
Received December 14, 2021, accepted January 5, 2022, date of publication February 7, 2022, date of current version February 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149605

Aggregable Confidential Transactions for Efficient
Quantum-Safe Cryptocurrencies
JAYAMINE ALUPOTHA , XAVIER BOYEN, AND MATTHEW MCKAGUE
School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia

Corresponding author: Jayamine Alupotha (alupotha@qut.edu.au)

ABSTRACT Confidential Transactions (CT) hide coin amounts even from verifiers without the help of
trusted third parties. Aggregable CTs are a scalable category of CTs with ‘‘spent coin record trimming’’. For
example, if Alice sends coins to Bob, who had sent similar coins to Charles, the aggregated transaction shows
only that Alice sent coins to Charles by deleting Bob’s coin records. Since the number of spent coin records
grows linearly with the number of transactions, faster than the number of accounts, cash systems based on
aggregable CTs are highly scalable. However, existing quantum-safe aggregable CT protocols have large
unspent coin records, and existing efficient aggregable CTs are vulnerable to quantum attacks. We introduce
two aggregable CT protocols, based on new efficient homomorphic zero-knowledge proofs, from either the
plain orModule Short Integer Solution (SIS andMSIS) problems, both believed to be secure against quantum
adversaries. We further implement the MSIS-based aggregable CT protocol as a C library. Our experiments
on 104 transactions show that aggregation reduces the cash system’s size by 40%–54%when the output/input
rate is in the range 1/1–2/1. For example, a cash system of 1.73 GB can be reduced to 0.98 GB when the
output/input rate is 1.5, which has been the historical real-world average rate.

INDEX TERMS Confidential transactions, transaction cut-through, scalable cryptocurrencies, PQ ZK.

I. INTRODUCTION
Zero-Knowledge (ZK) proofs are exhaustively used in multi-
party distributed systems to preserve privacy while maintain-
ing public verification. More theoretically, ZK proofs can
verify statement(s) regarding concealed information without
revealing it. For example, a ZK range proof of a commitment1

shows that the committed value is in a specific range with-
out revealing the value. Another example is ZK summation
proofs, which verify the summation of committed values
without revealing the committed values individually. Privacy-
preserving cryptocurrencies heavily use these ZK proofs due
to this verifiable yet concealed information.

Early cryptocurrencies reveal coin amounts since the coins
are linked to pseudonymous identities. However, many stud-
ies [1]–[7] show that pseudonymous identities are linkable
to real-world identities, creating a demand for Confidential

The associate editor coordinating the review of this manuscript and

approving it for publication was Lo’ai A. Tawalbeh .
1Each commitment is associated with a value and a secret masking key.

Masking keys are also known as blinding factors since they add randomness
required to hide the coin amount. Commitments allow hiding a value or a
string and disclosing the hidden value/string when required. Commitments’
binding property ensures that the disclosed value/string is the originally
committed value/string. In other words, finding another value/string for the
same commitment is computationally infeasible.

Transaction (CT) protocols as the popularity of decentral-
ized cash systems is growing. Typical CTs present coins as
commitments. Since coin amounts are hidden in commit-
ments, CTs contain ZK range proofs and ZK summation
proofs:

• ZK range proofs, to ensure that committed coin amounts
are not negative, nor creating overflows;

• ZK summation proofs, to ensure that the sum of sent
amounts balances the sum of received amounts—the
‘‘zero-coin generation’’ property.

Decentralized multi-party systems like blockchains can be
categorized into (1) stateful systems and (2) stateless systems.
2 Stateful cash systems [8]–[12] and stateful data systems [13]
must preserve everything, including spent coin bundles and
stale data records. In these systems the entirety of each
transaction is hashed and taken as an input for the cash sys-
tem’s verification. Therefore, removing records from state-
ful systems can lead to theft and inconsistent consensuses.3

On the other hand, stateless systems allow secure optional
deletion for spent coin records and old data records with

2Better terms for ‘‘stateless’’ would be ‘‘history-free’’ or ‘‘zero-history’’.
3The only way to remove a stateful system’s data is to rely on trusted third

parties like in Simple Payment Verification (SPV) [14].

17722 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1587-6446
https://orcid.org/0000-0002-3598-7541
https://orcid.org/0000-0002-2294-9829

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 1. Transaction aggregation.

the help of homomorphic cryptographic protocols like homo-
morphic commitments and homomorphic digital signatures.
For example, stateless cash systems like Mimblewimble
[15]–[17] and stateless data systems like Origami dat-
achains [18] aggregate transactions by safely deleting spent
coin bundles and stale data records.

There are two CT protocol classes: (1) Ring CT and (2)
aggregate CT protocols. Stateful cash systems like [10] are
built on Ring CTs [19]–[21] where transactions obfuscate
true senders and receivers by mixing them with irrelevant
participants, in an attempt to enhance privacy. Stateless cash
systems depend on aggregable CTs [22] to safely trim spent
coin records, also boosting privacy. We illustrate an example
in Figure 1. Statistics [23] show that approximately 87%
of coin records are spent. As a result, stateless cash sys-
tems based on aggregable CTs should be both private and
scalable.

Additively homomorphic commitments can be added
together without changing the committed values. Let there
be two commitments of [v1, r1] and [v2, r2] with values
(v1, v2) and secret masks (r1, r2). Then there is a public
function which outputs a commitment of [v1 + v2, r1 + r2]
by adding those commitment without accessing their values
or masks. The existing efficient CTs like Maxwell’s CTs [22]
use Pedersen commitments [24] which are inherently homo-
morphic with no bounds on the number of commitments
that can be added. Due to the homomorphic properties of
Pedersen commitments, ZK summation proofs can be imple-
mented directly. However, being based on the Discrete-Log
Problem (DLP), these protocols are vulnerable to quantum
attacks.

Conjectured quantum-safe4 substitutes for Pedersen com-
mitments could be element-wise homomorphic5 commit-
ments based on the Short Integer Solution (SIS) problem,
where the coin amount and the masking key are encoded
as a ‘‘short’’ (i.e., low-norm) vector whose norm γ � q
against some fixed modulus q. For example, in [25], short-
norm vectors are [v, r1, r2..] for some coin amount v and
masking key [r1, r2..]. However, the price of quantum-safety
is often a combination of inefficiency and limitations on the
number and values of commitments that can be added. For
example, [25] works with lattice modulus q � 264 · 106 for
coin values in [0, 264) and up to 106 unspent coin bundles.

One tempting solution would be to commit to coin amounts
as a binary expansion rather than an integer, i.e., as a short
vector [b0, b1, .., b63, r1, r2, ..]) to signify v =

∑63
i=0 2

ibi.
This would allow the use of a small modulus. However,
we lose homomorphic properties since the resulting commit-
ments are not globally but only element-wise homomorphic,
incompatible with the direct implementation of ZK summa-
tion proofs. This is our approach, and we show how to make
this work efficiently.

A. OUR CONTRIBUTION
We introduce the first Lattice-based Aggregable Confidential
Transactions with binary commitments which are based on
the SIS problem and the MSIS problem. Our CTs have the
following properties.
• Confidentiality: Our CTs hide the coin amounts of all
coin bundles except the coins from the coinbase.6

• Scalability: We can aggregate any number of transac-
tions by removing spent coin records. Hence the state-
less cash systems built on our CTs are highly scalable.

• Efficiency: Our CTs always store coin amounts in their
binary format. As a result, a smaller lattice modulus q
can be used than when the direct values are stored, e.g.,
ourMSIS-based CTmodulus is 250−214+1 even though
coin values are in [0, 264).

Moreover, we implement a C library for our MSIS-CT pro-
tocol to experimentally determine the size reductions for dif-
ferent input and output rates. The results are stated in Table 1
for [input:output] proportions; [2:2], [2:3], and [2:4], i.e., for
[x, y], the numbers for inputs and outputs are randomly cho-
sen from [1, x] and [1, y], respectively. Note that we choose
these proportions due to the average real-world [input:output]
proportion being about 1.5 in Bitcoin [23].

1) ROADMAP
We explain the basic idea of our protocols in Section II and
Section III without deep diving into Lattice-based Cryptogra-
phy. Then we discuss related work in Section IV. Preliminar-
ies such as commitments, digital signatures, and their security

4Quantum-Safe a.k.a. Post-Quantum (PQ) is in the conjectured sense.
5Homomorphism means that adding two commitments of [v, r1, r2, ..]

and [v′, r ′1, r
′
2, ..] yields a commitment of [v+ v′, r1 + r ′1, r2 + r

′
2, ..].

6The coinbase records the number of possible total coins minus the
number of coins currently in circulation.

VOLUME 10, 2022 17723

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

TABLE 1. Space savings of transaction aggregation with different
[input:output] rates.

properties are discussed in Section V. After that, we explain
the expected security properties of aggregable transactions in
Section VI and Section VII. Our SIS-based aggregable CT
protocol and its security proofs are given in Section VIII and
Section IX. Then we explain the MSIS-based aggregable CT
protocol and its security proofs in Section X and Section XI.
The MSIS-based CT implementation and its experimental
results are discussed in Section XIII. Finally, we summarize
the paper in Section XIV.

II. STATIC CARRIES
As we discussed before, lattice-based commitments are
element-wise homomorphic, yet we want to commit the
binary forms of coin values to reduce the lattice modulus.
Making the task more complex, we want to remove spent coin
records and still check the number of circulating coins in the
system. In this section, we explain how to use the binary form
of the coins while completing these tasks.

Our solution for ZK summation proof is to use the binary
form of coin values with static carries. Let [v1, . . . , vu] ⊆
[0, 2L) for u ∈ Z+ be coin different coin values where vi =∑L−1

j=0 bi,j2
j. We want to compute their summation out . If the

binary form of out is [o0, .., oL], we can create carries c =
[c0 = 0, c1, .., cL−1, cL = 0] such that[
0,

(
u∑
i=1

bi,0 + c0

)
÷ 2, ..,

(
u∑
i=1

bi,L−2 + cL−2

)
÷ 2, 0

]

when ÷ is the integer division, e.g., 3 ÷ 2 = 1. Note that
each c∗ ∈ [0, bu/2c] and c0 = cL = 0. The carries are the
amounts that need to be carried from one column to the next
when performing addition, as shown below for base 2.

We will explain our approach using a simple example.
Here, we restrict the maximum number of inputs and outputs
to 2 per transactions, i.e., transactions with 1 ⇒ 2, 2 ⇒ 1,
2 ⇒ 2 (inputs⇒ outputs) are possible. Any other complex
transaction can be accomplished using a combination of the
above transactions. Hence, this restriction does not impact the
cash system’s practicality.

As shown in Figure 1, the aggregated cash system only has
unspent coin bundles and transaction headers since the aggre-
gation removes all spent coin bundles. Therefore, a stateless
cash system has two tables,Ucoins for unspent coin bundles
and Headers for transaction headers. At this stage, we only

explain the correctness of element-wise additions, not the
security, which will be added in the next section.

A. STEP 1: COINBASE ACCOUNT
The initial cash system only has the coinbase in Ucoins
where the coinbase has the maximum number of coins, S.
We store the maximum coin amount in binary format. The
coinbase account can transfer coins to other accounts as
rewards, and the balance after the transaction will be stored
in binary format. Note that these coins do not belong to any
participant until they are awarded. Our supplying technique
is different from typical cash systems, where they start with
zero supply and keep adding supply coins to the system.
However, we cannot use their method since we have to fix
the circulating coins in the system.7

B. STEP 2: TRANSACTIONS’ ZERO-COIN GENERATION
When the t th transaction happens with input coins [vi =∑L−1

j=0 2jbi,j]
|in|
i=1 and output coins [v′i =

∑L−1
j=0 2jb′i,j]

|out|
i=1 ,

we compute input values’ carries c(t)0 and output values’ car-
ries c(t)1 and store them in the transaction header table. If the
binary forms and carries correspond to a valid transaction,
they will satisfy the following equation for all j ∈ [0,L):

|out|∑
i=1

b′i,j −
|in|∑
i=1

bi,j + c
(t)
1,j − 2c(t)1,j+1 − c

(t)
0,j + 2c(t)0,j+1

?
= 0

(1)

Here, ‘‘|·|’’ states the number of elements in an array, column,
or rows of a table. Note that each c(t)∗,∗ ∈ [0, 1] — since there
are at most two inputs and outputs — and c(t)

∗,0 = c(t)
∗,L = 0.

C. STEP 3: CASH SYSTEMS’ ZERO-COIN GENERATION
The novelty of our protocols is that we propose Equation (2)
where we can verify the aggregated cash system’s circulating
coin amount without the spent coin bundles using. A valid
state (Ucoins,Headers) will satisfy the following for all
j ∈ [0,L):

|Ucoins|∑
i=1

bi,j +
|Headers|∑

t=1

(
c(t)1,j − 2c(t)1,j+1 − c

(t)
0,j + 2c(t)0,j+1

)
?
= Sj

(2)

This follows by summing (1) over all transactions, noting
that spent coins will be cancelled out.

These static carries have multiple advantages.
• Spent coin records can be removed from the system
since Equation (2) does not need spent coin records.

