms all
conventional algorithms, effectively removing moiré patterns
across different scales, while restoring the color information
faithfully.

2) COMPARISON ON THE TIP2018 DATASET
Next, we evaluate the demoiréing performance on the
TIP2018 dataset [14], whichwas not used for training. Table 1
also shows the average PSNR, SSIM, and LPIPS scores over
test images in TIP2018. The scores of the proposed algorithm
remain the highest, which confirms its superior generalization
ability. More specifically, the proposed algorithm outper-
forms Park et al.’s algorithm, which provides the second best
scores, by larger margins than that on the LCDMoire dataset.
This indicates that the proposed algorithm provides better
restored textures than conventional algorithms.

Figure 9 shows the demoiréing results for the test
images from the TIP2018 dataset. The image-to-image
translation algorithms CycleGAN, CWR, and UID-Net in
Figures 9(c), (d), and (e), respectively, fail to restore the
intensity degradation and preserve moiré patterns in the
input images. ERRNet in Figure 9(f) fails to remove moiré

TABLE 3. Impacts of the cyclic color consistency loss on the demoiréing
performance.

FIGURE 11. Visualization of the outputs of the intensity degradation
module and the moiré generation module in Figure 3. (a) Clean images,
outputs of (b) the intensity degradation module αY3 and (c) the moiré
pattern generator g3 M3, (d) generated moiré images αY3 + M3, and
(e) ground-truth moiré images.

patterns and changes the original colors. U-Net and DMCNN
in Figures 9(g) and (h), respectively, remove only a small
amount of moiré patterns in the input images. MR-GAN
in Figure 9(i) restores the pixel intensity but fails to
remove global moiré patterns in the first and fourth rows.
In Figure 9(j), Park et al.’s algorithm also preserves widely
distributed moiré patterns in the fourth row. In contrast,
the proposed algorithm in Figure 9(k) provides demoiréing
results without visible artifacts. The results in Figure 9 for a
dataset that was not used for training and has different char-
acteristics from the training dataset confirm that the proposed
algorithm has superior generalization ability to conventional
algorithms.

3) COMPARISON ON THE MRBI DATASET
Finally, we evaluate the demoiréing performance on the
MRBI dataset [49], which was obtained by capturing the
screens using cameras. Table 1 shows that the proposed algo-
rithm also outperforms all conventional algorithms with large
margins on theMRBI dataset.
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FIGURE 12. Visualization of the generated moiré patterns (top) and corresponding moiré images (bottom) over epochs during training. Results
from the (a) 1st epoch, (b) 5th epoch, (c) 10th epoch, (d) 20th epoch, (e) 30th epoch, and (f) 50th epoch.

Figure 10 compares demoiréing results for the test images
from the MRBI dataset. The results show similar tendencies
to those in Figure 9. Specifically, CycleGAN, CWR, UID-
Net, and MR-GAN in Figures 10(c), (d), (e), and (i), respec-
tively, fail to remove globally distributed moiré patterns and
significantly change original colors. ERRNet, U-Net, and
DMCNN in Figures 10(f), (g), and (h), respectively, preserves
complex moiré patterns and fails to restore degraded pixel
intensities, as shown in the first, second, and fifth rows.
Park et al.’s algorithm in Figure 10(j) effectively removes
moiré patterns but preserves the degraded pixel intensities in
the third and fifth rows. In contrast, the proposed algorithm in
Figure 10(k) outperforms all conventional algorithms, effec-
tively removing moiré patterns and restoring degraded pixel
intensities.

D. ABLATION STUDIES
We conduct several ablation studies to analyze the contri-
butions of the key components in the proposed algorithm:
cyclic moiré learning, cyclic color consistency, and moiréing
network architecture. All experiments are performed for the
LCDMoire dataset [14].

