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ABSTRACT The groundbreaking evolution in mobile and wireless communication networks design in
recent years, in combination with the advancement of mobile terminal equipment capabilities, has led in
an exponential growth of mobile internet technologies, and arose an ever-growing demand for innovative
multimedia services. The highly demanding in terms of network resources over-the-top media services,
as well as the emergence of new and complex mobile multimedia services such as video gaming, ultra-high-
definition video, and extended reality, requires the enhancement of end-users’ perceived quality of experience
(QoE). QoE has garnered much research interest in recent years, and has emerged as a key component in
the evaluation of network services and operations. As a result, a QoE-aware network planning approach
is getting increasingly favored, and novel design challenges, such as how to quantify and measure QoE,
have arisen. In this regard, a paradigm shift in network implementations is being envisioned, in which the
focus will be on machine learning (ML) methodologies for developing QoE prediction models, directly
related to end-user’s personalized experience. In this survey, an analysis on application-oriented, ML-based
QoE prediction models for the goal of QoE management for multimedia services is presented. In addition,
an examination of the state-of-the-art ML-based QoE predictive models and some of the innovative
techniques and challenges related to multimedia services quality assessment with focus on extended reality
and video gaming applications are outlined.

INDEX TERMS Extended reality, machine learning, quality of experience (QoE), QoE prediction models,
multimedia services, video streaming, video gaming, virtual reality.

I. INTRODUCTION

Mobile and wireless communication networks have grown
to be among the most noteworthy modern achievements,
revolutionizing the way people communicate and share infor-
mation, and facilitating improvements in every aspect of
everyday life, including education, media and entertain-
ment, entrepreneurship, transportation, healthcare, security
and emergency services, while also positively contributing
to the economic and social growth both for the developed
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and developing countries. The number of mobile terminal
devices has seen exponential increase in recent years, consid-
erably escalating mobile data traffic. In 2015 there were about
7.5 billion mobile subscriptions, overcoming for the first time
the then world’s population of 7.3 billion people [1], and
this number is expected to rise to 8.8 billion subscriptions by
the end of 2026 [2]. Mobile video transmission undisputedly
is one of the critical services of the fifth generation (5G)
of mobile networks, and will be as well for the forthcom-
ing beyond 5G (B5G) era, accounting for the majority of
mobile data traffic. There will be a considerable rise in mobile
internet traffic, with video traffic accounting for 82 percent
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of net consumer traffic by 2022, based on the Cisco Visual
Networking Index projection [3]. As a result, mobile video
transmission constitutes a substantial research field in the
design of wireless communication systems.

The observed growth of multimedia services, owing
mainly to the rising acceptance and practice of video stream-
ing services like Netflix, live TV streaming, or Youtube,
has sparked new revenue opportunities for communication
service providers (CSPs), mobile network operators (MNOs),
and over-the-top (OTT) providers. It has also highlighted new
challenges in terms of operational efficacy, as the provision
of high-quality video to end-users is critical to the long-
term viability of these services [4]. Therefore, the notion
of quality of experience (QoE) has gained prominence, and
enormous exertions from study groups in industry as well in
academia have been invested on offering reliable services,
with enhanced personalized user experience [5]. Assessing
and predicting an end-user’s QoE of a multimedia stream,
is the first step towards optimizing mobile streaming service
delivery and the implementation of efficient QoE manage-
ment. This also allows gaining a deeper understanding of
how network’s technical characteristics that make up quality
of service (QoS), affect service quality as perceived by the
end-users [6]. Nevertheless, ensuring high levels of QoE is
a difficult task due to a variety of factors, such as different
types of terminal devices, varied service demand motifs,
altering media contents, fluctuating broadcast and network
states, and considerable spatial and temporal variance in the
efficiency of the content distribution networks (CDNs) [7].
Extensive research has been conducted in order to improve
the provision of multimedia services and heighten end-user
QoE, with the largely utilized strategies relying on either
quality-based network resource allocation and quality-based
routing, which can be regarded as network optimization pro-
cedures, or client-based adaptive video streaming [8].

The primary target of QoE management is linked with
the optimization of end-user’s QoE, while utilizing network
resources efficiently, upholding at the same time a satisfied
customer base, and averting customer churn. The proper
QoE management for a particular application, requires to
understand and identify a set of influencing factors, both
subjective and objective, under the standpoint of numerous
components in the service supply sequence. The derived QoE
models define the features to be examined and assessed,
with the primary aim to be the development of efficient
QoE optimization techniques that can effectively tackle the
challenges of QoE management [9]. Aside from the chal-
lenges posed on QoE by the mobility and the necessity of
attaining seamless session continuity and seamless horizontal
and vertical handover [10], the unremitting emergence of new
and complex mobile multimedia services, including 3D video
streaming [11], [12], video gaming, ultra-high definition
(UHD) video, augmented reality (AR), virtual reality (VR)
and mixed reality (MR), introduces additional complexity to
the QoE provisioning procedure [13]. Limitations deriving
from both terminal equipment capabilities and transmission
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channel characteristics, have as well a clear influence on the
QoE perception of the end-user within the context of wire-
less communication systems [14]. Therefore, there is a need
for developing reliable and accurate QoE models in order
to appropriately estimate end-user’s QoE, and implement
QoE-aware network control and management. Models with
that competence typically factor into the equation numerous
network and application level QoS parameters, with the target
of predicting end-user’s QoE by associating these parameters
with QoE influencing factors [15].

The procedure of QoE management can be divided within
three main stages as follows: understanding and modeling
QoE, monitoring and estimating QoE, and adapting and con-
trolling QoE [16]. Typically, QoE management relies on sub-
jective evaluation and deterministic adaptation. In subjective
methods, a preset group of end-users score the incoming
multimedia streaming using the mean opinion score (MOS)
scale [17]. The MNO would monitor user feedback and pro-
gressively adjust the service to the needs of the users. The
drawback of subjective methods is that they are costly, time
consuming and laborious, and can only be conducted offline,
because of the time necessary for the subjective evaluations
and network adjustments. Objective methods on the other
hand, utilize QoE models with a large number of charac-
teristics to predict users’ QoE, with the majority of extant
assessments relying on three major classification methods:
the psychophysical approach, the reference-based algorithm,
and the input data-based algorithm [18], [19]. Nevertheless,
as the volume and diversity of multimedia streaming services
grows exponentially, terminal equipment and network states
necessitate real-time, precise, and adaptive QoE manage-
ment. As a result, the typical techniques of QoE management
become unattainable. To address this, significant research
activity in recent years have adopted the methods of artificial
intelligence (Al) and machine learning (ML) in QoE manage-
ment [20]. ML improves the accuracy of QoE models, aids
in QoE monitoring, and provides a fast optimization feed-
back loop for adaptive streaming applications [21]. Moreover,
ML offers a theoretical and methodological framework for
quantifying the correlation between QoE and QoS [22]. Yet,
selecting the optimal ML model for a particular type of
application is an open research issue in and of itself.

This survey presents an analysis of the most prominent cur-
rent and evolving approaches regarding multimedia services
QoE assessment, and a comprehensive examination of the
state-of-the-art ML-based QoE prediction models. The struc-
ture of the survey is as follows: for the shake of complete-
ness, the QoE definition within the context of multimedia
services and a spherical examination of the QoE influencing
factors are given in Section II. Subsequently, a complete
QoE assessment methodology is presented and includes the
following: 1) gathering, classification and analysis of all
the significant quality metrics with regard to subjective and
objective QoE assessment; 2) examination of the methodolo-
gies for evaluating the QoE metrics’ operation; and 3) anal-
ysis of the mathematical models for QoE/QoS correlation.
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In Section IIT and IV, we define the specific QoE assessment
aspects and offer a thorough analysis of the QoE influ-
encing factors in extended reality and video gaming appli-
cations respectively, underlining the discrimination among
such evolving technologies and conventional video stream-
ing applications. Moreover, in Section V, we stress the sig-
nificance of ML in implementing effective QoE prediction
models, describe the ML methodologies and assay its main
algorithms. Furthermore, in Section VI, we review state-
of-the-art ML-based QoE predictive models and provide a
comparative analysis centering on video streaming, extended
reality and video gaming applications. Finally, Section VII
includes final remarks and conclusions. The main contribu-
tions of this survey can be summarized in the following:
1) according to the best of the authors’ knowledge, this
is the first endeavor to present a complete hands-on guide
on multimedia services QoE assessment that unlike exist-
ing surveys, includes besides conventional video streaming,
extended reality and video gaming applications; and 2) up
to this date, this is the first survey to provide a compara-
tive examination of ML-based QoE prediction models that
focus in particular on extended reality and video gaming
applications.

Il. MULTIMEDIA SERVICES QoE ASSESSMENT
METHODOLOGY

In recent years, QoE has drawn a lot of attention, and has
been recognized as an essential element in evaluating network
operational efficiency. A substantial amount of research effort
has been gone into understanding, measuring, and modeling
QoE for a range of multimedia services. The QoE approach
aims to maximize the perceived user experience while reduc-
ing the impact on network resources, as well as to improve
the level of quality in multimedia services, whilst maintaining
efficient and cost-effective network operations [23].