7The technical reason for fixing the initial coin supply (S) is that this way
carries are static and previously computed carries will not need to be changed
with new transactions. If the total coin of the cash system changes over time,
we get volatile carries where previous carries are no longer valid. In that case,
all the participants in the system have to join for all transactions even though
they are not senders nor the receivers of that particular transaction, which
makes the cash system impractical. MatRiCT [21] uses these volatile carries
and cannot delete spent coin records freely.

17724 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

• Only the parties involved in the transaction need to
compute the carries since Equation (1) only takes the
transaction’s inputs, outputs, and carries.

• We easily enforce the carries to be in [0, 1], which will
be useful for the range proof computation of the carries.

• No input (or output) carries need to be calculated if
there is only one input (or output) since those carries are
always zeros. This reduces transaction size and verifica-
tion time drastically.

We explain this by taking a simple example. Assume the
maximum coin amount is 24 − 1 coins and L = 4. Note that
we do not have to store c(t)0,4 and c(t)1,4 since they are zeros;
however, we store them in these introductory sections to give
a clear explanation.

Initially, only the coinbase has coins.

Ucoins
Coinbase : [1, 1, 1, 1]

Then the coinbase transfers 10 coins to Alice.

Ucoins
Coinbase : [0, 1, 0, 1]
Alice : [1, 0, 1, 0]

Headers
tx in out c0 c1
1 1 2 [0, 0, 0, 0, 0] [0, 0, 0, 0, 0]

After that Alice sends 7 coins to Bob.

Ucoins
Coinbase : [0, 1, 0, 1]
Alice : [0, 0, 1, 1]
Bob : [0, 1, 1, 1]

Headers
tx in out c0 c1
1 1 2 [0, 0, 0, 0, 0] [0, 0, 0, 0, 0]
2 1 2 [0, 0, 0, 0, 0] [0, 1, 1, 1, 0]

From the example, we can see that spent coin bundles like
Alice’s 10 coins can be removed from the cash systemwithout
affecting the verifiability.

III. AGGREGABLE CONFIDENTIAL TRANSACTIONS
We now explain how our aggregable confidential transactions
work by expanding the example used in Section II.

A. CONFIDENTIAL COIN BUNDLES
CTs store inputs and outputs as confidential coin bundles. Let
coin(v, k) be a confidential coin bundle with v coins and
masking key k .8 Each coin(v, k) is a tuple of a commitment
and the commitment’s range proof given by:

coin(v, k) := (commit(bin(v), k),
range_proof(bin(v), k))

where bin(v) is a vector which represents v in base-2.

8In lattice-based cryptography, masking keys are vectors. For simplicity
of the explanation, we restrict it to a single element.

A commitment makes sure that the committed value and
the masking key are hiding and binding. Here, binding means
no one, including the creator of the commitment, can find
another value and a masking key for the same commitment.
range_proof(bin(v)) ensures that bin(v) is a valid binary
vector for a number in the range [0, 2L).

These commitments are element-wise homomorphic, e.g.,
commit([v1,0.., v1,L , k1]) + commit([v2,0.., v2,L , k2]) =
commit([v1,0 + v2,0.., v1,L + v2,L , k1 + k2]).

B. CONFIDENTIAL CARRY PROOFS
We need the knowledge of carries to check the summation
since coin bundles commit binary form of the coin amount.
Therefore, CTs also contain carry proofs. Let carry(c, k) be
a carry proof for some carry vector c = [c0, .., cL], given by:

carry(c, k) :=

{
carry_commit([cj − 2cj+1]

L−1
j=0 , k),

carry_range_proof(c, k)

}
Similar to coin bundles, carry proofs have range proofs to
check whether c is a binary vector or not. Additionally, carry
range proofs ensure that c0 and cL are zero. Note that we
commit [cj − 2cj+1]

L−1
j=0 , not c, in carry proofs because our

target is to perform arithmetic operations on commitments
similar to Equation (1) and Equation (2).

C. DIGITAL SIGNATURES FROM ZERO VECTOR
COMMITMENTS
We depend on digital signatures to show the knowledge of
secret keys without revealing them. Let (k,pk(k)) be a secret
key-public key pair, where the public key is a commitment
of a zero vector such that pk(k) = commit([0, .., 0], k).
We denote the signature of k as sig(k) where the message
is empty. In our protocol, we make sure that a valid signature
can be only created9 if the committed value of the public key
is a zero vector.

Let us explain the digital signature process at higher
level. The signature scheme we explain here is a commonly
used digital signature with Fiat-Shamir challenges [26]–[32]
(see the complete protocol in Figure 3). The only differ-
ence is that we force all secret keys to have beginning
zeros. First, the signer randomly chooses a signature mask
key r . Then he/she creates the masking commitment Y =
commit([0, 0, 0, 0], r). The Fiat-Shamir challenge x is cre-
ated by hashing the public key, the masking commitment, and
the message, i.e. x = hash(pk(k),Y, ε). Here, ε is the empty
message. Then the signature is,

sig(k) = (σ, x) = (r + xk,hash(pk(k),Y, ε)).

To verify the signature, first the verifiers check whether the
norm of σ is less or equal to the hard problem’s norm or not,
e.g., ‖σ‖ ≤ γ for the SIS problem. Then the verifiers recreate

Y′ = commit([0, 0, 0, 0], σ)− xpk(k)

9More accurately, it is computationally infeasible to create a valid signa-
ture for a public key with a non-zero vector due to a known hard problem
like SIS or MSIS problems.

VOLUME 10, 2022 17725

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 2. Example of an aggregated cash system.

and check whether the hash challenge is the same or not by
checking,

x ?
= hash(pk(k),Y′, ε).

Therefore, a valid signature sig(k) can be only created if
pk(k) is a commitment to a zero vector.

1) TRANSACTION 1: ALICE RECEIVES 10 COINS FROM
THE COINBASE
Recall that the coinbase sent 10 coins to Alice in the first
transaction. Even though the received coin amount is pub-
lic, Alice wants to make sure that her coins cannot be
stolen. Therefore, she stores coins as a confidential coin
bundle with a secret key. Let Alice’s confidential coin bun-
dles be coin(10, kA) where kA is only known to Alice.
To secure the confidential coin bundle, Alice sends a transac-
tion tx1 implying the knowledge of kA via a digital signature
sig(kA).

tx1 =

 in = {[1, 1, 1, 1]}
out = {[0, 1, 0, 1], coin([1, 0, 1, 0], kA)}

proof = (pk(kA),sig(kA))


Here, public key pk(kA) is the difference of output commit-
ment summation and input commitment summation accord-
ing to Equation (1)., i.e.,

[b′1,j]
L−1
j=0
′′
commit([0, 1, 0, 1], 0)

[b′2,j]
L−1
j=0 :commit([1, 0, 1, 0], kA)

[b1,j]
L−1
j=0 :−commit([1, 1, 1, 1], 0)

[c(1)1,j − 2c(1)1,j+1]
L−1
j=0 :carry_commit[0, 0, 0, 0], 0)

[c(1)0,j − 2c(1)0,j+1]
L−1
j=0 :−carry_commit[0, 0, 0, 0], 0)

pk(kA) = commit([0, 0, 0, 0], kA)

Note that if a coin value is public, a commitment with a zero
key is computed when computing the public key, allowing
the verifiers to recreate the same commitment easily. Also,
if a carry vector is all zeros, we do not need to compute its
commitment; however, we include it to show the equivalence
of the public key computation and Equation (1).

Upon receiving the transaction, the verifiers can recreate
the public key pk(kA) since all the details required are in
the transaction. After that verifiers check whether the digital
signature sig(kA) is correctly generated for the public key or
not. This signature shows

1) the knowledge of the aggregate secret key (kA)
since the public key was computed taking the
commitments and

2) the transaction’s zero-coin generation since the signa-
ture can be only created if its committed value of the
public key is a zero vector.

Note that we do not need to include carry proofs in tx1 since
coin values are known to the public.

Then the cash system aggregates tx1 to itself. The state
of the aggregated cash system is shown in in Figure 2. After
the aggregation, we consider Alice has received coins. Now,
Alice’s coins are locked with the secret masking key kA.

2) TRANSACTION 2: ALICE SENDS 7 COINS TO BOB
Alice sends 7 coins to Bob from her 10 coins. We denote
the second transaction tx2 below. Unlike the first trans-
action, they have to include carry proofs for outputs10 to
the second transaction since carries might reveal the hidden
coin amounts. With the second transaction, Alice updates the
secret mask of the balance to k ′A, Bob receives coins under the
secret mask kB, and carries are hidden with kc1 .

tx2 =



in = {coin([1, 0, 1, 0], kA)}

out =

{
coin([0, 0, 1, 1], k ′A)
coin([0, 1, 1, 1], kB)

}

proof :

carry([0, 1, 1, 1, 0], kc0)
pk(k ′A + kB + kc1 − kA)
sig(k ′A + kB + kc1 − kA)




After receiving tx2, the verifiers check these; (1) the input

coin bundle is in Ucoins, (2) the range proofs are correct
for all inputs, outputs, and carries, and (3) the public key

10They do not have to include input carry proofs since there is only one
input coin bundle.

17726 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

pk(k ′A+ kB+ kc1 − kA) is equal to commit([0, 0, 0, 0], k
′
A+

kB + kc1 − kA) such that

[b′1,j]
L−1
j=0 :commit([0, 0, 1, 1], k ′A)

[b′2,j]
L−1
j=0 :commit([0, 1, 1, 1], kB)

[b1,j]
L−1
j=0 :−commit([1, 0, 1, 0], kA)

[c(2)1,j−2c
(2)
1,j+1]

L−1
j=0 :carry_commit([1,−1,−1,−2], kc1)

[c(2)0,j − 2c(2)0,j+1]
L−1
j=0 :−carry_commit([0, 0, 0, 0], 0)

commit([0, 0, 0, 0], k ′A + kB + kc1 − kA)

At last the digital signature sig(k ′A+kB+kc1−kA) is verified.
This signature prevents stealing the coins due to the need
for kA. Also, verifiers use the signature to check that no coins
were illegally generated during the transaction according to
Equation (1) since a valid signature can be created only if the
committed value of the public key is a zero vector.

Once the transaction is added to the cash system, we con-
sider that Alice has sent coin, and Bob has received coins.

a: TRANSACTION CUT-THROUGH
If the cash system is stateful, it must preserve all coin bundles,
including the spent coin bundles likecoin(10, kA). However,
stateless cash systems allow optional deletion called ‘‘cut-
though’’ or ‘‘aggregation’’ to remove spent coin bundles.
Even after the aggregation, we can fully verify the cash
system, i.e., the unspent coin bundles are not stolen, and
their hidden coin amounts are equal to the supply coins. For
example, we can check the cash system of Figure 2 s.t., commit([1, 1, 1, 1], 0)

+pk(kA)
+pk(k ′A + kB + kc1 − kA)



=


carry_commit([1, −1, −1, −2], kc1)

+[0, 1, 0, 1]
+coin([0, 0, 1, 1], k ′A)
+coin([0, 1, 1, 1], kB)

 (3)

following Equation (2). Here, commit([1, 1, 1, 1], 0) is the
supply coin commitment with no keys and [0, 1, 0, 1] is the
coinbase.

The cash system can remove spent coin records without
affecting the verification since Equation (3) is independent
from spent coin bundles, e.g., coin(10, kA).

IV. RELATED WORK
We compare our contributions with other confidential trans-
actions in Table 2. Typical transaction protocols like [8]–[12]
preserve everything, including spent coin records since dele-
tion breaks the public verification. For example, consen-
sus mechanisms like Proof of Work and Proof of Stake,
check11 all spent and unspent coin records to prevent
altering and stealing (which is known as immutability).

11Each transaction is hashed and included in the Markle hash tree of
a block. The entire transaction must be given to check the Merkle tree.
Therefore, deletion is not an option for those cash systems.

The first aggregable transaction protocol [22] introduced a
novel idea to allow public verification even after the transac-
tion cut-through, which was later adapted for a cash system
called Mimblewimble [15]. Unlike lattice-based CTs, these
CTs [15], [17], [22], [35] enjoy the efficiency of the DL
problem based range proofs [39]–[41] with no bounds. Unfor-
tunately, these efficient transaction protocols are vulnerable
to quantum adversaries due to the use of the DL problem.

Quantum-safe Ring Confidential Transactions
[21], [36]–[38] are more private than typical Aggregable
transactions due to the mixing. For example, the real sender
is mixed with a set of other participants. The ownership of
the coins is shown via a ring signature where the real sender
can create signatures for other participants as well. However,
these ring signatures prevent the transaction aggregation
techniques. Aggregable Confidential Transactions do not pro-
vide mixing capabilities, yet hide coin amounts. Therefore,
aggregable CTs are both scalable and private.

MatRiCT [21] is one of the most efficient quantum-safe
Ring CT protocols since it also uses binary commitments
similar to our protocols.12 The downside of binary commit-
ment is that ZK summation proof requires carry commitments
if there is more than one input/output. Also, this limits the
maximum number of inputs and outputs to 2, and other com-
plex transactions should be divided intomultiple transactions.
However, from statistics [23], real-world transactions have
average 1.5 outputs/input rate. Therefore, even dividing com-
plex into multiple transactions is more efficient than having
larger modulus like 2196 in [37] (see more details in [21]).