1) CYCLIC MOIRÉ LEARNING
In the proposed cyclic moiré learning algorithm, the moiréing
network generates moiré images to construct a paired set of
moiré and clean images. Then, the demoiréing network is
trained to remove moiré artifacts. To demonstrate the effec-
tiveness of cyclic moiré learning, we compare it against the
vanilla GAN. Specifically, the generator of the vanilla GAN
is trained to generate clean images from moiré images by
learning the distribution of the clean images using the cyclic
consistency. Table 2 compares the quantitative results. The
proposed cyclic moiré learning provides significantly higher
scores than the vanilla GAN. This indicates that the pro-
posed cyclic moiré learning algorithm is effective at learning
demoiréing using an unpaired dataset.

TABLE 4. Impacts of the intensity degradation module in the moiréing
network on the demoiréing performance.

2) CYCLIC COLOR CONSISTENCY
We analyze the effectiveness of the cyclic color consistency
loss Lcycle to train the moiréing network in Section III-C.
To this end, we train the proposed networks using loss func-
tions with and without Lcycle. Table 3 compares the results
quantitatively. Training without Lcycle yields lower scores
because training GANs becomes unstable, thus generating
undesired moiré images. In contrast, training with Lcycle
provides higher scores with large margins, which indicates
that the cyclic color consistency allows the moiréing network
to generate more realistic moiré artifacts while preserving the
original clean images’ information.

3) MOIRÉING NETWORK
To analyze the effectiveness of the intensity degradationmod-
ule in the moiréing network, we train the moiréing network
with and without the intensity degradation module. Table 4
compares the average PSNR and SSIM scores of these two
settings. In Table 4, g denotes the case where only the moiré
generation module is used, whereas f + g indicates the case
where both the intensity degradation module and the moiré
generation module are used. By separating the moiréing
process into two tasks, the proposed algorithm can perform
more effectively by generating complex and diverse moiré
patterns.

Figure 11 shows the input clean images, the outputs of
the intensity degradation module αY3, the generated moiré
artifacts M3, and the outputs of the moiré generation module
αY3 + M3 in Figure 3. As shown in Figures 11(b) and (c),
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FIGURE 13. Visualization of the generated moiré images at different scales. (a) Clean images, generated moiré images at each scale
(b) αY1 + M1, (c) αY2 + M2, (d) αY3 + M3, and (f) ground-truth moiré images.

the intensity degradation module f degrades the global image
intensity while the moiré generator g3 generates the moiré
patterns. By separating the moiré generation into the two pro-
cedures, the proposedmoiréing network can generate realistic
moiré images in Figure 11(d).

Figure 12 shows the generated moiré patterns and the
corresponding moiré images over epochs during the train-
ing of the moiréing network. As shown in Figure 12, the
generator gradually generates more realistic moiré patterns
and decreases pixel intensity as the number of epochs
increases.

4) COARSE-TO-FINE MOIRÉ GENERATION
We analyze the effectiveness of the coarse-to-fine approach
in the generator GM in the moiréing network. Figure 13
shows the generated moiré images αYi + Mi at each scale
i ∈ {1, 2, 3}. As shown in Figures 13(b)–(d), the generator
gradually generates local moiré patterns from globally spread
patterns by learning moiré patterns at different scales.

V. CONCLUSION
We proposed an end-to-end image demoiréing algorithm
that uses an unpaired training dataset based on cyclic
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moiré learning. The proposed algorithm is composed of two
networks: the moiréing network and demoiréing network.
The moiréing network constructs a pseudo-paired dataset
from an unpaired dataset, whereas the demoiréing network is
trained using the generated pseudo-paired dataset to remove
moiré artifacts in a supervised manner. The moiré generation
in the moiréing network was separately learned as global
pixel intensity degradation and moiré pattern generation for
more realistic moiré artifacts generation. Further, we rein-
forced the cyclic color consistency so that the moiréing net-
work could generate moiré-looking artifacts while preserving
information of the original clean image. Experimental results
on different datasets demonstrated that the proposed algo-
rithm outperforms state-of-the-art unsupervised demoiréing
algorithms as well as image restoration algorithms.
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