A. QoE DEFINITION

Quality evaluation has gotten increasingly complicated as
the operational sophistication of services and systems has
increased, owing to the exponentially growth number of fac-
tors involved. Formerly, QoS-centric metrics that consist the
network’s key performance indicators (KPIs), and include
parameters such as throughput, packet loss, latency and jitter,
were widely employed to quantify the degree of satisfac-
tion from a communication service. Since QoS metrics are
not directly and explicitly related to an end-user’s perceived
gratification and overall experience with a service, user-
centric metrics called key quality indicators (KQIs) have
been deployed for the quality evaluation. Thus, QoE is a
subjective indicator that incorporates human parameters, as it
connects customer perception, expectations, and experience,
with application and network efficiency, allowing for a more
holistic understanding of quality as experienced by the end-
users [24]. According to ITU-T [25] and the Qualinet white
paper [17], QoE considers the user’s subjective perception
and expectations toward a given service and may be defined
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as “the degree of delight or annoyance of the user of an appli-
cation or service. It results from the fulfillment of his or her
expectations with respect to the utility and/or enjoyment of
the application or service in the light of the users’ personality
and current state” [17].

B. QOE INFLUENCING FACTORS

QoE influencing factors (IFs) have been described as the
factual condition or adjustment of every feature of a user,
system, service, application, or context, that can affect the
user’s experienced quality [17]. The IFs include, among other
things, the application or service’s type and characteristics,
the usage context, the accomplishment of user’s expectations
for an application or service, the cultural background of the
user, the socioeconomic aspects and psychological portrait of
the user, and finally, the emotional condition of the user [25].
These IFs can be organized in three broad classes, as human-
related, system-related and context-related [17]. In addition, a
content-related IF class was added for video applications [26]
as depicted in Fig. 1.

Human-related IFs refer to any variant attribute of a human
user like motivation, attention level and emotional state,
or any invariant trait such as age, gender, and visual and hear-
ing sharpness. The demographic and socioeconomic context,
the physical and mental constitution, or the emotional state of
the user, may be also described by the human-related IFs [5].

System-related IFs refer to the impact of the parameters
that operate at the technical level. They are linked to proper-
ties such as delay, transmission, packet loss, coding, storage,
video buffering strategies, system hardware, rendering, and
reproduction and display of media, which are linked to the
transmission network, the end-devices, and the application
layer of a communication link [27].

Context-related IFs consider the environmental factors
associated with the user, such as the user’s location, transient
information like mobility, social factors like the presence or
involvement of other individuals, and the purpose of using the
service, such as for entertaining or educational reasons [28].

Content-related IFs consider the video streaming distin-
guishing features, such as the encoding rate, format, resolu-
tion, playback length, video quality, and video age, type and
popularity [26].

C. SUBJECTIVE QoE ASSESSMENT

QoE assessment may be performed using two methods: the
subjective and objective evaluation. Subjective assessment
methodologies rely on receiving information from human
assessors, who are subjected to a variety of tests or stimuli.
Objective assessment models on the contrary, can be seen as
the mean for evaluating QoE based exclusively on objective
quality metrics.

In subjective QoE assessment a group of assessors is
subjected to varying degrees of quality, which result in a
form of explicit or implicit reaction from their side. Usu-
ally, quantitative approaches originating from related disci-
plines, like psychophysics and psychometrics are employed
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FIGURE 1. QoE influencing factors.

to acquire information on evaluators’ ratings, utilizing scores
that characterize their awareness on the degree of quality
they experienced. Furthermore, qualitative approaches like
focus groups, interviews, or profile assessments are employed
as well, particularly to determine which IFs contribute to
QoE, and in what capacity. The subjective evaluations are
usually performed in a controlled laboratory environment,
and need meticulous planning on which variables and IFs
should be included in the procedure of assessing, monitoring
and controlling quality [29]. Typically, the assessors rate a
number of perceived quality aspects on a MOS scale, using a
numeric value ranging from 1 to 5 (i.e., bad to excellent) [30]
as depicted in Table 1, and report their ability to run a service
and their level of satisfaction through survey methods like
interviews, focus groups and questionnaires [31]. The MOS
scale is calculated by averaging the perceptual video quality
ratings acquired from the assessors. In the event of double
stimulus tests, the differential mean opinion score (DMOS)
is utilized, which is determined as the arithmetic difference
between the ratings assigned to the processed video, and the
ratings assigned to the source video. Video services constitute
one of the most challenging QoE assessment, and therefore
several methods were developed to perform subjective eval-
uation of video quality [32]-[35] as they are displayed in
Table 2.

TABLE 1. Mean opinion score scale.

MOS Quality Impairment

5 Excellent Imperceptible

4 Good Perceptible but not annoying
3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying

1) SINGLE SEQUENCE ASSESSMENT

Single stimulus (SS), known also as absolute category rating
(ACR), is a type of class ruling in which test sequences are
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TABLE 2. Subjective assessment metrics.

Assessment Sequence Reference Rating
method type sequence
SS/ACR Single Test sequence Five level
category scale
ACR-HR Single Test & hidden Five level
reference category scale
sequence
DCR/DSIS Double Test & reference  Five level
sequence category scale
DSCQS Double Test & reference  Five level
sequence category scale
PC Double Test & reference  Five level
sequence category scale
SAMVIQ Multiple Test sequence Continuous
scale
SSCOE Single, long Test sequence Continuous
sequence scale
SDSCE Double, long  Test & reference  Continuous
sequence sequence scale

displayed one at a time and scored independently on a five-
level class scale. According to this approach, following each
display, the assessors are requested to rate the quality of
the delivered content. The required number of replications is
specified by recreating the identical test settings at different
point of times in the test.

Absolute category rating-hidden reference (ACR-HR), is a
method of class ruling in which test sequences are shown one
at a time and assessed independently on a class scale. A ref-
erence version of every test, which is called hidden reference
condition, need to be included and displayed in the current
test process, along with the rest test stimulus. A DMOS scale
will be calculated throughout the data analysis on each test
sequence and its corresponding reference, which is referred
to as hidden reference. The ACR-HR approach should be
used only with reference video that an expert deems to be
of “good” or “excellent” quality on the five-level category
scale, and it may not be appropriate for analyzing uncommon
impairments that occur in the first and final second of the
video sequence.

2) DOUBLE SEQUENCE ASSESSMENT

Degradation category rating (DCR), known as well as dou-
ble stimulus impairment scale (DSIS), specifies that the test
sequences are delivered in pairs, with the initial stimulus
always be the source reference, whereas the second one to be
the same source channeled through the system under evalua-
tion. After viewing these two sequences on each session, the
assessors provide a subjective judgment of the impairment
sequence on the five-level category scale. The DCR method
may be utilized to assess the accuracy of broadcasting sys-
tems as well as the fidelity of high-quality systems.

Double stimulus continuous quality scale (DSCQS), is
regarded to be very effective in cases where it is not feasible
to obtain test stimulus settings that reflect the complete extent
of quality impairments. This approach is cyclic, in regards

VOLUME 10, 2022



G. Kougioumtzidis et al.: Survey on Multimedia Services QoE Assessment and ML-Based Prediction

IEEE Access

that the assessors are required to evaluate a pair of sequences
from an identical source, one straight from the source, the
other through the system under evaluation and then they are
tasked with evaluating the quality of both. The assessors
are provided with a set of sequence pairs in internally ran-
dom order, as well as random impairments encompassing all
needed combinations, in sessions lasting up to half an hour.
The mean scores for every test condition and test sequence
are evaluated at the end of the sessions.

Pair comparison method (PC) approach indicates that
the test sequences are provided in pairs, with the identical
sequence provided initially via the first system under evalua-
tion and then via the next one. The systems under evaluation
(A, B, C, etc.) are commonly brought together in all possible
n(n — 1) arrangements AB, BA, CA, and so on. As a result, all
pairs of sequences should be shown in both potential orders
(e.g., AB, BA). Following every pair, a decision is taken as
to which element in the pair is preferable in the context of
the testing procedure. The number of replications does not
typically need to be addressed for the PC technique, as the
approach itself requires repeated presentation of the same
conditions applied in different sequence pairs.

3) MULTIPLE SEQUENCE ASSESSMENT

Subjective assessment methodology for video quality
(SAMVIQ), is a subjective, non-interactive approach for
assessing the video quality of multimedia applications. This
approach may be used for a variety of applications, including
among others algorithm selection, audiovisual system perfor-
mance ranking, and video quality level evaluation during an
audiovisual connection. A continuous quality scale is used
in this approach, in which each assessor adjusts a slider on
a continuous scale ranging from 0 to 100, which is divided
in five quality levels that are defined in a linear fashion
(excellent, good, fair, poor, bad).

4) LONG SEQUENCE ASSESSMENT

Single stimulus continuous quality evaluation (SSCQE), was
initially intended to undertake time-efficient subjective qual-
ity assessments of digital services, as it eliminates the major-
ity of the challenges experienced when utilizing traditional
double stimulus approaches to evaluate the visual quality
of digital systems. In this approach, the actual quality of
a lengthier sequence is rated continually over time, using
a slider on a scale from 0 to 100. Samples are collected
at regular time intervals, yielding a quality curve over time
rather than individual quality grading.