Our confidential transactions also suffer from this limita-
tion on the number of inputs and outputs. However, similar
to [21], having binary commitments is more efficient than
having large modulus like [25]. Moreover, our protocols are
aggregable due to the static carries, unlike MatRiCT with
volatile carries, which do not remove additional transactions’
inputs. For example, assume a transaction of 2 ⇒ 3. Then
we have to create two transactions of 2 ⇒ 2 and 1 ⇒ 2.
Since [21] is stateful, they have to add 4 additional coin
bundles (totally 6 coin bundles) while cash systems, based
on our protocols, delete 2 coin bundles and only add 3 coin
bundles. Therefore, our confidential transactions are more
efficient and scalable than other quantum-safe confidential
transactions due to aggregation and binary commitments.

V. PRELIMINARIES
We denote the ring of integers modulo q by Zq = Z/qZ,
which is represented by the range [− q−1

2 ,
q−1
2] for an odd

prime q. For an even q, the range is (− q
2 ,

q
2]. R is a polyno-

mial ring ofZ[X]/[XN+1]with degreeN = 2k for some inte-
ger k > 0.Rq is a fully splitting ring of Zq[X]/[XN +1] over
q such that q ≡ 1 (mod 2N). A polynomial aN−1XN−1 +
..+a1X+a0 ∈ Rq is denoted as Ea = [a0, ..aN−1] when each

12The major differences are that they are not aggregable like our protocols
and do not embed the coinbase to the cash system at the beginning.

VOLUME 10, 2022 17727

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

TABLE 2. Comparison of related work. Note that the root Hermite factor should be less than 1.0045 to achieve 128-bit security against the known
attacks [33]. Here, ‘‘unlimited’’ means unlimited coin bundles, and ‘‘C. Size’’ is the size of a commitment in a coin bundle.

coefficient is in Zq. We will often write Ea for both the vector
and the corresponding polynomial.

We use simple bold letters like a for integer vectors and
capital bold letters such as A for integer matrices. Similarly,
Ea denotes a vector of polynomials, and EA denotes a matrix
of polynomials. The ith element of a vector a is ai or we
can denote the entire vector as a = [a0, .., an−1] = [ai]

n−1
i=0

when a has n elements. Also, A = [A0, ..,Am−1] when A has
m vectors. We denote matrix multiplication as Aa when A’s
numbers of columns matches with a’s number of elements.
EaEb denotes the polynomial multiplication of Ea and Eb. Also,
EaEa = Ea2. When x is an integer, xa denotes that every element
in a is multiplied by x. ExEa denotes that every polynomial in Ea
is multiplied by Ex. We use ‘‘+’’, ‘‘−’’, and ‘‘◦’’ for element-
wise or polynomial-wise addition, subtraction, and multipli-
cation respectively, i.e. a + b = [a0 + b0, .., an−1 + bn−1],
a◦b = [a0b0, .., an−1bn−1], Ea+Eb = [Ea0+Eb0, .., Ean−1+Ebn−1],
and Ea ◦ Eb = [Ea0Eb0, .., Ean−1Ebn−1]. Sometimes, we use a2 and
Ea2 for a ◦ a and Ea ◦ Ea, respectively.
The norms are defined as follows, ‖a‖ = max([|ai|]n−1i=0),

and ‖a‖1 =
∑n−1

i=0 |ai|. The norms for a polynomial
Ea are defined as follows, ‖Ea‖ = max([|ai|]N−1i=0) and
‖Ea‖1 =

∑N−1
i=0 |ai|. For a vector of polynomials Ea, ‖Ea‖ =

max([‖Eai‖]n−1i=0). Note that 0n ∈ Znq is a zero vector and
E0 ∈ Rq is the polynomial with all zero coefficients. bin(v)
outputs b ∈ Zq or Eb ∈ Rq such that v =

∑N−1
i=0 2ibi.

We use a← S to denote awas sampled from S and a
$
←− S

to denote a was uniformly sampled from S. a0, .., am−1 ←
Sm denotes each ai is sampled from S. ε(λ) = 1/o(λc) is a
negligible function which vanishes faster than any polyno-
mial of degree c, ∀c ∈ N. We generally use pp(λ) to denote
public parameters of some protocol with λ bits of security.
We useA to denote an adversarial algorithm.A is a stateful

interactive algorithm, e.g., Astep1() and Astep2() denote the
first step and the second step of the protocol, respectively.
SinceA is stateful,A can save information from the first step
for the second step.

Definition 1 (Statistical Distance): Let X and Y be two
random variables with range U . The statistical distance

between X and Y is defined as,1(X ,Y) = 1
2

∑
u∈U

∣∣Pr[X =
u] − Pr[Y = u]

∣∣. For any θ > 0, we say X and Y are
statistically θ -close if 1(X ,Y) ≤ θ .

Theorem 1 ([42]): The distribution (H,Hr mod q) is
statistically ε(λ)-close to the distribution of (H,u) where

H
$
←− Zn×mq , r

$
←− [−τ, τ]m, and u

$
←− [−q, q]n when

m log(2τ) > n log q+ 2 log(1/ε(λ)) or (2τ)m/qn > 2/ε(λ).
Definition 2 (Short Integer Solution Problem (SIS)):

The advantage of an algorithm A solving a special instance
of SISn,m,q,γ after one execution is given by

AdvSIS,Appλ := Pr
[
GameSIS,Appλ () | ppλ = (n,m, q, γ)

]
.

Game 1: SIS Challenge

GameSIS,Appλ ():

H
$
←Zn×mq // Choose a random matrix

(s ∈ Zm)← A(ppλ,H) // Get the short vector from A
return 0 < ‖s‖ ≤ γ

∧
Hs = 0n ∈ Znq

Definition 3 (Module Short Integer Solution Problem
(MSIS)): The advantage of an algorithmA solving an special
instance of MSISn,m,q,γ,N after one execution is given by,

AdvMSIS,Appλ := Pr
[
GameMSIS,Appλ () | ppλ = (n,m, q, γ,N)

]
.

Game 2:MSIS Challenge

GameMSIS,Appλ ():

EH
$
←− Rn×m

q // Choose a random matrix
(Es ∈ Rm)← A(ppλ, EH) // Get the short vector from A
return 0 < ‖Es‖ ≤ γ

∧
EHEs = E0

n
∈ Rn

q

A. COMMITMENTS OF SIS/MSIS PROBLEMS
The purpose of a commitment is to secretly publish some
string and open it later to show it. Therefore, a commitment
is hiding and binding, i.e., finding the committed string or

17728 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

finding a different value for the same commitment is difficult.
We define a simple commitment scheme COM below.

Functionality 1: Commitments
• COM.gen(pp(λ,d), in, r): return f (in; r) for some hid-
ing and binding function f .

• COM.open(pp(λ,d), out, in, r) : return f (in; r)
?
= out

We define the security properties of a generic COM below,
Definition 4: COM is hiding and binding if

AdvBND,A
COM,pp(λ,d)

:= Pr
[
GameBND,A

COM,pp(λ,d)
()
]
≤ ε(λ)

AdvHID,A
COM,pp(λ,d)

:= 2

∣∣∣∣Pr [GameHID,A
COM,pp(λ,d)

()
]
−

1
2

∣∣∣∣ ≤ ε(λ)
Game 3: Binding

GameBND,A
COM,pp(λ,d)

():

(out, in, r, in′, r ′)← A(pp(λ,d))

return (in, r)
?
6= (in′, r ′)∧ COM.open(pp(λ,d), out, in, r)

∧COM.open(pp(λ,d), out, in′, r ′)

Game 4: Hiding

GameHID,A
COM,pp(λ,d)

():

(in0, in1)← Astep1(pp(λ,d))

i
$
←− [0, 1]; r

$
←− Vr // Vr is the space of masks

out = COM.gen(pp(λ,d), ini, r)
j← Astep2(pp(λ,d), out)

return i ?
= j

We state two commitment protocols; COMSIS and
COMMSIS below.

Protocol 1: SIS Commitments
COMSIS.init(λ, n,m, q > 24λ/n, γ, d < m):
Set τ ≤ γ such that (m− d) log(2τ) > 6λ.

Get H
$
←− Zn×mq .

return pp(λ,d) = (n,m, q, γ, τ, d,H)

COMSIS.gen(pp(λ,d), v ∈ [−γ, γ]d , r
$
←− [−τ, τ]m−d):

return H[v, r] ∈ Znq
COMSIS.open(pp(λ,d),u ∈ Znq, v ∈ Zd , r ∈ Zm−d) :

return ‖v‖ ≤ γ
∧
‖r‖ ≤ τ

∧
H[v, r] ?

= u ∈ Znq

Theorem 2: COMSIS is computationally hiding and com-
putationally binding if solvingSISn,m,q,γ is at most ε(λ) after
one execution.

Proof: Breaking the binding property of COMSIS

directly solves the SIS problem. However, the computational
hiding property is not directly visible. Our target is to show
that there are at least 22λ different u for the same v over Znq.

Protocol 2:MSIS Commitments

COMMSIS.init(λ, n,m, q > 2
4λ
nN , γ,N , d):

Set τ ≤ γ such that (m− d)N log(2τ) > 6λ.

Get EH
$
←− Rn×m

q .
return pp(λ,d) = (n,m, q, γ,N , τ, d, EH)
COMMSIS.gen(pp(λ,d), Ev ∈ [−γ, γ]d×N ,

Er
$
←− [−τ, τ](m−d)×N): return EH[Ev, Er] ∈ Rn

q
COMMSIS.open(pp(λ,d), Eu ∈ Rn

q, Ev ∈ Rd , Er ∈ Rm−d) :

returns ‖Ev‖ ≤ γ
∧
‖Er‖ ≤ τ

∧
EH[Ev, Er] ?

= Eu ∈ Rn
q

From Bertrand’s postulate, we know there should be at
least one prime p such that 2 ≤ 22λ/n < p < 24λ/n < q.

Let there be H
$
←− Zn×mq , positive integer τ ′, and a function

f ′ such that
f ′(v ∈ [−γ, γ]d ; r ∈ [−τ ′, τ ′]m−d) :
return u = H[v, r] ∈ Zn

(p>22λ/n)

Recall from Theorem 1, this function f ′ outputs an uniform
distribution over Znp for any v when τ ′ satisfies the following:

(m− d) log(2τ ′)− 2λ ≥ n log(p). (4)

In other words, if τ ′ satisfies Equation (4), there are at least
22λ different outputs for the same v over Znp with an over-
whelming probability since p > 22λ/n.
There are at least 22λ different u over Znq as well since

q > p, and the map of Zp 7→ Zq is injective for prime
numbers p and q. According to the init function of COMSIS,
τ ≥ τ ′ always satisfies Equation (5) s.t.,

(m− d) log(2τ) ≥ 6λ⇒ (m− d) log(2τ)− 2λ ≥ 4λ

(m− d) log(2τ)− 2λ ≥ n log(p) (5)

since p < 24λ/n. Therefore, AdvHID,∗
COM,pp(λ,d)

≤ ε(λ) after
one execution. Hence Theorem 2 is true, i.e. COMSIS is
computationally hiding and computationally binding. �
Theorem 3: COMMSIS is computationally hiding and

binding if solving MSISn,m,q,γ,N is at most ε(λ) after one
execution.

Proof: Any valid output of GameBND,∗
COM,pp(λ,d)

is a solu-
tion to MSIS problem. Therefore, we move to the computa-
tional hiding property. Note that, q < 2

4λ
nN .

Therefore, there should be at least one prime p such that

2 ≤ 22λ/nN < p < 24λ/nN < q. Let EH
$
←− Rn×m

q and a
function f ′,
f ′(Ev ∈ [−γ, γ]d×N ; Er ∈ [−τ ′, τ ′](m−d)×N):
return Eu = EH[Ev; Er] ∈ Rn

p

that outputs a uniform distribution overRn
p. Provided that,

(m− d)N log(2τ ′)− 2λ ≥ nN log(p) (6)

according to Theorem 1. Since p > 22λ/nN and p < q,
there will be at least 22λ different polynomials over Rn

q.

VOLUME 10, 2022 17729

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

According to the initialization function of COMMSIS, τ ≥ τ ′

always satisfies Equation (6) because,

(m−d)N log(2τ)> 6λ⇒ (m−d)N log(2τ)−2λ>4λ

(m− d)N log(2τ)− 2λ> nN log(p),

when p < 24λ/nN . Therefore, AdvHID,∗
COM,pp(λ,d)

is ε(λ)
after one execution and COMMSIS is computationally
hiding. �

B. SIGNATURES WITH FIAT SHAMIR CHALLENGES
Next, we define digital signature schemes based on [26]–[32].
In this paper, we employ many-time signatures that
are EUF-CMA (Existential Unforgeable under Cho-
sen Message Attack) due to rejection sampling even
though only one signature is created from the same key
pair.

Functionality 2: Digital Signatures
• SIG.kgen(ppλ): return (sk, pk) // Here, sk is the secret
key, and pk is the public key.

• SIG.sign(ppλ, sk,m): return (σ, x). // The tuple (σ, x) is
the the signature

• SIG.ver(ppλ, pk,m, σ, x) : return 1 if the signature
(σ, x) is valid, otherwise 0.

We define the completeness and strong EUF-CMA of SIG
below.