Simultaneous double stimulus for continuous evaluation
(SDSCE) was designed on the basis of the SSCQE, by apply-
ing minor changes to the way the sequences are presented to
the assessors and the rating scale. According to this method,
a panel of assessors examines a pair of sequences simultane-
ously, one as the reference and the other as the test condition.
Assessors are prompted to score the accuracy of the video
information and the changes between the two sequences,
through moving a slider on a handset-voting device. When
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the fidelity is flawless, the slider should be at the top of the
scale ranging from O to 100, and when the fidelity is minimal,
the slider should be at the lowest end of the scale.

The majority of subjective assessments are carried out
in a laboratory setting. Crowdsourcing environments on the
other hand, are gaining traction among researchers, since
QoE assessment of multimedia applications may be relo-
cated from traditional laboratory conditions to the internet,
providing researchers with a valuable technique for access-
ing a worldwide pool of participants [36]. Consequently,
a diverse and heterogenous set of users, terminal equipment
and software configurations may be taken into consideration,
while assessment may be performed in the assessors’ real-
life surroundings. Shorter turnaround times and decreased
remuneration costs for test volunteers due to the large vol-
ume of participants, are also enticing to researchers [37].
There are already several commercial crowdsourcing systems
accessible to perform online user surveys, including Crowd-
flower, Crowdsource, Microtask, and Amazon Mechanical
Turk [38]. Furthermore, internet-based crowdsourcing plat-
forms like Quadrant of Euphoria [39], crowdMOS [40], and
QualityCrowd [41] demonstrate a methodological technique
to deploying subjective assessments that may be carried out
via a web browser [37]. These systems enable popular crowd-
sourcing platforms and assessment approaches like ACR and
DCR [38].

The subjective assessment approach yields the most reli-
able findings due to direct data collection from end-users. The
major disadvantages of the subjective assessment methods
on the other hand, emanate on the fact that they are costly,
time consuming, unable to be utilized in real time, and not
repeatable. Because of these limitations, a strong motivation
for the deployment of objective methods that predict the
subjective perceived quality based only on physical attributes,
was emerged [24].

D. OBJECTIVE QoE ASSESSMENT

The objective models are described as a method for assessing
subjective quality purely on the basis of objective quality
measurements or indices [42]. Namely, these models are
anticipated to produce an estimation that is close to the rating
acquired by subjective assessment methods. The advantages
of the objective approach are its ease of implementation
and modification, as researchers need only to be concerned
with the measurable QoS factors and related mathematical
models. The disadvantage of the objective assessment lies on
its inaccuracy, as the obtained QoE is merely an approxima-
tion, rather than a precise value of the perceived quality of
the end-user [43]. Over the years, researchers have explored
methodologies and approaches for estimating image, video,
and audio quality as perceived by end-users, and have devoted
significant effort to the creation of metrics and models that
can objectively predict the quality of a multimedia service.
These metrics make use of audio, image, and video features
to estimate the quality, and according to the quantity of source
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information available, they are classified as full reference,
reduced reference, and no-reference [44].

Full reference (FR) metrics have both the reference and the
outcome sequences accessible, and in consequence, compre-
hensive subjective and objective associations of the videos
are possible. Such metrics are appropriate for conventional
broadcasting and television systems [26]. In terms of human
perception accuracy, FR metrics that perform a frame-by-
frame examination between the source and the affected
sequence produce the better outcome. The structural simi-
larities (SSIM) [45], video quality model (VQM) [46], and
peak signal to noise ratio (PSNR) [47], are examples of such
metrics. However, these metrics need access to the source
data and are computationally demanding. As a result, they
are unsuitable for real-time assessment, but preferable for
benchmarking.

Reduced reference (RR) metrics utilize the same group of
features to calculate the reference and outcome sequences.
To get the quality evaluation, only a subset of partial param-
eters from the prototype input and output sequences is
required [48]. These features may be at the application layer,
such as bit-rate and frame-rate, as well as at the network
layer, such as packet loss. RR methods are appropriate for
real-time transport networks with limited computational and
transmission bandwidth. Furthermore, they are well-matched
to conditions in which the prototype input sequence is intri-
cate to transport and store, or when computational power is
constrained [38].

No reference (NR) metrics have only the outcome sequence
supplied and therefore, the quality must be assessed without
reference. The computational requirements of NR methods
are the lightest in comparison with the other methods accom-
panied with efficient time response, but they are unable to
deliver an accurate evaluation along a wide variety of video
conditions [20]. These metrics are more appropriate to online
services where just the outcome sequence is provided to the
end-users. In mobile video streaming services for instance,
it is difficult to discern if the discordance in quality is
attributable to the quality of the reference or the in-between
parts of the communication network [26].

1) APPLICATIONS OF OBJECTIVE QUALITY MODELS
Objective quality evaluation models can be used for a number
of applications, including planning, lab-testing, and monitor-
ing [49].

Planning consists of evaluating the perceived quality of
services provided by networks and systems prior to imple-
mentation. Because it is not employed in a real-time setting,
real-time inputs to the objective model are not necessary.

Lab-testing consists of evaluating the perceived quality of
services of networks and systems in the laboratory, whilst
equipment is being deployed.

Monitoring is the process of evaluating the perceived qual-
ity of services provided by operational networks and systems.
The required information is gathered from the network, and
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analyzed to indicate the impairment of user’s experience
quality.

2) CLASSIFICATION OF OBJECTIVE QUALITY MODELS

Based on the application, objective quality assessment
methodologies as depicted in Table 3 can be divided
into five categories: media-layer models, packet-layer mod-

els, bitstream models, hybrid models, and planning mod-
els [49]-[51]:

TABLE 3. Objective assessment methods.

B::zlglgfy Input information Primary application
Media-layer Media signal Quality benchmarking
Model
Packet-layer Packet header In-service non-
model information intrusive
monitoring
Bitstream model Packet header and In-service non-
payload intrusive
information monitoring
Hybrid model Combination of any In-service non-
intrusive
monitoring
Planning model Quality design Network planning,
parameters terminal/
application
designing

Media-layer models accept as input actual media audio-
visual signals and consider the codec compression and
channel parameters. They estimate QoE using advanced
perceptually-based psychophysical models that compare the
output impaired signal to the input source signal (FR/RR
models), or merely analyze the output impaired signal (NR
model). The main applications of FR models include QoE
evaluation in laboratory settings, like codec comparison and
optimization, because such techniques estimate QoE using
both the impaired received signal and the original source
signal. RR/NR models on the other hand, can be used to
monitor QoE either at the mid-point or end-points of an
internet protocol television (IPTV) framework.

Packet-layer models predict QoE using merely packet
header information. Since they do not parse the packet pay-
load information, it is difficult to add parameters of QoE
linked to media content into such models, even though they
require a relatively modest computational efficiency over-
head. Packet-layer models are mostly utilized as network
probes at network mid-points or end-points.

Bitstream models accept both encoded bitstream informa-
tion and packet header information as input. As a result, these
models may be thought of as a hybrid of packet and media
layer models. Because the bitstream-layer model uses solely
the received packet information of the impaired signal, it may
be utilized to monitor QoE at the mid-point or end-points of
an IPTV framework.
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Hybrid models, as the name indicates, are a mixture of the
aforesaid stated models that employ as much information and
data as possible to estimate QoE.

Planning models comprise the quality planning character-
istics of networks or terminals to determine their input. They
typically necessitate prior understanding of the system under
test. These models can be used for network planning, as well
as terminal and application design.

3) OBJECTIVE QUALITY METRICS

There are several objective quality evaluation methodologies
dedicated in audio, image and video applications that differ in
terms of intricacy, operation, and association with subjective
quality evaluation [19], [29]. The following as shown in
Table 4 are a few of the more representative objective metrics
for multimedia services [38].

TABLE 4. Objective quality assessment metrics.

Metrics Model Basis Prm!ary'
application

PSNR Differentiation of original and Images and
distorted signal video

SSIM Luminance, contrast, and structure Images
comparison

MS-SSIM Weighted comparison of image Images and
characteristics and video luminance video

MPQM Spatio-temporal HVS, contrast Video
sensitivity and masking effect

vQM Structural and temporal parameters, Video
perception-based characteristics

VIF Ratio of distorted image information ~ Images
to reference image information

VSNR Visual masking and summation Images and
approaches video

MOVIE Space-time domain evaluation of Video
spatial distortions and temporal
impairments

VMAF Video quality degradation caused by ~ Video
compression and rescaling

STRRED Computation of the distortion Video
between an impaired and a reference
video sequence

STRREDopt  Computational efficient variant of Video
STRRED

SpEED-QA  Mean-subtracted pixel values of Video
frames and frame difference

NR-P Use of the decoded representation of ~ Video
the video to determine the quality

NR-B Features read from the encoded Video
bitstream

BRISQUE Scene statistics of regionally Images
normalized luminance coefficients

NIQE Quality-aware set of statistical Images
characteristics

PIQE Psychovisually-based fidelity criteria ~ Images

Peak signal to noise ratio (PSNR) is a simple and
widespread objective image and video quality evaluation
method. PSNR assesses the variance among the prototype
and impaired signals, by computing the mean squared error
among the pair of signals, and the ratio among the great-
est potential power of a signal and the power of degrading
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noise [52]. Though PSNR shows a poor connection with
subjective evaluations, and is unsuitable for usage in real-
time [53], it is nonetheless widely employed in video quality
analysis, since it is simple to be calculated and provides an
initial approximation of quality.

Structural similarity index (SSIM), which is commonly uti-
lized for visual quality assessment (VQA), can be described
as a still image sequence quality evaluation methodology that
considers the visual masking phenomena. SSIM, which is
based on the human visual system (HVS) concept, resolves
some of the shortcomings of PSNR, like the responsiveness
to alterations in brightness and contrast [54]. It relates the
impaired video sequence with the source sequence in three
ways: luminance, contrast and structure. These three param-
eters combine to provide the SSIM output. SSIM operation
is more related with subjective QoE assessment, since the
luminance and contrast evaluations are congruent with their
masking effects [55].

Multiscale-SSIM (MS-SSIM) is a broadening of single-
scale SSIM, which was first introduced for still images eval-
uation and then expanded to video. It considers the image
signal’s sampling density, the proximity among the viewer
and the image, and the perceptual capabilities of the viewer’s
HVS [56]. MS-SSIM quantifies the impact of every scale with
variant weights, in order to assess their comparative signifi-
cance. It may as well be used in video applications, by taking
into account the frame-by-frame luminance component of the
video, and computing the average of the frame level quality
ratings [57].

Moving picture quality measure (MPQM) is considered
the main utilized metric for assessing moving picture qual-
ity, through modeling the spatio-temporal HVS framework
and using a filter bank technique. To define visual detec-
tion, it takes into account two aspects of human percep-
tion, the masking effect and the contrast sensitivity. Unlike
SSIM, MPQM assesses the quality of video sequences
rather than single frame pictures, since it incorporates the
effects of network transmission-related parameters on video
quality [58].

Video quality metric (VOM) offers standardized and
non-standardized techniques to evaluating perceived video
quality, by considering temporal as well as structural param-
eters. The implementation of VQM entails collecting char-
acteristics centered on perception, computing video quality
features, and integrating these parameters for creating the
model [46]. Because of the VQM high degree of correla-
tion with subjective assessments from viewers, the Ameri-
can national standards institute (ANSI) has adopted it as a
national standard [59].

Visual information fidelity (VIF), was introduced in the
assessment of still image quality by contrasting two types
of information, including the reference image that goes
straight via the HVS, and the impaired image that ini-
tially goes via the distortion channel. The VIF metric con-
sists of the ratio of the impaired image to reference image
information [60].
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Visual signal-to-noise ratio (VSNR) is a quality evaluation
metric that has been suggested for still images, and has
shown potential effectiveness for evaluating video quality.
It identifies near-threshold and suprathreshold aberrations of
human vision, in order to reduce the suprathreshold issue in
HVS. To validate detectable aberrations, VSNR employs the
visual masking and summation approaches. In the context
of VQA, VSNR is applied frame-by-frame to the luminance
component of the video and calculated as the average of the
frame level ratings [61].

Motion-based video integrity evaluation (MOVIE) identi-
fies video distortion in the space-time domain, instead of
identifying them separately in the space and time domains, by
calculating motion tracks of the video objects and conducting
spatio-temporal evaluations of distortion. It is made up of two
parts: the spatial MOVIE index, that evaluates spatial distor-
tions, and the temporal MOVIE index, that evaluates temporal
impairments. The aggregate of these two indices yields the
concluding MOVIE score for a video sequence [62]. MOVIE
correlates highly with subjective quality assessments, but its
high computing cost prevents it from being employed in real-
time applications [63].

Video multimethod assessment fusion (VMAF) has been
created by the video streaming provider Netflix [64]. The
metric is designed to be as robust as feasible in terms of
association with subjective evaluations across the many types
of material available on Netflix. Its primary focus is on video
quality degradation caused by compression and rescaling.
VMAF generates a quality score by first calculating val-
ues from four different NR and FR measures, which are
then fused into a single quality score using a support vector
regression (SVR) method. The following are the four met-
rics contained in the SVR: i) anti-noise signal-to-noise ratio
(ANSNR); ii) detail loss measure (DLM); iii) VIF; iv) motion
information [64].

Spatio-temporal reduced-reference entropic differencing
(STRRED) computes the distortion between an impaired and
a reference video sequence by constructing a Gaussian scale
mixture (GSM), using the wavelet coefficients of the frames
and frame differences [65]. These GSMs provide an indicator
of each stream’s spatial and temporal information, which
may be compared in terms of entropy to evaluate the quality
deterioration of the distorted stream.

STRREDopt is a computationally efficient variant of
STRRED, in which only the best performing sub band
of STRRED is calculated and utilized for quality assess-
ment [66]. As a result, it is not necessary to calculate the
whole steerable filter bank.

Spatial efficient entropic differencing for quality assess-
ment (SpEED-QA) shares a similar methodology with the
STRRED metric, with the exception that the GSMs are based
on mean-subtracted pixel values of frames and frame differ-
ences instead of wavelet coefficients [66].

Pixel-based methods (NR-P) use the decoded represen-
tation of the video to determine the quality of a received
stream. To estimate video quality, one or more visual and
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temporal artifacts are examined [67]. The following are the
most commonly used features: blurriness, noise, blockiness,
motion intensity (MI), jerkiness, spatial information (SI), and
temporal Information (TT).

Bitstream methods (NR-B) seek to evaluate the received
stream’s quality based on features read from the encoded
bitstream. This typically is accomplished using standard net-
work and encoding techniques. The following are the most
important features: packet loss ratio (PLR), bitrate, framerate
(FR), quantization parameter (QP), scene complexity (SC),
level of motion (LoM) and resolution (Res) [68].

Blind/referenceless image spatial quality evaluator
(BRISQUE), does not calculate distortion-specific character-
istics like ringing, blur, or blocking, but rather employs scene
statistics of regionally normalized luminance coefficients to
assess probable losses of naturalness in the image owing to
the presence of distortions, resulting in a holistic measure of
quality [69]. The inherent characteristics are derived from an
empirical distribution of locally normalized luminance and
outcomes of locally normalized luminance using a spatial
natural scene statistic method.

Natural image quality evaluator (NIQE) relies on the
development of a quality-aware set of statistical character-
istics that stem from a space domain natural scene statistic
(NSS) framework [70]. These characteristics are generated
from a corpus of undistorted natural images. NIQE uses only
quantifiable deviations from statistical regularities seen in
natural images with no training on human-rated distorted
images and no exposure to distorted images.

Psychovisually-based image quality evaluator (PIQE)
assesses picture quality based on two psychovisually-based
fidelity criteria, blockiness and similarity [71]. The blocki-
ness index quantifies the patterned square artifact produced
as a byproduct of JPEG and MPEG lossy discreet cosine
transform (DCT)-based compression method. The similarity
metric evaluates the amount of perceptible detail that remains
after compression. The blockiness and similarity are merged
into a single PIQE index which is used to evaluate quality.

4) OBJECTIVE QUALITY METRICS EVALUATION
The efficacy of objective quality metrics is typically evaluated
with use of the following metrics [50]:

Pearson correlation coefficient (PCC) is defined as the
linear relationship among the projected objective quality and
the subjective MOS scores. It assesses a metric’s prediction
accuracy, namely its ability to predict subjective quality eval-
uations with a limited margin of error. The PCC for N data
pairs (x;, y;), with X and y being the means of the respective
data sets, is provided by:

> (= )i — )
V2 i = 02X (Gi — 3)?

The value of PCC fluctuates between [—1, 1] as follows:
1 signifies full positive linear correlation, O signifies no con-
nection and —1 signifies whole negative linear correlation.

PCC =

€]
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In way to correlate the objective metric quality evaluations to
the subjective quality ratings, the PCC is often computed after
applying a nonlinear regression, using a logistic function.

Spearman rank order correlation coefficient (SROCC) is
the coefficient of correlation among the projected objective
quality and subjective MOS ratings. It assesses a metric’s pro-
jection monotonicity, that is the level to which its projections
coincide with the relative magnitudes of subjective quality
scores. The SROCC is defined as follows:

> X =X —Y)
VX=X =7
where X; and Y; are the xi and yi ranks, respectively. The
midranks are represented by X" and ¥’. SROCC has a value
between [—1, 1], in which 1 indicates that X is a monoton-
ically growing function of ¥ and —1 indicates that X is a
monotonically declining function of Y.