Definition 5: SIG is complete and strong EUF-CMA if

Pr
[

ver(ppλ,
pk,m, σ, x)

∣∣∣ (sk, pk) = kgen(ppλ)
(σ, x) = sign(ppλ, sk,m)

]
≥ 1− ε(λ)

AdvEUF,A
SIG,ppλ

:= Pr
[
GameEUF,A

SIG,ppλ
()
]
≤ ε(λ)

Game 5: Unforgeability

GameEUF,A
SIG,ppλ

():

(sk, pk) = SIG.kgen(ppλ)
(m′, (σ ′, x ′))← Asignsk (ppλ, pk)
return (m′, (σ ′, x ′)) 6∈ Q ∧ SIG.ver(ppλ, pk,m′, σ ′, x ′)

Oracle signsk (m):
(σ, x) = SIG.sign(ppλ, sk,m)
Q = Q ∪ {(m, (σ, x))}, return (σ, x)

We state variations of [31], [32] in Figure 3. In these
protocols, to reduce the size, the signature contains a hash
challenge similar to [32] instead of the masking commitment
(Y or Ey). Ey is around 9 KBwhen the hash challenge is 32 bytes
in our MSIS-CT protocol.

Theorem 4: SIGSIS is complete and EUF-CMA if SIS
problem is hard for (n,m, q, γ). (see details in [32])

Theorem 5: SIGMSIS is complete and EUF-CMA if MSIS
problem is hard for (n,m, q, γ,N). (see details in [31])

FIGURE 3. Digital signatures.

VI. PROPERTIES OF CONFIDENTIAL COIN BUNDLES
Confidential coin bundles are special commitments accom-
panied by range proofs of the committed coin values. As dis-
cussed before, commitments contain mask keys, and we

17730 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

use these masks as the ownership of the coin bundles. For
example, sending a coin bundle is equivalent to sending the
masking key of the coin bundle to the receiver.

Let there be a confidential coin bundle scheme COIN.

Functionality 3: Confidential Coin Bundles
• COIN.gen(pp(λ,L), v): returns (mask,coin) if v is in
[0, 2L − 1]; otherwise returns ⊥. Here, mask is a secret
mask(s), and L is defined in pp(λ,L).

• COIN.open(pp(λ,L), v,mask,coin): returns 1 if
coin is generated for valid (v ∈ [0, 2L),mask);
otherwise, returns 0.

• COIN.ver(pp(λ,L),coin): returns 1 if the coins bundle
is in [0, 2L−1] otherwise, returns 0. Note that this public
verification does not need the secret mask(s).

We define the expected security properties of COIN below.
COIN is complete if honestly generated coin bundles can be
opened and publicly verified.

Definition 6 (Completeness): COIN is complete if,

Pr


COIN.open(pp(λ,L),
v,mask,coin)
∧COIN.ver(pp(λ,L),

coin)

∣∣∣ v ∈ [0, 2L − 1]
(mask,coin) =

COIN.gen(pp(λ,L), v)


is greater than or equal to 1− ε(λ).

Once the coin bundle is generated, the coin value and mask
should be binding, or no one (including the creator) should be
able to come up with a different coin value and mask for the
same coin bundle.

Definition 7 (Binding): COIN is binding if

AdvBND,A
COIN,pp(λ,L)

:= Pr
[
GameBND,A

COIN,pp(λ,L)
()
]
≤ ε(λ).

Game 6: Binding

GameBND,A
COIN,pp(λ,L)

():

(coin, v,mask, v′,mask′)← A(pp(λ,L))

return (v,mask)
?
6= (v′,mask′)∧

COIN.open(pp(λ,L), v,mask,coin)∧
COIN.open(pp(λ,L), v′,mask′,coin)

As the name implies, coin bundles should be confidential,
i.e., no algorithm should be able to distinguish the coin
amount of the coin bundle. We capture this hiding property
as follows.

Definition 8 (Hiding): COIN is hiding if AdvHID,A
COIN,pp(λ,L)

is

2
∣∣∣Pr [GameHID,A

COIN,pp(λ,L)
()
]
− 1/2

∣∣∣ ≤ ε(λ).
As we discussed before, confidential coin bundles contain

range proofs for the committed values. Knowledge soundness
ensures that no p.p.t. algorithm can compute a valid coin
bundle for a coin amount that is not in [0, 2L−1]. Let E be an
extractor that extracts the committed value of a coin bundle.

Game 7: Hiding

GameHID,A
COIN,pp(λ,L)

():

(v0, v1)← Astep1(pp(λ,L))

i
$
←− [0, 1]; (mask,coin) = COIN.gen(pp(λ,L), vi)
j← Astep2(pp(λ,L), v0, v1,coin)

return i ?
= j

∧
(v0, v1)

?
∈ [0, 2L − 1]

We define knowledge soundness such that no p.p.t. algorithm
can compute a valid coin bundle for an invalid coin value, i.e.,
the extracted coin value of E is not in [0, 2L − 1].

Definition 9 (Knowledge Soundness): COIN is knowl-
edge sound if

AdvKS,A
COIN,pp(λ,L)

= Pr
[
GameKS,A

COIN,pp(λ,L)
()
]
≤ ε(λ).

Note that extractors do not exist in real-world unless
the public parameters have been tampered with trapdoor
functions. These extractors are commonly used in zero-
knowledge proofs or arguments to verify security. In this
paper, we construct extractors based on the Generalized Fork-
ing Lemma [27] where the adversarial algorithm is rewound
just before the challenge computation.

Game 8: Knowledge Soundess

GameKS,A
COIN,pp(λ,L)

():

coin← A(pp(λ,L))

return E(coin)
?
6∈ [0, 2L−1]

∧
COIN.ver(pp(λ,L),coin)

VII. PROPERTIES OF CONFIDENTIAL TRANSACTIONS
Confidential transactions contain input coin bundles, output
coin bundles, and proofs to verify the ownership and zero-
coin generation. Here, zero-coin generation ensures that input
coin summation is equal to output coin summation. The
ownership proofs (typically a multi-signature) are created
by taking the inputs’ and outputs’ masking keys. Therefore,
coin bundles cannot be stolen without the masking keys.
Recall the ownership of a coin bundle is its masking key.
Therefore, once a recipient gets a masking key, he/she sends
a transaction updating the masking key of the coin bundle.
Once the transaction is appended to the cash system, only the
recipient knows the coin bundle’s new masking key, and no
one can steal coins, including the previous owner.

Let CTx be a confidential transaction scheme for transac-
tions with |in| inputs and |out| outputs.

We say CTx is complete if honestly generated confidential
transactions can be publicly verified.

Definition 10 (Completeness): CTx is complete if,

Pr
[
random_tx(pp(λ,L), |in|, |out|)

]
≥ 1− ε(λ).

Confidential transactions should be hiding, or all input coin
amounts, output coin amounts and carries should be hiding.
We define the hiding property of CTx below.

VOLUME 10, 2022 17731

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

Functionality 4: Confidential Transactions

• CTx.gen(pp(λ,L), [vi,maski,coini]
|in|
i=1 , [v

′
i,mask

′
i,

coin′i]
|out|
i=1): returns tx = (in,out,proof) if coin

values (vi or v′i) are in the accepted range [0, 2L − 1],∑|in|
i=1 vi =

∑|out|
i=1 v′i, and input and output coin bundles

are valid; otherwise returns ⊥.
• CTx.ver(pp(λ,L),tx): returns 1 if the transaction is
valid; otherwise, returns 0.

Functionality 5: Random Transaction Generation
random_tx(pp(λ,L), |in|, |out|):
For any [vi]

|in|
i=1 ∈ [0, 2L − 1] and [v′i]

|out|
i=1 ∈ [0, 2L − 1]

such that
∑|in|

i=1 [vi] =
∑|out|

i=1 [v′i] ∈ [0, 2L − 1]:
[(maski,coini) = COIN.gen(pp(λ,L), vi)]

|in|
i=1

[(mask′i,coin
′
i) = COIN.gen(pp(λ,L), v′i)]

|out|
i=1

tx = CTx.gen(pp(λ,L), [vi,maski,coini]
|in|
i=1 ,

[v′i,mask
′
i,coin

′
i]
|out|
i=1)

// check inputs and outputs
return tx.in ?

= [coin]|in|i=1
∧
tx.out

?
= [coin′]|out|i=1

∧
CTx.ver(pp(λ,L),tx)

Definition 11 (Hiding): CTx is complete if,

2
∣∣∣Pr [GameHID,A

CTx,pp(λ,L)
()
]
− 1/2

∣∣∣ ≤ ε(λ).
Game 9: Hiding

GameHID,A
CTx,pp(λ,L)

(|in|, |out|):

// get coin amounts from A
([v0,i]

|in|
i=1 , [v

′

0,i]
|out|
i=1), ([v1,i]

|in|
i=1 , [v

′

1,i]
|out|
i=1)← Astep1(

pp(λ,L), |in|, |out|)
if
∑|in|

i=1 v0,i 6=
∑|out|

i=1 v′0,i 6∈ [0, 2L)∨∑|in|
i=1 v1,i 6=

∑|out|
i=1 v′1,i 6∈ [0, 2L)∨

given coin amounts are not in [0, 2L): return ⊥

b
$
←− {0, 1}

[(maski,coini) = COIN.gen(pp(λ,L), vb,i)]
|in|
i=1

[(mask′i,coin
′
i) = COIN.gen(pp(λ,L), v′b,i)]

|out|
i=1

txb = CTx.gen(pp(λ,L), [vb,i,maski,coini]
|in|
i=1 ,

[v′b,i,mask
′
i,coin

′
i]
|out|
i=1)

b′← Astep3(txb)

return b ?
= b′

Theft resistance of confidential transactions ensures that
the given coin bundle cannot be spent without its secret mask.
Here, we define a strong version of theft-resistance where the
adversarial algorithm chooses the coin amount since the coin
value is known in some cases, e.g., coinbase reward.

Definition 12 (Theft-Resistance): CTx is theft-resistant
if

AdvTR,A
CTx,pp(λ,L)

:= Pr
[
GameTR,A

CTx,pp(λ,L)
()
]
≤ ε(λ).

Game 10: Theft Resistance

GameTR,A
CTx,pp(λ,L)

():

v← Astep1(pp(λ,L))
if v 6∈ [0, 2L−1]: return ⊥
(mask,coin) = COIN.gen(pp(λ,L), v)
tx← Astep2(pp(λ,L), v,coin)

return CTx.ver(pp(λ,L),tx)
∧
coin

?
∈ tx.in

FIGURE 4. Public parameters for SIS problem-based confidential
transactions.

Zero-coin generation of transactions means that no coins
can be generated during a transaction. Here, the extractor E
outputs the hidden coin amount of the coin bundle similar to
the extractor of Definition 9.

Definition 13 (Zero-Coin Generation): CTx ensures
zero-coin generation property if

AdvZCG,A
CTx,pp(λ,L)

:= Pr
[
GameZCG,A

CTx,pp(λ,L)
()
]
≤ ε(λ).

Game 11: Zero-coin Generation

GameZCG,A
CTx,pp(λ,L)

():

tx← A(pp(λ,L))
return CTx.ver(pp(λ,L),tx)

∧∑|tx.in|
i=1 E(tx.ini)−

∑|tx.out|
i=1 E(tx.outi)

?
6= 0

VIII. AGGREGABLE CONFIDENTIAL TRANSACTIONS
WITH GENERIC LATTICES
This section explains the confidential transaction proto-
col based on SIS problem when coin values are in
[0, 2L). Concrete Protocols related to this section are stated
in Figure 4, 5, 8 and 9.

As discussed before, coin bundles include range proofs to
ensure that the committed value is in the valid range. If we

17732 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 5. SIS problem-based confidential coin bundles.

have a method to prove some bit is either 0 or 1 then we can
extend that method for all L bits since we commit the binary
form of the coin values. First, we explain how to show a bit
is 0 or 1 without revealing the bit.

Assume a prover P wants to hide b ∈ [0, 1] but wants to
prove to a verifier V that b is definitely 0 or 1.
1) First, P chooses a random a.
2) P computes these commitments; u = commit

([b, 0], r) and t1 = commit([0, a(2b − 1)], r1) with
some masks r, r1. Then P sends u and t1 to V .

3) V chooses a random challenge x1 and sends to P .

4) t2 = commit([x1a, a2], r2) with some mask r2. Then
P sends the commitment t2 to V

5) V chooses a random challenge x2 and sends to P .
6) P sends z = bx2 + a, R = x2(x1r + r1)+ r2 to V .
7) V accepts if

commit([x1z, z(z− x2)],R) = x2(x1u+ t1)+ t2.

If there is z = bx + a for some random a and challenge x,
then

z(z− x) = x2b(b− 1)︸ ︷︷ ︸
0

+xa(2b− 1)+ a2 (7)

when b is 0 or 1. Therefore, P can prove that b is indeed 0 or
1 without revealing b directly.

Before proceeding, we define the range for a to be [−α, α]
and the range of the challenge x1 and x2 to be [−χ, χ] when
0 < χ < α. Now, we can define the safe range for rejection
sampling, i.e., z should be [−(α − χ), α − χ]; otherwise,
z leaks information about b. If z is out of this range, we will
reject the sample and start over. We use lazy sampling for a
to reduce the number of rejections. For example,

• a is chosen from [−(α − χ), α − χ] when b is 0, and
• a is chosen from [−α, α] when b is 1.