The outlier ratio (OR) is defined as the percentage of pro-
jections that fall outside of a span of &2 times the subjective
outcomes’ standard deviations. It assesses prediction consis-
tency, viz how well the metric pertains projection accuracy.
If N is the whole number of data points and N’ is the number
of determined outliers, the OR is described as follows:

SROCC =

@

N/
OR = —. 3
N 3
Root mean square error (RMSE) for N data points x;, i =
1, ..., N, with X being the mean of the data set, is defined as:

RMSE = ‘/zlv > -0 @)

RMSE reflects the degree of data dispersion, and there-
fore, the smaller the RSME value, the better the prediction
accuracy.

Mean absolute error (MAE) calculates the average degree
of inaccuracies in a series of estimations devoid of taking
into account their direction. It is the average of the absolute
variances among estimation and actual examination of the
test sample, where any distinct variances are given equal
weight [72]. MAE is defined as follows:

J— .
MAE = ~ ijl ly; — ] - Q)

Mean squared error (MSE) is a model assessment metric
that is frequently used with regression models. A model’s
mean squared error with regard to a test set is the average
of the squared prediction errors over all instances in the test
set. The prediction error for an instance is the difference
between the true and predicted values [73]. MSE is defined
as follows:

S0 — AG)?

n

MSE =

(6)

Median absolute error (MedAE) is a metric resistant to
outliers. The loss is computed by averaging the absolute
variances between the target and the prediction. If y is the
projected value of the iy, sample and y; is the actual value,
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then the median absolute error calculated across n samples is
defined as follows [74]:

g ey

MedAE(y, y) = median (|y1 -9

Yn _)A’n|) .

Kendall rank correlation coefficient (KRCC) is a
non-parametric test that determines the level of dependency
between a pair of variables. If we examine two samples, a
and b, each with a sample size of n, the total number of
pairings with a, b is n(n—1) /2. The KRCC value is computed
exploiting the following equation [75]:

= IC—D, 8)
sn(n—1)
where C is the number of concordant pairs, D is the number
of discordant pairs, and || < 1.

R? is a statistical metric in a regression model that deter-
mines how much of the variation in the dependent variable
can be explicated by the independent variable. R? indicates
how well the data fit the regression model. R? is defined as
follows [76]:

5 SSR

RP=1———, 9
SST ©)

where SSR is the residual sum of squares, and SST is the total
sum of squares from the regression.

E. QoE/QoS CORRELATION MODELS
Among the numerous studies on the IFs, considerable
research efforts have concentrated on discovering the correla-
tion between QoS parameters and QoE, with many examples
arguing that a user’s perceived quality is mostly determined
by QoS [44]. Evaluating the association among the parame-
ters of QoS and their individual and mutual effect on QoE,
requires establishing a correlation model between QoE and
QoS. Several correlation models have been suggested in the
literature, with the two more characteristic include: a) the
general models, where QoS is just one component in a series
of QoE determining variables; and b) the particular models,
which examine the impact of QoS parameters on QoE [77].
The concept underlying QoS/QoE mapping is to determine
QokE values from a collection of measurable input parameters.
The objective parameters of QoS refer to the degree of the
service adequacy, and include the network KPIs. QoE can
be derived from these metrics through a QoS/QoE mapping
course that employs suitable mathematical models. However,
subjective user-centric factors that cannot be assessed directly
from the network but might impact the end-user’s overall
experience, are also included in the QoE influencing fac-
tors [78]. Comprehending the correlation among QoS param-
eters that rely on network and QoE as perceived by end-users
is critical in QoE management procedure, particularly for
CSPs having control over network resource scheduling and
supplying processes [9].

Considering that subjective and objective quality indices
often have distinct ranges, an appropriate mapping function
is necessary to convert the objective video quality (VQ) into
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the predicted subjective score (MOSp). Mapping functions
are classified as linear or non-linear. When both objective
and subjective assessments are similarly scaled, an identical
numerical difference correlates to an equal perceived differ-
ence in quality across the entire span, so the linear mapping
function may be utilized [79].

MOSp =a+b-VQ, (10)

where al and a2 parameters may be defined by employ-
ing a linear fit between the VQ values and the associated
MOS scores. Afterwards, in order to assess the objective
metric, MOSp values and predicted scores must be cor-
related mathematically to the actual results. Nonetheless,
objective quality scales are seldom consistent, hence the
linear mapping function may give a downwards evaluation
of overall performance. Nonlinear mapping functions solve
this problem, which is why they are commonly utilized in
most applications. Nonlinear mapping functions typically
provide substantially stronger correlations than their linear
equivalents [24]. Logistic (6), Cubic (7), Exponential (8),
Logarithmic (9) and Power (10) functions are the most often
used mapping functions in the literature. All these different
mapping function types correlate to different QoS and QoE
parameter measurements [79]:

- : (11)
1 +exp[—b - (VO — ¢)]
MOSp =a+b-VQ+c-VQ>+d-VQ, (12)
MOSp = a-exp(b-VQ) + c-exp(d - VQ), (13)
MOSp = a — b |log(VQ)|, (14)
MOSp = a-VQ’ +c. (15)

MOSp =

A number of generic modeling methodologies for the devel-
opment of QoE/QoS correlation models for multimedia ser-
vices may be found through a literature review, including
Choquet integral [80], as well as the widely used exponential
and logarithmic approaches [29].

10X hypothesis is an exponential approach that defines
QoE as a properly parameterized negative exponential func-
tion of an individual QoS degradation parameter. In principle,
QoE is a function of n impact factors L1 <j<n

QoE = &y I, . ..1I,). (16)

IQX hypothesis centers on an individual influence compo-
nent, I = QoS, in effort to obtain the primary correlation
QoE = f(QoS) [81]. At large, the subjective sensibility
of the QoE becomes more acute as the experienced quality
increases. If the QoE is very high, even a minor disruption
will significantly reduce the QoE, but if the QoE is already
low, a new disruption is not felt as strongly. In light of this,
it is inferred that the change in QoE is dependent on the
existing level of QoE, given the same amount of change
in QoS value, but with the opposite sign [44]. Assuming a
linear relationship on the level of QoE, we end up to the
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differential equation:
JdQoE
QoS
The solution to this equation is determined as an exponen-

tial function that represents the IQ hypothesis underlying
relationship:

=~ —(QoE —y). 7)

Q0E = - e P25 4 . (18)

Weber-Fechner Law (WFL) is a logarithmic approach that
marks the beginning of psychophysics as a scientific field.
In principle, the WFL relates the human sensory system’s
perceptual capacities, with the awareness of barely noticeable
variations among two degrees of an evident stimulus. Regard-
ing human senses, such a barely noticeable variation can be
demonstrated as a constant proportion of the initial stimulus
magnitude. Experiments on the sense of touch for example,
have revealed that humans can perceive a rise in the heaviness
of an item in their hands in case it is raised by roughly 3%,
regardless of its absolute value [82]. The differential equation
that expresses this is as follows:

dPerception 1

19)

dStimulus  Stimulus’

Consequently, the resultant mathematical relationship has
logarithmic form, and may be utilized to characterize the
interdependence between stimulus and perception. In the
domain of QoE, common stimuli have been demonstrated to
be most commonly QoS features in the application level, that
are immediately experienced by end-users [83].

1Il. SPECIFIC QoE ASSESSMENT ASPECTS

FOR EXTENDED REALITY

Extended reality (XR) encompasses all real-and-virtual mixed
environments, as well as accompanying human-machine
interactions, enabled by computer technology and wearable
devices. It involves a series of characteristic forms, including
virtual reality, augmented reality, and mixed reality, as well
as the regions interpolated between them [84]. Virtuality
levels may vary from partially sensory inputs, to completely
immersive virtual reality. The expansion of human sensations,
particularly those related to the senses of existence, as repre-
sented by virtual reality, and the development of cognition,
as expressed by augmented reality, is a major element of XR
applications.

A rendered representation of a given visual and audio
scenario is referred to as virtual reality (VR). An observer
or user moving within the application’s limitations, receives
the rendered imitating visual and aural sensory stimuli of the
actual world as naturally as possible. VR applications typi-
cally necessitate the use of a head mounted display (HMD),
to entirely substitute the user’s field of view with a simulated
visual component, as well as the use of headphones, to supply
the user with the associated audio. Moreover, a degree of
head and motion tracking of the user is generally required,
to allow the simulated visual and audio features to be updated,
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ensuring that from the user’s perspective, objects and sound
sources stay consistent with the user’s motions.

When a user is supplied with additional information, arti-
ficially created objects, or content overlaid on their current
environment, this is referred to as augmented reality (AR).
This type of additional information or content typically con-
sists of visual and/or audible features, either by direct obser-
vation of their current environment, without intermediate
sensing, processing, or rendering, or by indirect observation,
by relaying the perception of their potentially enhanced or
processed environment through sensors.

Mixed reality (MR) refers to a more sophisticated version
of AR, in which certain virtual components are integrated into
the physical environment to create the illusion that they are
part of the real scene.

A. IMMERSION AND PRESENCE

Significant concepts used in the context of XR include immer-
sion, which refers to the sensation of being surrounded by
the virtual environment, and presence, which refers to the
sensation of being physically and spatially placed in the
virtual environment [84].

The sense of presence is crucial not only in VR experi-
ences, but also in immersive AR applications. To establish
presence in AR, the virtual content and actual environment
must be seamlessly integrated. Moreover, the virtual content,
such as in VR, must correspond to the user’s expectations.
It is envisaged that users would be unable to distinguish
virtual items from actual objects in truly immersive AR,
and in particular in MR [84]. The awareness for the user is
essential for VR and especially for AR, but also essential is
the awareness for the environment. This involves parameters
such as the safe zone discovery, dynamic obstacle warning,
geometric and semantic environment parsing, environmental
lighting, and world mapping. In the case of AR, the user may
wear a see-through HMD to see 3D computer-generated items
superimposed on its real-world perspective. The see-through
feature may be achieved with either an optical, or a video see-
through HMD [85].

1) COGNITIVE AND PERCEPTIVE PRESENCE
There are two kinds of presence, cognitive and perceptive
presence:

Cognitive presence refers to the degree to which the vir-
tual environment prevails over the actual environment as the
ground for cognition. This only covers the abstract concept of
the virtual environment, not the virtual reality system or the
technology utilized to display it [86].

Perceptive presence refers to the presence of a user’s senses
and it can be achieved with deception of the senses, including
sight, hearing, touch, and smell. In order to attain perceptual
presence, the XR devices are employing positional tracking
based on movement to accomplish deception of the user’s
senses, in particular those related to the audio-visual system.
The system’s objective is to keep the user’s sense of presence
intact [84].
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The illusion of being in a stable spatial place, of self-
embodiment, of physical interaction and of social commu-
nication are all key components of perceptive presence [87].
From a technical standpoint, the most essential component is
the illusion of being in a stable spatial place, which may be
divided into three main categories: visual presence, auditory
presence, and sensory or haptic presence.

2) VISUAL PRESENCE
The formulated technical requirements for visual presence
include parameters like tracking, latency, persistence, reso-
lution and optics [88]:

Tracking requires: 1) 6 degrees of freedom, which enables
tracking of the user’s head in rotational and translational
movements; 2) 360 degrees tracking, which track the
user’s head regardless of the direction the user is facing;
3) sub-centimeter tracking accuracy; 4) quarter-degree-
accurate rotation tracking; 5) no jitter or shaking, as image
on the screen must remain completely steady; 6) suitable
tracking volume for room-scale games and experiences, with
about 2m cubes of area to roam around while still being
monitored, and lower tracking volume for seated games and
experiences; and 7) frequent update rates in order to be able
to operate with the latest XR Viewer Pose.

Latency requires: 1) less than 20ms motion-to-photon
latency, and less than 20ms of overall latency, which is
determined as the time between the head movement and the
change in the display; 2) minimization in the time of pose-
to-render-to-photon, as render to photon should be less than
50ms in order to avoid incorrectly rendered content; 3) fusion
of optical tracking and inertial measurement unit (IMU) data;
4) minimization of the loop including tracker, CPU, GPU, dis-
play, and photons; and 5) minimization of interaction delays
and age of content depending on the application.

Persistence requires: 1) low persistence, in which pixels
turn on and off every 2-3ms to avoid smearing and motion
blur, where pixel persistence is defined as the amount of
time per frame that the display is actually illuminated rather
than black; and 2) 90Hz and beyond display refresh rate to
minimize visible flicker.

Resolution requires: 1) spatial resolution, with no apparent
pixel structure, in which the pixels are not visible, as low res-
olution and low pixels per inch (PPI) can create pixelation and
the users to feel as though they are gazing through a screen
door; and 2) temporal resolution, because regardless the use
of asynchronous time warping, a continuous frame rate of
90Hz or above is needed in order to provide comfortable,
engaging VR that genuinely generates presence.

Optics require: 1) wide field of view (FoV), as the exten-
sion of the observable world at any given moment, with
typically needing 100-110 degrees of FoV; 2) comfortable
eyebox, which is defined as the minimum and maximum
eye-lens distances at which an image may be comfortably
seen via the lenses; and 3) high quality calibration and correc-
tion, with rectification for distortion and chromatic aberration
being an exact match for the lens characteristics.
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TABLE 5. Virtual reality QoE influencing factors.

Human factors

System factors

Context factors

Content-related Media/content- Network/transmission Hardware-related
related -related
Vision and hearing Spatial audio Compression Delay Head-mounted Physical context
display
Simulator sickness Spatial depth (3D) Video Bandwidth Headphones Temporal context
Immersion Spatiotemporal Audio Loss Decoder performance | Social context
complexity

Expectations and Storage and transport Head-tracking Task context
expertise

Bitrate Field of view

Resolution Display resolution

Frame rate Refresh rate

Audio sample rate

Coding delay

B. USER INTERACTION DELAY AND AGE OF CONTENT
Aside from the sense of presence and immersion, the age
of the content and user interaction delay are critical for
both immersive and non-immersive interactive experiences,
namely the set of experiences in which user interaction with
the scene affects its content, as follows [84]:

User interaction delay refers to the time elapsed between
the instant a user action is started and the instant in which the
content creation engine takes this action under consideration.
This is the time period between the instant the user interacts
with the game, and the instant in which the game engine
analyses such a player reaction within the context of gaming.

Age of content refers to the amount of time that elapses
among the time content is generated, and the time it is shown
to the user. Within the context of gaming, this is the time
period between the generation of a video frame from the game
engine, and the moment that this frame is eventually shown
to the player.

Moreover, roundtrip interaction delay is described as the
sum of the user interaction delay and age of content, which is
significant in the case of raster-based split rendering in cloud
gaming applications, where part of the rendering is completed
in an XR server and the service generates a frame buffer as
the rendering outcome of the state of the content. In cloud
gaming applications, the processes of user interaction delay
and age of content listed below, contribute to the roundtrip
interaction delay as follows [84]:

User interaction delay contributes with: 1) capture of user
interaction in game client; 2) delivery of user interaction to
the game engine (network delay); and 3) processing of user
interaction by the game engine/server.

Age of content contributes with: 1) creation of one or sev-
eral video buffers by the game engine/server; 2) encoding of
the video buffers into a video stream frame; 3) delivery of the
video frame to the game client (network delay); 4) decoding
of the video frame by the game client; and 5) presentation of
the video frame to the user (framerate delay).
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C. VIRTUAL REALITY QoOE INFLUENCING FACTORS

VR QoE IFs as shown in Table 5, are categorized as human
influencing factors, system influencing factors (content-
related, media/codec-related, network/transmission-related,

hardware-related), and context influencing factors, as fol-
lows [89]:

1) VIRTUAL REALITY QoE HUMAN INFLUENCING FACTORS
VR QoE human IFs include vision and hearing, simulator
sickness, immersion, and expectations and expertise [89]:

Vision and hearing: in the human eye, visual anomalies
can arise and may have a detrimental impact on the user
experience. Hearing impairments can cause attenuation of
hearing over the whole audible frequency range or at specific
frequencies and effect QoE as well [89].

Simulator sickness: simulator sickness, also known as
cybersickness, virtual reality sickness or visually induced
motion sickness, is caused by visual stimuli and can cause
symptoms such as fatigue, perspiration, vertigo, or nau-
sea [90]. Aside from technical factors, individual factors,
contextual factors and covariate constructs can all have an
effect on the intensity of simulator sickness [91]. The sim-
ulator sickness questionnaire (SSQ), VR sickness predictor
(VRSP), VR sickness assessment (VRSA) and visual com-
fort assessment (VCA) are the most widely used metrics for
measuring simulator sickness.

Immersion: individuals differ in their proclivity to experi-
ence immersion and their level of competence in utilizing VR
equipment [89].

Expectations and expertise: the degree of experience in
utilizing VR systems may influence how capable users are
in using the systems to achieve a certain objective [89].

2) VIRTUAL REALITY QoE SYSTEM INFLUENCING FACTORS
VR QoE system IFs are further categorized in four classes,
namely content-related, media/codec-related, network/
transmission-related and hardware-related, as follows [89]:
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a: CONTENT-RELATED
Spatial audio: spatial audio entails the use of loudspeaker or
headphone-based spatial audio reproduction techniques for
generating the illusion of immersion in VR applications [89].
Spatial depth (3D): stereoscopic video content is based on
the depth-dependent disparity resulting from the two slightly
different perspectives shown to the two eyes [92].
Spatiotemporal complexity: the complexity of a video
image is indicated by spatial perceptual information. The
amount of change in the video image is indicated by temporal
perceptual information. High spatiotemporal complexity may
cause a large level of simulator sickness [93].

b: MEDIA/CODEC-RELATED

Compression: video and audio codecs are employed to com-
press raw scene data so that it may be saved offline or
streamed over a network, therefore preserving bandwidth and
resources [89].

Video: conventional video codecs may be incompatible
for some spatial representations in VR content. New video
coding methods, such as versatile video coding (VVC) are
under development and will greatly enhance the transport
quality [89].

Audio: additional data for user head rotation should be
added where a large number of static points is authored in
order to display a spatial auditory scene compatible with
listener motions. Direct sound, early reflections, and late
reverberation should also all be considered [89].