Also, we make sure that ‖z(z − x)‖ ≤ γ (recall γ is from
SIS problem) by 0 < (α − χ) < α(α − χ) < α2 ≤ γ .
A similar approach should be applied to the masks as well.
When r ∈ [−τ, τ], r1 ∈ [−τ1, τ1] and r2 ∈ [−τ2,−τ2],
we can define the safe range of R a [−(τ2−χ2τ−χτ1), (τ2−
χ2τ − χτ1)] when 0 < χ2τ + χτ1 < τ . We state these
conditions in Figure 4.
We can see that the soundness error is 2−(2χ) when x ∈

[−χ, χ]. Therefore, we repeat the interactions between P
and V multiple times (ch ≈ dlog2χ 2

2λ
e times) to reduce

the soundness error to 2−λ.
In confidential coin bundles, we commit the binary

form [bj]
L−1
j=0 ∈ [0, 1]L of the coin amount instead of a

bit b, e.g., u = commit(
[
[bj]

L−1
j=0 ,0

2L
]
, r ∈ Zm−3L)

(see Figure 6).

Aggregate CTs should hide all binary values and carries
while ensuring other security properties like theft resistance
and zero-coin generation. When we examine the structure
of carries, we can see that proving the range of carries
is similar to proving the coins’ range. However, what we
want to commit is not input carries (c0) nor output car-
ries (c1) but [c0,j − 2c0,j+1]

L−1
j=0 and [c1,j − 2c1,j+1]

L−1
j=0 to

check Equation (1) and Equation (2). Therefore, we commit
[c1,j − 2c1,j+1 − c0,j + 2c0,j+1]

L−1
j=0 as shown in Figure 7.

As we discussed in Section III, a transaction should contain
a carry proof for inputs and a carry proof for outputs. In our
protocol, transactions have combined carry proofs where the
input and output carry proof are combined into a single
proof.

We create proof (or the header) of the transactions by
combining the carry proofs and amulti-signature. A signature

VOLUME 10, 2022 17733

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 6. Coin structure of coin bundle (Z,R,u,T1, x2 = hash(u,T1,T2)) with its T2 and x1 = hash(u,T1).

FIGURE 7. Carry proof structure of (Z0,Z1,R,u,T1, x0 = hash(pk,Y), x2 = hash(u,T1,T2, σ), σ , pk) with (T2, Y , x1 = hash(u,T1, σ)).

σ is created for the aggregate masking key of the inputs’, out-
puts’, and carries’ masks (see Step 44). Assume Alice wants
to send coins to two receivers, Bob and Charles, and they
have a secure communication channel where none of them
can impersonate others. During the transaction generation,
Alice should be able to hide the new mask from others, and
the same goes for Bob and Charles as well. On the other hand,
they have to show their knowledge of the masks to compute
the multi-signature.

Therefore, each sender and receiver computes partial sig-
natures separately with a signature mask in [−τ3, τ3]. In the
end, they aggregate partial signatures to compute the multi-
signature. We perform rejection sampling in Step 40 and
Step 44 for partial signatures to make sure that partial sig-
natures do not leak information. Therefore, the safe range for
a partial signature is [−(τ3 − χτ), τ3 − χτ] (recall that coin
masks are in [−τ, τ]). In that way, they can hide the mask of
the coin bundle from each other. Aggregated signatures are
also subjected to rejection sampling because the knowledge
of aggregate keys may leak the proof’s masking key.

The protocol provides the following security measures.
• The sender, Alice, can stop the transaction by not sharing
her signature.

• Bob (or Charles) cannot update the created transaction
to steal Charles’ (or Bob’s) coins due to the challenge
x1, i.e., changing any u of a coin bundles changes x1 of
that coin bundle.

• No sender or receiver can see or derive others’
secret masks due to the rejection sampling on partial
signatures.

We define the concrete non-interactive confidential coin
bundle scheme COIN in Figure 5 and our aggregate CT pro-
tocol CTx in Figure 8 and Figure 9. Here, ‘‘non-interactive’’
means that the prover(s) gets challenges from a hash function
instead of the verifier, e.g., x1 = hash(u,T1) and x2 =
hash(u,T1,T2) from Figure 6. Since we have a precise
method to recompute challenges, we do not include T2 in the
coin bundle. Instead, we include x2 and recompute T2 using
x2 (see Step 33). At the end, we check whether the hash
challenge x2 is equal to hash(u,T1,T2) or not. This method
saves space since T2 is a few kilobytes while x2 is just
32 bytes.

We use a similar method for the carry proofs and the
signatures as well. For example, the recomputable hash chal-
lenge of a signature is computed as x0 = hash(pk,Y).
To save space, we include x0, not Y . During the signature
verification, we recompute Y and check whether x0 is equal
to hash(pk,Y) or not (see Step 92).

We illustrate the correctness in Figure 6 and Figure 7.

IX. SECURITY PROOFS FOR SIS PROBLEM
BASED TRANSACTIONS
This section shows the security of our confidential coin bun-
dles and confidential transactions.

17734 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 8. Proofs (headers) of aggregate confidential transactions.

VOLUME 10, 2022 17735

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 9. SIS aggregate confidential transactions.

A. SECURITY PROOFS FOR CONFIDENTIAL
COIN BUNDLES

Theorem 6: COINSIS is complete, binding, hiding, and
knowledge sound if COMSIS is binding and hiding, and
SISn,m,q,γ is hard.
We give the proof in a series of lemmas below. We should

be able to verify and open the honestly generated confidential
coin bundles as defined in Definition 6. Here, ‘‘honestly
generated’’ includes (1) the coin value is in [0, 2L), (2) the
commitment contains the correct binary form of the coin
value, and (3) the random masks are chosen from the defined
range. We directly see the opening of a coin bundle is correct.
We show the correctness of verification function in Figure 6.
Therefore, we conclude COINSIS is complete.
Lemma 1: COINSIS is binding if COMSIS is binding.
Proof: Assume COINSIS is not binding as stated in

Definition 7, then there is a p.p.t. algorithm A which finds
two different openings for the same confidential coin bun-
dle. Then A can be used to break the binding property of
COMSIS. Therefore, we conclude that COINSIS is binding
if COMSIS is hard, or Lemma 1 is valid. �
Lemma 2: COINSIS is computationally hiding ifCOMSIS

is computationally hiding.
Proof: This proof has two parts; (1) Z statistically

hides the coin amount, and (2) u,T1,T2 are computationally
hiding.

First, we prove that there is exactly one possible [ai]ch−1i=0 ∈

[−α, α]ch×L for any combination of (b,Z) and any x2. Since
bj ∈ [0, 1], x2,i ∈ [−χ, χ], and Zi,j ∈ [−α + χ, α − χ]; for
j ∈ [0,L),

• When bj = 0: ai,j = Zi,j ∈ [−α, α]
• When bj = 1: ai,j = Zi,j − x2,i ∈ [−α, α]

Secondly, we show that u,T1,T2 computationally hide
their committed values. Let there be a p.p.t. algorithm that
wins GameHID,A

COIN,pp(λ,L)
. Then A can be used to break the

hiding property of COMSIS when d = 3L since τ < τ1 <

τ2 and (m− 3L) log(2τ) ≥ 6λ.
Therefore, COINSIS is computationally hiding if COMSIS

is computationally hiding. �
Lemma 3: COINSIS is computationally knowledge

sound if COMSIS is binding, SISn,m,q,γ is hard, and
ch log(2χ) ≥ 2λ.

Proof: Let there beA that wins GameKS,A
COIN,pp(λ,L)

when
the extractor E(coin) outputs b 6∈ {0, 1}L . Then b ◦ (b − 1)
is not equal to 0L . In other words, when COMSIS is binding,
A finds some (Z,R,u,T1,T2) s.t. for each i ∈ [0,ch):

H

 x1,iZi
Zi ◦ (Zi − x2,i)

0L ,Ri

 = x22,iH

 0L

b ◦ (b− 1)
0m−2L


︸ ︷︷ ︸

s6=0m︸ ︷︷ ︸
=0n

+

 x2,ix1,iu
+x2,iT1,i
+T2,i


when x1, x2 ∈ [−χ, χ]ch are given by hash (see Step 17 of
COINSIS.gen()). We highlight that s 6= 0m is a solution to
SISn,m,q,γ of H . Therefore, we reduce A’s winning proba-
bility after one execution as follows,

AdvKS,A
COIN,pp(λ,L)

≤ AdvSIS,Appλ +
1

(2χ)ch
+ AdvBND,A

COM,pp(λ,3L)
.

Hence, we claim Lemma 3 is correct or COINSIS is compu-
tationally knowledge sound. �

B. SECURITY PROOFS FOR CONFIDENTIAL
TRANSACTIONS

Theorem 7: CTxSIS is complete, theft-resistant, hiding,
and provides zero coin generation property if COINSIS is
complete, binding, hiding, and knowledge sound, SIGSIS is
complete and EUF-CMA, and SISn,m,q,γ is hard.

We prove each security property of CTxSIS individually.
We start with the completeness of CTxSIS. The complete-

ness of CTxSIS states that the verification function accepts
correctly generated transactions. Here, we focus on two ver-
ification functions; (1) proof-verification, which checks the
range of the carries, and (2) transaction verification that
checks whether total coin summation is zero or not. We visu-
alize the correctness of CTxSIS in Figure 7.
Lemma 4: CTxSIS of (n,m, q, γ) is resistant to theft if

SIGSIS of (n,m− 3L, q, γ) is EUF-CMA.
Proof: If A steals coins without knowing the secret

mask then we can use A in a simulation to break EUF-CMA
of SIGSIS. Therefore, we claim that CTxSIS is theft resistant
when SIGSIS is EUF-CMA. �

Lemma 5: CTxSIS is computationally hiding when
COMSIS is computationally hiding.

17736 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

Proof: We claim that carry proofs are hiding similar to
the confidential coin bundles since (1) the smallest random
mask τ satisfies the condition; (m − 3L) log(2τ) ≥ 6λ, and
(2) any pair of (Z0,Z1) statistically hides the input carries and
output carries due to the rejection sampling. �

Lemma 6: BreakingCTxSIS’s zero coin generation prop-
erty is computationally infeasible if COINSIS is knowledge
sound, SIGSIS of (n,m − 3L, q, γ) is EUF-CMA, SISppλ is
hard for ppλ = (n,m, q, γ), and ch log(2χ) ≥ 2λ.

Proof: Let there be a p.p.t. algorithm A that breaks the
zero coin generation property when COINSIS is knowledge
sound, and SIGSIS is EUF-CMA. Assume the extractor E of
GameZCG,A

CTx,pp(λ,L)
outputs inputs [vi]

|in|
i=1 and outputs [v′i]

|out|
i=1

such that,
∑|in|

i=1 vi 6=
∑|out|

i=1 v′i.
Here, we assume COINSIS is knowledge sound. We can

replace coin values with their binary forms ([bi]
|in|
i=1 , [b

′
i]
|out|
i=1)

and their real carries (c0, c1),[
in∑
i=1

bi,j+c0,j−2c0,(j+1) 6=
out∑
i=1

b′i,j+c1,j−2c1,(j+1)

]L−1
j=0

(8)

Note that there are two verification steps; checking (1) the
zero coin summation and (2) signature verification. If A
creates a valid transaction then one of the following scenarios
can happen.

1) A commits some other (c′0, c
′

1) 6= (c0, c1) s.t. for all
j ∈ [0,L):

in∑
i=1

bi,j + c′0,j − 2c′0,(j+1) =
out∑
i=1

b′i,j + c
′

1,j − 2c′1,(j+1).

These (c′0, c
′

1) cannot be a pair of binary vectors since
(c0, c1) are the only one binary vector pair that satisfies
Equation (8). Therefore, c′0(c

′

0−1) 6= 0m and/or c′1(c
′

1−

1) 6= 0m. Note that,

x22,iH [0L , (c1(c1 − 1), c0(c0 − 1)),0m−3L]︸ ︷︷ ︸
s6=0m︸ ︷︷ ︸
h

= 0n

due to the carry proof verification (Step 89). Therefore,
x2 = 0ch or h = 0n. Note that s is a solution to the SIS
problem if h = 0n since s ≤ γ .

2) A finds

H


[∑out

i=1 b
′
i,j −

∑in
i=1 bi,j + c1,j − c0,j

−2(c1,(j+1) − 2c0,(j+1))
]L−1
j=0

,0m−L


︸ ︷︷ ︸

=s6=0m

= 0n

due to the signature verification (Step 92). Here,
s 6= 0m is a solution to the SIS problem.

3) A breaks the knowledge soundness of COINSIS.

FIGURE 10. Public parameters for MSIS problem based confidential
transactions.

Hence, we reduce A’s advantage to,

AdvA,carryCTx,pp(λ,L)
≤

[
AdvSIS,Appλ +

1
(2χ)ch

+AdvKS,A
COIN,pp(λ,L)

+ AdvEUF,A
SIG,ppλ

]
.