Storage and transport: a method for encoding 360° movies
while preserving over 80% of the bitrate uses a pyramid
geometry, in which when the viewing direction is changed,
the network condition and the user’s orientation are used to
determine which stream should be fetched [94].

Bitrate: the amount of audio or video bits transferred or
processed per unit of time is referred to as the bitrate. Under
the same encoding conditions, better resolution, higher frame
rates and lower compression typically result in increased
bitrate [89].

Resolution: the quantity of discrete pixels included in video
content that may be depicted in every dimension, is repre-
sented by the video resolution. Because pixels are distributed
in a 360° viewing radius around the viewer, increased resolu-
tion is necessary for VR compared to 2D video [89].

Frame rate: the frame rate is the frequency at which suc-
cessive images, known as frames, are depicted. In a VR con-
tent, the frame rate should be exactly the same as the refresh
rate of the HMD’s display to improve QoE, otherwise it can
cause artefact including frame fluctuation, frame dropouts
and frame manipulation, which produce jerkiness and result
in decreased QoE [95]. In the case of 360° videos, adding
motion interpolation to content with a lower frame rate than
the HMD’s display refresh rate, is an effective way to improve
QoE [96].

Audio sample rate: the number of audio samples conveyed
each second, is known as the sample rate, given in hertz (Hz).
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This element is the same in VR services as it is with regular
streaming services [89].

Coding delay: VR-related applications need very extremely
low coding delays. Perceptual thresholds are available for
television broadcasting [97], but VR introduces additional
challenges owing to the immersive experience and sensori-
motor coupling in six degrees of freedom [89].

c: NETWORK/TRANSMISSION-RELATED

Delay: stringent latency constraints are critical in VR applica-
tions for offering a good immersive VR experience. Examples
of delay are queuing delay, over-the-air delay, and buffering
delay. Delay is generally the major cause of excessive motion-
to-photon delay, which causes simulator sickness. It is also
the source of poor presentation quality, such as extended
initial loading delay and stalling [98].

Bandwidth: immersive experiences with VR streaming
environments necessitate a large amount of data. If the needed
bandwidth is not provided, long delays and packet loss can be
created [89].

Loss: the effect of packet loss on the VR experience is
determined by the scheme of transmission. Packet loss in reli-
able transmission methods results in packet retransmissions,
which adds to the total delay. In unreliable transmission,
packet loss may result in the loss of portions of frames or
complete frames, degrading audiovisual quality, which may
be manifested as phenomena such as video freezing and tiling
artefacts [89].

d: HARDWARE-RELATED

Head-mounted display: HMD wearing comfort may have a
significant influence on ultimate VR QoE. To enhance this,
it is critical to take into consideration the device’s weight,
size, heat dissipation, resolution, refresh rate, and so on [89].
Because of the importance of HMD in overall QoE, a com-
plete evaluation framework of these devices must be taken
into account [99].

Headphones: the frequency response of headphones is an
important component in QoE. Neutral headphones or head-
phones with adjusted frequency response may be able to
effectively express the listener’s spatial audio experience.

Decoder performance: the capabilities of the decoder
determine the ultimate resolution of the video to be transmit-
ted and decoded in the display device [89].

Head-tracking: It is critical to acquire user locations and
motion information in order to enable interaction between
users and the environment. This is often accomplished, with
the inertial measurement unit integrated in the HMD [89].

Field of view: FoV is the size of the viewable environment
at any one time. With a broader FoV it is likely to experience
immersion. FoV is the solid angle that a human can see
through the HMD lenses. While a broad FoV might improve
immersion, it can also induce simulator sickness [100].

Display resolution: display resolution is a fundamental
feature of a screen that represents the number of pixels per
inch that a panel can handle [89].
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Refresh rate: the refresh rate is determined as the number
of times per second that a display receives a new image from
the GPU. A decreased refresh rate might contribute to greater
processing delay and VR sickness, which is characterized by
screen glitches [89].

3) VIRTUAL REALITY QoE CONTEXT INFLUENCING FACTORS
VR QoE context IFs include physical context, temporal con-
text, social context, and task context [89]:

Physical context: physical context factors are associated
with the setting in which a user is interacting with VR
services. The user’s experience may be impacted by back-
ground sounds, by whether the HMD device is wireless or
linked to a fixed processing unit, by the ambient temperature
of the room, or by the quantity of sunlight that enters the
environment.

Temporal context: the frequency and duration of usage are
characteristic temporal context factors. A VR device may not
be able to withstand prolonged use, as simulator sickness
symptoms such as dizziness, loss of spatial awareness, nau-
sea, and eye discomfort generally worsen with increased use
duration.

Social context: Considerations such as the popularity of
VR content and how VR services are accessed are examples
of social context variables. Interaction with a group of other
individuals for instance, may have an impact on the user.

Task context: The VR experience is determined by the
user’s intentions for using the VR service. These are known as
task context factors. For instance, the QoE for streaming type
VR, such as 360-degree VR, would be significantly different
for gaming or for social VR.

IV. SPECIFIC QoE ASSESSMENT ASPECTS

FOR VIDEO GAMING

Apart from audio, video, and web browsing, online video
games that operate over IP-based networks, are gaining
increasing attention and popularity. Assessing the QoE of
online gaming applications is a necessary condition for the
management of gaming services [101]. Game providers strive
to enhance their users’ experiences by guaranteeing increased
levels of platform and transmission operation, introduc-
ing novel methods of interaction and also more intriguing
interfaces, or developing innovating game concepts. Video
games can be described as a rule-centered structure with a
changeable and computable after-effect, in which the player
puts effort to affect the outcome and feels emotionally
tied to it, and where the consequences of the action are
negotiated [102].

Video games may be executed on personal computers
(PC games), consoles (console games), mobile devices like
smartphones and tablets (mobile games), and can operate
independently on a device or on a server connected to the
internet (online games). Regarding online games, they can be
divided in instances in which the interface software, interface
device, and backend platform constitute a physical system,
while the game operates in a remote location (multiplayer
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games), or instances in which only the device and inter-
face software constitute the physical system, and the control
execution, game logic, and rendering occur at a remotely
in the cloud (cloud games) [103]. One explanation for the
difficulty in understanding the gaming’s QOE, is attributed in
that video gaming can be seen as an interaction among people
and machines, rather than a mere media provision, therefore
traditional methodologies for measuring transmission effect
on media provision do not apply. Moreover, besides the con-
tent of game, the backend platform on which the game is
built, user interface concerning both hardware and software,
transmission channels involved, and also the user’s attributes,
may all have a major influence on user-perceived QoE.

A. TAXONOMY OF VIDEO GAMING QoE ASPECTS
The taxonomy of QoE aspects include the following [104]:

Aesthetics and appeal: aesthetics relate to the sensory
experience elicited by a system, as well as the degree to
which this experience is consistent with a user’s aims and
attitude. The term “‘system personality” states end-users’
impressions of system attributes generated from technologi-
cal and gameplay aspects. The product’s appearance, physical
qualities, and degree to which it inherits distinctive, unique
and unexpected traits, all add to its attraction.

Interaction quality: the degree to which all functional and
structural components of the game create a positive player
experience is referred to as interaction quality. This definition
takes playability into account as a requirement for positive
player experience, or as a technological and structural foun-
dation for it, but not as directly as the experience of the player.

Playing quality: playability may be thought of as a subset
of playing quality. This is described as a player’s capac-
ity to learn, comprehend, and control a game instinctively.
Usability may not deal with problems such as entertainment,
engagement, or plot, all of which are inextricably linked to
creative as well as technological issues.

Engagement: involvement, immersion, presence, flow, and
absorption, are concepts that outline engaging experiences
when playing video games, as follows: i) involvement is a
mental condition that occurs as a result of the user’s psy-
chophysical state and attention being directed toward a coher-
ent collection of stimuli, substantively connected actions,
or occurrences; ii) immersion is a psychological condition
in which the users perceive themselves to be surrounded by,
considered part, and interconnecting with an environment that
continuously delivers incentives. Immersion is a term used in
video games to characterize a player’s degree of participation,
and it is split into three stages: engagement, engrossment and
total immersion [105]; iii) presence is the mental sensation
of “being there,” conveyed by surroundings that excite con-
sciousness, attracts interest, and promotes direct engagement;
iv) flow is the pleasant feeling that emerges as a consequence
of an adequate equilibrium of obstacles and abilities in a
target-oriented setting, as well as the satisfaction of the need
for competence. It is a unique feeling that results from the
accomplishment of a certain objective [106]; and v) cognitive
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TABLE 6. Video gaming QoE influencing factors.

Human factors

System factors

Context factors

Game-related Playing device- Network/transmissi Compression-related
related on-related
Experience Game genre Device portability Delay Frame rate Physical
environment factors
Intrinsic and extrinsic | Game mechanics and Handheld device size | Jitter Resolution Social context
motivation rules
Static and dynamic Temporal and spatial Input modalities Bandwidth Rate controller modes Service factors
human factors accuracy
Human vision Temporal and spatial Output modalities Packet loss Group of pictures Novelty

video complexity

Pace Display

Visual perspective of
the player

Aesthetics and design
characteristics
Learning difficulty

Motion range search

Audio compression

absorption is a broad term that refers to intense engagement
with a game. It is founded on the following interconnected
ideas: the absorption as a personality characteristic, flow
condition and cognitive engagement as a concept [107].