Considering above scenarios, we claim the advantage is
ε(λ) when SISppλ is hard, and ch log(2χ + 1) ≥ 2λ.
Therefore, we claim that CTxSIS holds zero coin generation
property. �

X. AGGREGABLE CONFIDENTIAL TRANSACTIONS
WITH IDEAL LATTICES
As we saw in CTxSIS, we have to repeat the process multiple
times to reduce the soundness error. Therefore, the overall
size of the coin bundles and carry proofs rapidly increases
with the number of challenges.

As a solution, we introduce a new aggregate confiden-
tial transaction protocol based on the MSIS problem. This
protocol uses a single challenge polynomial chosen from a
large space and does not need to repeat the same process
multiple times. We choose challenge polynomials from CNβ,1
with exactly β number of ±1 and N − β number of zeros.
Therefore, there are

(N
β

)
· 2β possible challenges. We can

achieve a negligible soundness error by setting
(N
β

)
·2β ≥ 22λ

as shown in Step 17 of Figure 10. Other related protocols are
explained in Figure 11, 13, and 15.

This protocol also commits the binary form of the coin
value in confidential coin bundles. Since coin bundles require
range proofs, first, we explain a method to show a bit is
0 or 1 without revealing it. Later we expand this method
for L number of bits. Assume a prover P wants to hide the

VOLUME 10, 2022 17737

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 11. Confidential coin bundles based on MSIS problem.

ith bit bi but wants to prove to a verifier V that bi is definitely
0 or 1. Here, we commit the ith bit as a polynomial of Eb =
[0i−1, bi,0N−i] which we denote as rot(bi, i) through out the
paper (see Figure 11).

The interactive range proof protocol works as follows.
1) First, P chooses a random small polynomial Ea.
2) P computes these commitments;

Eu = commit([Eb, E0], Er) and
Et1 = commit([E0, Earot(2bi − 1, i)], Er1)

with some masks Er, Er1. Then P sends (Eu,Et1) to V .

3) V chooses a random challenge Ex1 and sends to P .
4) P computes Et2 = commit([Ex1Ea, EaEa], Er) with some

mask Er2. Then P sends the commitment Et2 to V .
5) V chooses a random challenge Ex2 and sends to P .
6) P sends Ez = EbEx2 + Ea, ER = Ex2(Ex1Er + Er1)+ Er2 to V .
7) V accepts if

commit([Ex1Ez, Ez(Ez− Ex2rot(1, i))], ER) = Ex2(Ex1u+Et1)+Et2.

If there is Ez = EbEx + Ea for some Ea and challenge Ex, then

Ez(Ez− Exrot(1, i))=Ex2 Eb(Eb− rot(1, i))︸ ︷︷ ︸
0

+ExEarot(2b− 1, i)+EaEa

when b is 0 or 1. Therefore, P can prove that bi is indeed 0 or
1 without revealing bi directly.
We commit the binary form Eb = bin(v) of the coin amount

vwhen v =
∑L−1

i=0 2ibi. First we choose random Eai and create
Ezi = Ex2rot(bi, i) + Eai for each bi. Note that the secure range
for Ez is [−(α − 1), α − 1] to prevent information leakage.
Therefore, we perform rejection sampling for Ez and start over
if Ez is out of the range. To increase the acceptance rate, we use
‘‘lazy sampling’’ where,
• Eai is chosen from [−(α − 1), α − 1]N if bi is 0, and
• Eai is chosen from [−α, α]N if bi is 1.
MSIS confidential transactions contain carry proofs since

confidential coin bundles commit binary forms of the coin
values. These carry proofs commit [c1,j − c0,j − 2(c1,j+1 −
c0,j+1)]Lj=0 when the input carry vector and output carry vec-
tor are c0 and c1, respectively. Therefore, we can check the
summation of inputs and outputs following Equation (1). Not
only that, carry proofs need range proofs to make sure that
carries are binary vectors. For that, we create a single range
proof for both input carries and output carries, which we call
‘‘an aggregated range proof’’. We illustrate the structure of
carry proofs in Figure 13.

The theft resistance of a transaction comes from a multi-
signature. As we explained in Section III, we use the masks
of input commitments, output commitments, input carry com-
mitment, and output commitment (if available) to compute
the secret key of the whole transaction. Since senders and
receivers want to hide their secret keys from each other, they
create partial signatures with rejection sampling. Then they
aggregate all partial signatures to create the multi-signature.
In that way, they can hide their masking keys and yet create
a valid multi-signature.

We state the complete non-interactive confidential coin
bundle protocol in Figure 11 and non-interactive confidential
transaction protocol in Figure 14 and 15. Also, we illustrate
the correctness of the protocol in Figure 12 and Figure 13.
Since our protocols are non-interactive, or the challenges
are computed from a hash function, we can recreate them.
Using this property, we do not include Et2 vectors of both
coin bundles and carry proofs. Instead, we include Ex2 and
recompute Et2. As a result, we can save significant amount of
space, e.g., a vector of Et2 is 9.6 KB while Ex2 is 32 bytes in our
MSIS-CTx implementation. The same technique is used for
signatures as well where we include Ex0, not Ey.

17738 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 12. Coin structure of coin bundle (Ez, Er, Eu,Et1Eu,Et1, , Ex2 = hash(Eu,Et1,Et2)) with its Et2 and Ex1 = hash(Eu,Et1).

FIGURE 13. Carry proof structure of (Ez0, Ez1, Er, Eu,Et1, Ex0 = hash(Epk, Ey), Ex2 = hash(Eu,Et1,Et2, σ)), Eσ, Epk) with (Et2, Ey, Ex1 = hash(Eu,Et1, σ)).

XI. SECURITY PROOFS FOR MSIS PROBLEM
BASED TRANSACTIONS
We start with proving the confidential coin bundles’ security.
Then, we prove the security of confidential transactions.

A. SECURITY OF CONFIDENTIAL COIN BUNDLES
Theorem 8: COINMSIS is complete, binding, hiding, and

knowledge sound if COMMSIS is binding and hiding, and
MSISn,m,q,γ,N is hard.
The completeness of coin bundles states that honestly gen-

erated coin bundles are always valid. In other words, for coin
amounts in [0, 2L), the generation function should output a
coin bundle that will be accepted by the verification function.
We conclude that COIN is complete since the verification is
equivalent to the generation as shown in Figure 12.

Lemma 7: COINMSIS is binding if COMMSIS is binding.
Proof: If there is A that breaks the binding property of

COINMSIS, we can simulate A to break COMMSIS’s binding
property. Hence, we conclude that COINMSIS is binding if
COMMSIS is binding. �

Lemma 8: COINMSIS is computationally hiding if
COMMSIS is computationally hiding.

Proof: We show (1) Ez statistically hides the coin amount,
and (2) (Eu,Et1,Et2) computationally hide their committed
values.

Recall that each ‖Ezi‖ is in [−(α − 1), (α − 1)]N and
‖Ex2‖ = 1. As a result, there exists a valid Eai ∈ [−α, α]N

for any b ∈ [0, 1] because,
• when b = 0: Eai = Ezi ∈ [−α, α]N

• when b = 1: Eai = Ezi − Ex2rot(1, i) ∈ [−α, α]N .
Therefore, we claim Ez statistically hides the coin amount.
Recall that the smallest random mask τ satisfies the con-

dition; (m − 3)N log(2τ) > 6λ. If A breaks the hiding
property then we can simulateA to break the hiding property
of COMMSIS when d = 3. Therefore, we claim COINMSIS

is computationally hiding if COMMSIS is computationally
hiding. �
Lemma 9: Breaking knowledge soundness of COINMSIS

is computationally infeasible if COMMSIS is binding, and
MSISppλ is hard for ppλ = (n,m, q, γ,N).

VOLUME 10, 2022 17739

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 14. Proofs for MSIS problem based aggregate confidential transactions.

17740 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 15. MSIS problem-based aggregate confidential transactions.

Proof: Assume algorithm A wins GameKS,A
COIN,pp(λ,L)

with a non-negligible probability when COMMSIS is binding.
Then A creates a coin bundle for an invalid Eb such that

EH[Ex1
L−1∑
i=0

zi,
L−1∑
i=0

Ezi(Ezi − Ex2rot(1, i)), Er]

= Ex22︸︷︷︸
6=E0

EH [E0,
L−1∑
i=0

rot(bi(bi − 1), i), E0
m−2

]︸ ︷︷ ︸
Es6=E0m︸ ︷︷ ︸
Eh=E0n

+ Ex2Ex1Eu+ Ex2Et1 +Et2.

First, we prove that Ex22 cannot be a zero polynomial because
the first coefficient of Ex22 is always equal to β. Therefore, Eh
should be a zero polynomial. Also, Es is not equal to E0m since
Eb is not a valid binary polynomial. Therefore, Es is a solution
to MSIS problem. We reduce A’s probability of winning

GameKS,A
COIN,pp(λ,L)

to,

AdvKS,A
COIN,pp(λ,L)

≤ AdvMSIS,Appλ + AdvBND,A
COM,pp(λ,3)

after one execution. Finally, we conclude Lemma 9 is valid or
COINMSIS is knowledge sound. �

B. SECURITY PROOFS FOR CONFIDENTIAL
TRANSACTIONS

Theorem 9: CTxMSIS is complete, theft-resistant, hiding,
and provides zero coin generation property if COINMSIS is
complete, binding, hiding, and knowledge sound, SIGMSIS is
complete and EUF-CMA, and MSISn,m,q,γ,N is hard.

First we show that CTx is complete by proving that the
carry proofs’ verification and coin summation verification are
correct. We illustrate the correctness of CTx in Figure 13.

Lemma 10: CTxMSIS of (n,m, q,N , γ) is resistant to
theft if SIGMSIS of (n,m− 3, q,N , γ) is EUF-CMA.

Proof: Suppose A spends the coin bundle after creat-
ing a valid transaction. Then, we can simulate A to break
EUF-CMA of SIGMSIS sinceA creates the signature without
knowing the secret mask. Therefore, we claim that CTx is
theft resistant when SIGMSIS is EUF-CMA. �
Lemma 11: CTxMSIS is computationally hiding when

COMMSIS is computationally hiding.
Proof: Similar to COINMSIS, we claim that carry proofs

are computationally hiding since (1) the smallest random
mask τ satisfies the condition of (m − 3)N log(2τ) ≥ 6λ,
and (2) any pair of (Ez0, Ez1) statistically hides the input carries
and output carries. �

Lemma 12: Breaking CTxMSIS’s zero coin generation
property is computationally infeasible if COINMSIS is knowl-
edge sound, SIGMSIS of (n,m−3, q,N , γ) is EUF-CMA, and
MSISppλ is hard for ppλ = (n,m, q, γ,N).

Proof: Let there be a p.p.t. algorithm A that breaks
the zero coin generation property of GameZCG,A

CTx,pp(λ,L)
when

COINMSIS is knowledge sound, and SIGMSIS is EUF-CMA.
Then A creates valid carry proofs when total inputs are not
equal to total outputs. Assume the extractor E outputs input
coin values [vi]

|in|
i=1 and output coin values [v′i]

|out|
i=1 such

that,

|in|∑
i=1

vi 6=
|out|∑
i=1

v′i.

We can replace the extracted coin values with their binary
forms and real carries; for j ∈ [0,L),

in∑
i=1

bi,j + c0,j − 2c0,(j+1) 6=
out∑
i=1

b′i,j + c1,j − 2c1,(j+1).

(9)

We can reduceA’s advantage to the following three scenarios.

1) Due to the signature verification in Step 91, A finds

H




[out∑
i=1

b′i,j−
in∑
i=1

bi,j+c1,j − c0,j

−2(c1,(j+1)−2c0,(j+1))
]L−1
j=0

0N−L

 , E0m−1


︸ ︷︷ ︸
6=E0

m
(From Equation (9))

= 0n

2) A commits invalid carries (c′0, c
′

1) 6= (c0, c1). Here,
(c′0, c

′

1) cannot be a pair of binary vectors since there
is only one binary vector pair that satisfies Equation 2.

VOLUME 10, 2022 17741

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

From carry proof verification in Step 89, we know that

Ex22 H



E0
L−1∑
i=0

rot
(
c′1,i, i)(rot(c′1,i, i)− rot(1, i)

)
L−1∑
i=0

rot(c′0,i, i)
(
rot(c′0,i, i)− rot(1, i)

)
E0m−3


︸ ︷︷ ︸

6=E0
m︸ ︷︷ ︸

Eh=E0n

=E0
n

(10)

Since Ex22 cannot be a zero polynomial, Eh is E0
n
.

3) A breaks the knowledge soundness of COINMSIS.
In both scenarios, A’s advantage is,

AdvA,carryCTx,pp(λ,L)
≤AdvMSIS,Appλ +AdvKS,A

COIN,pp(λ,L)
+ AdvEUF,A

SIG,ppλ
.

Therefore, we claim that CTxMSIS holds zero coin generation
property when the MSIS problem is hard, and COINMSIS is
knowledge sound. �

XII. TRANSACTION AGGREGATION
This section explains transaction aggregation process for both
CTxSIS and CTxMSIS. Then we prove the security of the
aggregated cash system.

Once the cash system receives a new transaction, it verifies
the transaction. If the transaction is valid, then the inputs are
in the unspent coin table. Next, the cash system removes those
inputs from the unspent coin table and adds new transaction
outputs to the table. Also, the cash system adds the number
of inputs, the number of outputs, and the proof to the header
table. This aggregation preserves cash systems verification
due to Equation (2). We state the transaction aggregation and
the verification of the aggregated cash system in Figure 16.

Let ACS be an aggregable cash system with the
following properties. Here, we consider two tables
(Ucoins,Headers) as a cash system.

Functionality 6: Aggregable Cash System
• ACS.aggregate(pp(λ,L),Ucoins,Headers,tx):
add tx to (Ucoins,Headers) and return the updated
tables.

• ACS.table_ver(pp(λ,L),Ucoins,Headers) : return
1 if the cash system is valid, otherwise 0.

ACS is expected to have these security properties after
the aggregation; completeness, theft resistance, and zero-coin
generation.

The completeness of the aggregate cash system states that
the aggregation of honestly generated transactions always
outputs a valid cash system. Let G be a valid random transac-
tion generator. These transactions can be rewards or spending
of existing unspent coin bundles. We capture the complete-
ness as follows.

FIGURE 16. Transaction aggregation.

Definition 14 (Completeness): ACS is complete if,

Pr
[
random_cash_system(pp(λ,L),t)

]
≥ 1.

Theft resistance of an aggregable cash system ensures that
unspent coin bundles cannot be spent without their secret
masking keys.We allow the adversarial algorithm to generate
the cash system for stronger theft resistance. Then we ask the
algorithm to transfer a coin bundle coin′ to us by comput-
ing a new transaction. In the new transaction, the algorithm
chooses all parameters except the masking key mask′ of
coin′. After adding the transaction, we ask the algorithm to
update the cash system by spending the coin bundle without
mask′. If the updated cash system is valid and the coin bundle
is not in the unspent coin table, the algorithm wins the game.

This strong theft resistance considers a environment where
everyone is dishonest, except the coin bundle’s owner.
By allowing the algorithm to choose parameters for the
transaction, we let the coin sender be dishonest as well,

17742 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 17. The structure of aggregate cash systems; ACSSIS and ACSMSIS.

Functionality 7: Random Cash System Generation
random_cash_system(pp(λ,L),t):
Get any (Ucoins,Headers) such that
ACS.table_ver(pp(λ,L).Ucoins,Headers) = 1 and
T = |Headers|

for i ∈ [0,t]:
txi

$
←− G(pp(λ,L)) s.t. CTx.ver(pp(λ,L),txi) = 1

(Ucoins,Headers) = ACS.aggregate(pp(λ,L),
Ucoins,Headers,tx)

if HeadersT+i 6= tx.proof: return 0
return ACS.table_ver(pp(λ,L),Ucoins,Headers)∧
|Headers|

?
= T+ t

Game 12: Theft Resistance
GameTR,A

ACS,pp(λ,L)
():

(Ucoins,Headers)← Astep1(pp(λ,L))
if ACS.table_ver(pp(λ,L),Ucoins,Headers): return ⊥
// Generate tx with A s.t. coin′ ∈ tx and the masking key
mask′ of coin′ is unknown to A.
(Ucoins,Headers) = ACS.aggregate(pp(λ,L),

Ucoins,Headers,tx)
(Ucoins′,Headers′)←Astep2(pp(λ,L),Ucoins,Headers)

return ACS.table_ver(pp(λ,L),Ucoins′,Headers′)∧
Headers ⊂ Headers′

∧
coin′ 6∈ Ucoins′

because in the real world we cannot expect anyone else to
be honest.

Definition 15 (Theft-Resistance): ACS is theft-resistant
if

AdvTR,A
ACS,pp(λ,L)

= Pr
[
GameTR,A

ACS,pp(λ,L)
()
]
≤ ε(λ).

Game 13: Zero-Coin Generation of Aggregation

GameZCG,A
ACS,pp(λ,L)

():

(Ucoins,Headers)← A(pp(λ,L), S ∈ [0, 2L))
return ACS.table_ver(pp(λ,L),Ucoins,Headers)

∧∑|Ucoins|
i=1 E(Ucoinsi)−S

?
6= 0

Zero-coin generation of cash system states that no
coins can be generated during the transaction aggrega-
tion. Note that the extractor E outputs the coin amount of
the confidential coin bundle. Due to the zero-coin genera-
tion, the extracted unspent coins are equal to the original
supply.

Definition 16 (Zero-Coin Generation of Aggregate
Cash Systems): An aggregate Cash System ensures zero-
coin generation property if

AdvZCG,A
ACS,pp(λ,L)

= Pr
[
GameZCG,A

ACS,pp(λ,L)
()
]
≤ ε(λ).

We state aggregable cash systems ACSSIS and ACSMSIS
that are compatible with CTxSIS and CTxMSIS, respectively,
in Figure 16.

A SECURITY OF AGGREGATE CASH SYSTEMS
Theorem 10: ACSSIS/MSIS are complete, theft resistant,

and provide zero-coin generation property if CTxSIS/MSIS
are complete, theft resistant, and provide zero-coin gener-
ation property, CoinSIS/MSIS are complete, hiding, bind-
ing, and knowledge sound, SIGSIS/MSIS are complete and
EUF-CMA, and SIS/MSIS are hard for (n,m, q, γ) and
(n,m, q,N , γ), respectively.
We prove Theorem 10 by showing the validity of each

security property.

VOLUME 10, 2022 17743

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

Lemma 13: ACSSIS/MSIS are complete if CTxSIS/MSIS
are complete, CoinSIS/MSIS are complete, and SIGSIS/MSIS

are complete.
Proof: We can directly see the completeness of the

aggregable cash systems in Figure 17 due to Equation 2. �
Lemma 14: ACSSIS/MSIS of (n,m, q, γ) and (n,m, q,

N , γ) are theft resistant if CTxSIS/MSIS are theft resistant,
CoinSIS/MSIS are binding, and SIGSIS/MSIS of (n,m −
3L, q, γ) and (n,m− 3, q,N , γ) are EUF-CMA.

Proof: Let there be an algorithm A that wins the theft-
resistance game. Then, we can simulateA to break one of the
above properties. Therefore, we can reduce A’s advantages
such that AdvTR,A

ACSSIS,pp(λ,L)
is,

AdvTR,A
CTxSIS,pp(λ,L)

+ AdvBND,A
COINSIS,pp(λ,L)

+ AdvEUF,A
SIGSIS,ppλ

and AdvTR,A
ACSMSIS,pp(λ,L)

is,

AdvTR,A
CTxMSIS,pp(λ,L)

+ AdvBND,A
COINMSIS,pp(λ,L)

+ AdvEUF,A
SIGMSIS,ppλ

We claim Lemma 14 is true. �
Lemma 15: ACSSIS/MSIS of (n,m, q, γ) and

(n,m, q,N , γ) provide zero-coin generation property
if CTxSIS/MSIS provide zero-coin generation property,
CoinSIS/MSIS are knowledge sound, SIGSIS/MSIS of (n,m−
3L, q, γ) and (n,m − 3, q,N , γ) are EUF-CMA, and
SIS/MSIS are hard.

Proof: Let there be an algorithm A which wins
GameZCG,A

ACS,pp(λ,L)
of ACSSIS/MSIS. Then A creates a cash

system where the extractor E outputs [v]|Ucoins|i=0 such that∑|Ucoins|
i=1 vi 6= S. Since CTxSIS/MSIS provide zero-coin

generation property, CoinSIS/MSIS are knowledge sound, and
SIGSIS/MSIS are EUF-CMA, A finds the followings, for
ACSSIS

H

|Ucoins|∑
i=1

bin(v)− bin(S)

 ,0m−L


︸ ︷︷ ︸
sSIS 6=0m

= 0n,

and for ACSMSIS,

EH

|Ucoins|∑
i=1

bin(v)− bin(S)

 , E0m−1


︸ ︷︷ ︸
EsMSIS 6=E0

m

= E0
n

Here, sSIS and EsMSIS are solutions to SIS/MSIS problems.
Therefore, A’s advantages; AdvZCG,A

ACSSIS,pp(λ,L)
is,

AdvZCG,A
CTxSIS,pp(λ,L)

+ AdvKS,A
COINSIS,pp(λ,L)

+ AdvEUF,A
SIGSIS,ppλ

+AdvSIS,Appλ ,

and AdvZCG,A
ACSMSIS,pp(λ,L)

is,

AdvZCG,A
CTxMSIS,pp(λ,L)

+ AdvKS,A
COINMSIS,pp(λ,L)

+ AdvEUF,A
SIGMSIS,ppλ

+AdvMSISppλ .

Therefore, we claim Lemma 15 is true. �

XIII. IMPLEMENTATION OF MSIS
CONFIDENTIAL TRANSACTIONS
We implement COINMSIS and CTxMSIS protocols using the C
language targeting root Hermite factor δ = 1.004. It is widely
believed that δ ≤ 1.0045 is sufficient to withstand known
attacks of any chosen security level [33] (we chose λ = 128).

We always work with coin values in [0, 264) and polyno-
mial spaceRq = Zq[X]/[X256

+ 1]. We state the parameters
used for the implementation in Table 3. Note that the chal-
lenges are taken from the ‘‘hashing to a ball’’ method where
the hash function is SHAKE-256 [43]. We only use uniform
distributions for secret vectors and do not use any Gaussian
distributions making it easy to secure against side channel
attacks.

We use two polynomial multiplication methods.

1) Generic polynomial multiplication using Number The-
oretic Transform (NTT) on 64 bit signed integers sim-
ilar to [44], and

2) An easy multiplication for polynomial of rot().
Recall that we chose q to have 512-th root of unity13 r

(mod q). Therefore, X256
+ 1 splits into linear factors X − r i

(mod q) with i = 1, 3, 5, .., 511. As a result, Zq[X]/(X −
r i) ∼= Zq (the Chinese remainder theorem). We can easily
transform the polynomials inRq to

∏
i Zq[X]/(X + r i) using

the Fast Fourier Transform (or NTT since our field is finite)
which we denote as,

Ea 7→ (a(r), a(r3), a(r5), .., a(r511))

Rq→
∏
i

Zq[X]/(X + r i)

Since X256
+ 1 = X256

− r256, Zq[X]/[X256
+ 1] is

isomorphic to

Zq[X]/[X128
− r128]× Zq[X]/[X128

+ r128]

Zq[X]/[X128
− r128]× Zq[X]/[X128

− r384].

At this stage, polynomial multiplication is point-wise. Note
that natural NTT implementation does not output a(r)
directly. Therefore, following [45],

NTT(Ea) = (a(rbrv(128+i)), a(−rbrv(128+i)))127i=0

when brv is the bit-reversal algorithm. Now, we can denote
EaEb = NTT−1(NTT(Ea) ◦ NTT(Eb)) where ◦ is the point-wise
multiplication. We use Cooley-Tukey butterflies for the for-
ward transform [46], Gentleman-Sande butterflies for the
inverse-transform [47], andMontgomery point-wisemultipli-
cations [48].

Our second multiplication is for polynomial formed from
rot(). Recall that Ea = rot(j, i) outputs a polynomial such that
Eai = j and other coefficients are zero. Therefore, we simply
multiply all coefficient of Eb by j, change signs of the coeffi-
cients after the ith index, and rotate i times to get EaEb.

13r = 5834101087838.

17744 VOLUME 10, 2022

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

TABLE 3. Concrete parameters.

TABLE 4. Component sizes of MSIS-CTx protocol.

FIGURE 18. Transaction increment with the maximum 2 inputs and
2 outputs.

A. BENCHMARKS
We run benchmarks for different average input and output
rates; [2:2], [2:3], and [2:4] since the statistics show that the
average input and output rate is [2:3]. We uniformly choose
input sizes from [1, x] and output sizes from [1, y] when the
rate is [x : y]. For the benchmarks, we use SQLite3 [49]
as the database of the cash system. When we measure the
size of the cash system, we actually measure the size of the
database. The measured size of the cash system is slightly
higher than the theoretical size due to the identifiers and
index tables used for faster searching. Also, we transfer
2000 coins from the coinbase per 10 transactions. Therefore,
2 million coins circulate in the system at the end of each
benchmark.

First, we check what happens when we limit the max-
imum number of inputs and outputs to 2. We use,
‘‘original transactions’’ for any real transaction with average

FIGURE 19. Size reductions with transaction aggregation.

FIGURE 20. Verification time of aggregated cash systems.

[input:output] proportions. Later we separate them into the
transactions of maximum 2 inputs and 2 outputs which we
call ‘‘LACTX transactions’’. Figure 18 shows the number of
LACTX transactions when the numbers of inputs and outputs
of original transactions are chosen uniformly with average
input and output rates; [2:2], [2:3], and [2:4].

Next, we check the cash systems’ size reductions after the
aggregation. Figure 19 shows the cash systems’ sizes before
and after the transaction aggregation. According to the figure,
we see that all input and output rates have significant size
reductions even if the LACTX transactions are limited to
2 inputs and 2 outputs.

We check the verification times of the aggregated cash
systems. We use an i7-1065G7 CPU @1.30GHz to measure
verification times. From Figure 20, we see that the average
input-output rate affects the verification time. However, the

VOLUME 10, 2022 17745

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

FIGURE 21. Space savings of aggregated cash systems.

verification time is shorter after the aggregation since there
are no spent coin bundles.

Finally, we show the space savings of our aggregate cash
systems for different input and output rates in Figure 21. Here,
space saving is computed as,

spacesaving=
size−aggregated_size

size
×100%

XIV. CONCLUSION
Post-quantum zero-knowledge (PQ-ZK) protocols from lat-
tices have a potential for unrivalled security and privacy, but,
in such massively multi-party systems as cryptocurrencies,
they tend to be less practical than their quantum-vulnerable
discrete-logarithm counterparts. To reconcile the appeal of
post-quantum security and confidentiality with the need for
efficiency and scalability in truly decentralized cash sys-
tems, we introduce two efficient lattice-based aggregable
confidential transaction (CT) protocols that respectively rely
on the (plain) SIS and (ring-like) MSIS lattice problems.
We use them to construct a stateless or histoty-free efficient
blockchain-based cash system, where old coin records can
be safely deleted once spent. Our protocols achieve a higher
efficiency through the use of commitments in binary form,
while retaining the ability to perform correct arithmetic in
zero-knowledge through the judicious use of carries. Our
experiments with our MSIS-based CT implementation show
40%–54% size reductions from ZK transaction aggregation.

REFERENCES
[1] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,

‘‘Evaluating user privacy in bitcoin,’’ in Financial Cryptography and Data
Security, A.-R. Sadeghi, Ed. Berlin, Germany: Springer, 2013, pp. 34–51.

[2] M. Spagnuolo, F. Maggi, and S. Zanero, ‘‘BitIodine: Extracting intelli-
gence from the Bitcoin network,’’ in Financial Cryptography and Data
Security, N. Christin and R. Safavi-Naini, Eds. Berlin, Germany: Springer,
2014, pp. 457–468.

[3] M. Fleder, M. S. Kester, and S. Pillai, ‘‘Bitcoin transaction graph analysis,’’
2015, arXiv:1502.01657.

[4] F. Reid and M. Harrigan, ‘‘An analysis of anonymity in the Bitcoin sys-
tem,’’ in Proc. IEEE 3rd Int. Conf. Privacy, Secur., Risk Trust IEEE 3rd
Int. Conf. Social Comput., 2011, pp. 1318–1326, doi: 10.1109/PASSAT/
SocialCom.2011.79.

[5] J. Herrera-Joancomartí, ‘‘Research and challenges on Bitcoin anonymity,’’
in Data Privacy Management, Autonomous Spontaneous Security, and
Security Assurance, J. Garcia-Alfaro, J. Herrera-Joancomartí, E. Lupu,
J. Posegga, A. Aldini, F. Martinelli, and N. Suri, Eds. Cham, Switzerland:
Springer, 2015, pp. 3–16.

[6] M. C. K. Khalilov and A. Levi, ‘‘A survey on anonymity and privacy in
bitcoin-like digital cash systems,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 3, pp. 2543–2585, 3rd Quart., 2018.

[7] L. Morris, ‘‘Anonymity analysis of cryptocurrencies,’’ M.S. thesis,
Rochester Inst. Technol., Rochester, NY, USA, 2015. [Online]. Available:
https://scholarworks.rit.edu/theses/8616/

[8] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[9] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014.

[10] S. Noether and S. Noether. (2014). Monero is Not That Mysteri-
ous. [Online]. Available: https://web.getmonero.org/ru/resources/research-
lab/pubs/MRL-0003.pdf

[11] I. Miers, C. Garman, M. Green, and A. D. Rubin, ‘‘Zerocoin: Anonymous
distributed e-cash from bitcoin,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 397–411.

[12] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, ‘‘Zerocash: Decentralized anonymous payments from bitcoin,’’
in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 459–474.

[13] M. Divya and N. B. Biradar, ‘‘IOTA-next generation block chain,’’ Int. J.
Eng. Comput. Sci., vol. 7, no. 4, pp. 23823–23826, Apr. 2018.

[14] Bitcoin Wiki. Simplified Payment Verification. Accessed: Nov. 15, 2021.
[Online]. Available: https://en.bitcoinwiki.org/wiki/Simplified_Payment
_Verification

[15] T. E. Jedusor. (2016). MimbleWimble. [Online]. Available: https://docs.
beam.mw/Mimblewimble.pdf

[16] A. Poelstra. (2016). 2016-10-06 (Commit e9f45ec). [Online]. Available:
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[17] G. Fuchsbauer, M. Orrù, and Y. Seurin, ‘‘Aggregate cash systems: A cryp-
tographic investigation of mimblewimble,’’ in Advances in Cryptology—
EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham, Switzerland:
Springer, 2019, pp. 657–689.

[18] J. Alupotha and X. Boyen, ‘‘Origami store: UC-secure foldable datachains
for the quantum era,’’ IEEE Access, vol. 9, pp. 81454–81484, 2021.

[19] S. Noether and A. Mackenzie, ‘‘Ring confidential transactions,’’ Ledger,
vol. 1, pp. 1–18, Dec. 2016.

[20] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, ‘‘RingCT 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain cryp-
tocurrency monero,’’ in Computer Security—ESORICS 2017, S. N. Foley,
D. Gollmann, and E. Snekkenes, Eds. Cham, Switzerland: Springer, 2017,
pp. 456–474.

[21] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu, ‘‘MatRiCT:
Efficient, scalable and post-quantum blockchain confidential transac-
tions protocol,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 567–584.

[22] G. Maxwell. (2015). Confidential Transactions. Accessed: Jan. 9, 2021.
[Online]. Available: https://people.xiph.org/~greg/confidential_values.txt

[23] Inputs Per TX-Daily Median Input Statistics Per Transaction and Block,
Excluding Coinbase Transaction (Miner Reward). Accessed: Jan. 9, 2021.
[Online]. Available: https://bitcoinvisuals.com/chain-input-count-tx

[24] T. P. Pedersen, ‘‘Non-interactive and information-theoretic secure verifi-
able secret sharing,’’ in Advances in Cryptology—CRYPTO ’91, J. Feigen-
baum, Ed. Berlin, Germany: Springer, 1992, pp. 129–140.

[25] H. Zhang, F. Zhang, B. Wei, and Y. Du, ‘‘Implementing confidential trans-
actions with lattice techniques,’’ IET Inf. Secur., vol. 14, no. 1, pp. 30–38,
Jan. 2020.

[26] A. Fiat and A. Shamir, ‘‘How to prove yourself: Practical solutions to iden-
tification and signature problems,’’ in Advances in Cryptology—CRYPTO’
86, A. M. Odlyzko, Ed. Berlin, Germany: Springer, 1987, pp. 186–194.

[27] E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung, ‘‘Design vali-
dations for discrete logarithm based signature schemes,’’ in Public Key
Cryptography, H. Imai and Y. Zheng, Eds. Berlin, Germany: Springer,
2000, pp. 276–292.

17746 VOLUME 10, 2022

http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.79
http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.79

J. Alupotha et al.: Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies

[28] D. Pointcheval and J. Stern, ‘‘Security arguments for digital signatures and
blind signatures,’’ J. Cryptol., vol. 13, no. 3, pp. 361–396, Mar. 2000.

[29] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre, ‘‘From identifi-
cation to signatures via the Fiat-Shamir transform: Minimizing assump-
tions for security and forward-security,’’ in Advances in Cryptology—
EUROCRYPT 2002, L. R. Knudsen, Ed. Berlin, Germany: Springer, 2002,
pp. 418–433.

[30] A. Kawachi, K. Tanaka, and K. Xagawa, ‘‘Concurrently secure identifi-
cation schemes based on the worst-case hardness of lattice problems,’’
in Advances in Cryptology—ASIACRYPT 2008, J. Pieprzyk, Ed. Berlin,
Germany: Springer, 2008, pp. 372–389.

[31] V. Lyubashevsky, ‘‘Lattice-based identification schemes secure under
active attacks,’’ in Public Key Cryptography—PKC 2008, R. Cramer, Ed.
Berlin, Germany: Springer, 2008, pp. 162–179.

[32] V. Lyubashevsky, ‘‘Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures,’’ in Advances in Cryptology—ASIACRYPT
2009, M. Matsui, Ed. Berlin, Germany: Springer, 2009, pp. 598–616.

[33] M. R. Albrecht. LWE Estimator. Accessed: Oct. 22, 2021. [Online]. Avail-
able: https://lwe-estimator.readthedocs.io/en/latest/readme_link.html

[34] T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and
D. Gu, ‘‘RingCT 3.0 for blockchain confidential transaction: Shorter size
and stronger security,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Springer, 2020, pp. 464–483.

[35] J. Alupotha, X. Boyen, and E. Foo, ‘‘Compact multi-party confidential
transactions,’’ in Cryptology and Network Security, S. Krenn, H. Shulman,
and S. Vaudenay, Eds. Cham, Switzerland: Springer, 2020, pp. 430–452.

[36] H. Zhang, F. Zhang, H. Tian, and M. H. Au, ‘‘Anonymous post-quantum
cryptocash,’’ in Financial Cryptography and Data Security, S. Meiklejohn
and K. Sako, Eds. Berlin, Germany: Springer, 2018, pp. 461–479.

[37] W. A. A. Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta,
N. Bhattacharjee, M. H. Au, and J. Cheng, ‘‘Post-quantum one-time
linkable ring signature and application to ring confidential transactions
in blockchain (lattice RingCT v1.0),’’ in Information Security and Pri-
vacy, W. Susilo and G. Yang, Eds. Cham, Switzerland: Springer, 2018,
pp. 558–576.

[38] W. A. Torres, V. Kuchta, R. Steinfeld, A. Sakzad, J. K. Liu, and J. Cheng,
‘‘Lattice RingCT V2.0 with multiple input and multiple output wallets,’’ in
Information Security and Privacy, J. Jang-Jaccard and F. Guo, Eds. Cham,
Switzerland: Springer, 2019, pp. 156–175.

[39] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
‘‘Bulletproofs: Efficient range proofs for confidential transactions,’’ IEEE
Security Privacy, pp. 315–334, 2018, doi: 10.1109/SP.2018.00020.

[40] G. Maxwell and A. Poelstra. (2015). Borromean Ring Signatures.
[Online]. Available: https://raw.githubusercontent.com/Blockstream/
borromean_paper/master/borromean_draft_0.01_34241bb.pdf

[41] A. Poelstra, A. Back, M. Friedenbach, G. Maxwell, and P. Wuille, ‘‘Con-
fidential assets,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Springer, 2018, pp. 43–63.

[42] R. Impagliazzo, L. A. Levin, and M. Luby, ‘‘Pseudo-random generation
from one-way functions,’’ inProc. 21st Annu. ACMSymp. Theory Comput.,
1989, pp. 12–24.

[43] M. Dworkin, ‘‘SHA-3 standard: Permutation-based hash and
extendable-output functions,’’ Federal Inf. Process. Standards, Nat.
Inst. Standards Technol., Gaithersburg, MD, USA, Aug. 2015, doi:
10.6028/NIST.FIPS.202.

[44] PQ-Crystals. (2019). Dilithium Signature Scheme. [Online]. Available:
https://github.com/pq-crystals/dilithium

[45] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, ‘‘Post-quantum key
exchange—A new hope,’’ in Proc. 25th USENIX Secur. Symp. (USENIX
Security), 2016, pp. 327–343.

[46] C. F. Gauss, Nachlass: Theoria Interpolationis Methodo Nova Tractata,
vol. 3. Göttingen, Germany: Koeniglichen Gesellschaft der Wissenchaften
Goettingen, 1866, pp. 265–327.

[47] W. M. Gentleman and G. Sande, ‘‘Fast Fourier transforms: For fun and
profit,’’ in Proc. Fall Joint Comput. Conf., 1966, pp. 563–578.

[48] P. L. Montgomery, ‘‘Modular multiplication without trial division,’’Math.
Comput., vol. 44, no. 170, pp. 519–521, 1985.

[49] SQLite. What is SQLite? Accessed: Sep. 10, 2020. [Online]. Available:
https://sqlite.org

JAYAMINE ALUPOTHA is currently pursuing the
Ph.D. degree in computer sciencewith theQueens-
land University of Technology, Australia. Her
research interest includes cryptography, mainly
blockchain and post-quantum cryptography.

XAVIER BOYEN received the Ph.D. degree from
Stanford University. He is an Associate Profes-
sor at the Queensland University of Technology
(QUT). He is the creator of multiple cryptographic
protocols extensively used in real-world software
and hardware. His research interests include effi-
cient and decentralized cryptography as an enabler
of individual freedoms and privacy, especially
in relation with human limitations. He was the
recipient of multiple awards, the author of about

100 papers with 10,000–20,000 citations, and a Future Fellow of the ARC.

MATTHEW MCKAGUE received the B.Sc. degree
(Hons.) in mathematics from the University of
Regina, Regina, SK, Canada, in 2004, and the
M.Math. and Ph.D. degrees in combinatorics and
optimization from the University of Waterloo,
Waterloo, ON, Canada, in 2005 and 2010, respec-
tively. He was a Research Fellow with the Cen-
tre for Quantum Technologies, Singapore, and a
Lecturer with the Computer Science Department,
University of Otago, Dunedin, New Zealand. He is

currently a Lecturer in cryptography with the Queensland University of
Technology, Brisbane, QLD, Australia.

VOLUME 10, 2022 17747

http://dx.doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.6028/NIST.FIPS.202