Positive and negative effect: positive effects can take vari-
ous forms, and they are typically the objective of any gaming
activity. This definition of fun associates positive emotions
such as joy, involvement, satisfaction, enthusiasm, amuse-
ment, fulfillment, euphoria, enthusiasm, and material exper-
tise. Frustration and boredom on the other hand might be
considered negative effects.

Player experience: player experience describes the degree
of joy or exacerbation felt by the player after the gaming
session. It includes intensity, immersion, favorable and unfa-
vorable consequences, difficulty, ability, and flow.

Acceptability: acceptability, defines how readily the sys-
tem is used by a user. A purely economic metric that com-
pares the number of prospective users with the size of
the target group may indicate acceptability. Acceptability
is impacted by prices, accessibility, player experience, and
service conditions.

B. VIDEO GAMING QoE INFLUENCING FACTORS

Video gaming QoE IFs as shown in Table 6, are categorized
as human influencing factors, system influencing factors
(game-related, playing device-related, network/transmission-
related, compression-related) and context influencing factors,
as follows [108]:

1) VIDEO GAMING QoE HUMAN INFLUENCING FACTORS
Video gaming human IFs include experience, intrinsic and
extrinsic motivation, static and dynamic human factors, and
human vision [108]:

Experience: experience with gaming in general, is used to
differentiate user groups on the basis of an average time spent
playing or encountering a particular game or game genre.
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These attributes are linked and vary dynamically with the
competency of the user [108].

Intrinsic and extrinsic motivation: since the wide variety of
available gaming types provide various kinds of enjoyment as
well as incentives in engaging with them, intrinsic and extrin-
sic motivation can have a noteworthy effect on QoE [109].

Static and dynamic human factors: static human factors
refer to a player’s static attributes like age, gender and mother
tongue, whereas dynamic human factors are emotional, like
tedium, diversion, interest, and so forth [108].

Human vision: the properties of the visual stimuli influ-
ence the visual perception. The susceptibility of a user to
video/network abnormalities varies depending on the per-
son. Sensitivity to frame rate as an encoding parameter, for
instance, is determined by the user’s critical flicker fusion
threshold [110].

2) VIDEO GAMING QoE SYSTEM INFLUENCING FACTORS
Video gaming QoE system IFs are further categorized in
four classes, namely game-related, playing device-related,

network/transmission-related, and compression-related, as
follows [108]:

a: GAME-RELATED

Game genre: in the experimental design, genre classification
may be employed as a basic criteria of content selection.
Although various game interactions can be components of a
specific game genre, the game itself is not adequate to define
the game’s susceptibility to technological factors [108].

Game mechanics and rules: game mechanics and rules
have a major bearing and decide on the results of the game,
being unique for any game [108].

Temporal and spatial accuracy: the time necessary to per-
form an action is characterized as temporal accuracy, whereas
the level of accuracy taken to accomplish the interaction
properly, is spatial accuracy [111].
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Temporal and spatial video complexity: video complexity
is essential for streaming services, particularly when taking
into consideration encoding parameters like bitrate. Video
content with high-complexity is more susceptible in the influ-
ence of network factors such as bandwidth, packet loss and
encoding artifacts [108].

Pace: pace relates to the speed of gameplay and must be
viewed as a speed in one game type or one game genre, which
implies that two games with the same temporal complexity
may not have similar paces. Pace should be regarded as an
influencing parameter, particularly when studying temporal
factors like delay and frame rate [108].

Visual perspective of the player: games are categorized
into three types based on the camera’s perspective: first-
person linear perspective, third-person linear perspective and
third-person isometric perspective. In cloud gaming, game
perspectives are highly essential and an interplay with video
coding can be expected [112].

Aesthetics and design characteristics: the game design
that the player experiences is typically defined by design
connoisseurs. There is no established categorization for game
designs, nevertheless they certainly have a major effect on
player experience [113].

Learning difficulty: when aiming for a quick interactive
assessment, the time necessary to acquire knowledge on how
to play a game is a crucial requirement [108].

b: PLAYING DEVICE-RELATED

Portability: the ongoing popularity of portable gaming
devices shows that for a set of users, the value of mobility
exceeds the constraints of a portable device [108].

Size: the dimensions of hand-held equipment have been
found to impact the evaluations of playing test participants.
Unless it is the subject of a research, it should thus stay
consistent [114].

Input modalities: modalities used for gaming input vary
greatly regarding feedback, speed, and precision. Nonethe-
less, various controllers can be used interchangeably, which
will likely impact the game’s experience [108].

Output modalities: the obtainability of output modalities,
as well as their technological characteristics, limit the per-
ceivable experience. Individuals using a VR headset report
better degrees of immersion than users of the identical game
simulation utilizing a traditional 2D screen [115].

Display: the viewing distance, display size, brightness,
contrast, sharpness, screen resolution, refresh rate, and color,
all have a major impact on perceived video quality. If the
frame rate is high, the display size as well as the refresh rate
of the display might result in greater quality [116].

¢: NETWORK/TRANSMISSION-RELATED

Delay: the delay experienced by an end-user relates to the
time elapsed between the execution of user commands and
the appearance of a visible game event. The impact of delay
on QOoE is heavily influenced by game parameters [108].
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Jitter: jitter has a discernible impact on the online and
cloud gaming experiences [117]. Jitter could also cause a less
smooth visual appearance of the game depending on the client
implementation, since frames are shown at fluctuating time
intervals [118].

Bandwidth: the effect of bandwidth constraints on QoE has
been shown to be significant in the context of cloud gam-
ing. Depending on the technique used to overcome restricted
bandwidth, this may result in buffering delay, packet loss, and
video artifacts caused by video compression [119].

Packet loss: packet loss has a substantial effect on QoE in
gaming applications, with values as low as 1% resulting in
a considerable deterioration in end-user’s perceived experi-
ence. Substantial packet loss severely degrades the graphics
quality, resulting in a reduced frame rate and an unsatisfactory
gaming experience [120].

d: COMPRESSION-RELATED

Frame rate: the frame rate has a major effect on a gamer’s
effectiveness, and as a result on QoE. Experiencing the
distinction among significantly high frame rates, is heav-
ily dependent on a gamer’s eye skills, gaming setup, game
features and most notably game pace. When examining the
influence of frame rate on QoE, it is necessary to con-
sider display characteristics like refresh rate, and display
size [108].

Resolution: the encoding resolution, whilst having moder-
ate effect on a gamer’s performance, is a critical parameter
in impacting the quality and performance of video in every
streaming application. Greater resolution is needed for con-
sumers with a broad bandwidth, rather than enhancing other
encoding factors like QP [121].

Rate controller modes: video streaming rates are controlled
using a number of techniques to achieve a specific qual-
ity level with limited bandwidth available. Three types of
rate controllers can be identified: the constant quantization
parameter (CQP); constant rate factor (CRF); and constant
bitrate (CBR) [108].

Group of pictures (GoP): in a video sequence, the GoP
structure defines the alignments of the inter and intra frames
(I, B, and P). The distance between two anchor frames
determines the GoP value. The interval among two I-frames
determines the GoP length, which is designed to mini-
mize propagation error while maintaining video compres-
sion [108].

Motion range search: a motion estimation process effects
coding efficiency and, by extension, the general performance
of a gaming video service. The motion span analysis must
be defined in addition to the motion assessment technique,
depending on the video material [108].

Audio compression: an alike impact with the video com-
pression feature is expected for audio as well. Nevertheless,
unlike video compression, audio compression has not yet
been exposed to equal level of research examination in the
context of cloud gaming [108].
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3) VIDEO GAMING QoE CONTEXT INFLUENCING FACTORS
Video gaming context IFs include physical environment fac-
tors, social context, service factors, and novelty [108]:

Physical environment factors: physical environment fac-
tors include room features such as size, acoustics, and
lighting, as well as usage scenario such as in-house, or
moving [108].

Social context: social context refers to the player’s interac-
tions with other players, possible concurrent operations and
concerns about privacy and security that may be especially
significant in multi-player games [108].

Service factors: customer satisfaction with online game
services is influenced by service factors such as ease of
access, availability, and cost, which is especially likely for
cloud gaming applications [122].

Novelty: novelty indicates that improving user experience
in the introduction of new technology does has an influence
on quality scores, not due to genuine enhancement in learning
or accomplishment, but because of increased interest in new
technologies and services [123].

V. MACHINE LEARNING METHODOLOGIES

ML refers to the domain of computer theory, which allows
algorithms to extract models directly from data without hav-
ing to explicitly construct them, drawing inferences and
estimations from input samples [124]. ML is a branch of
artificial intelligence (AI) that in recent years has seen an
unparalleled rise in its utilization in applications that solve
complex problems and allow automation, across a wide range
of domains, including telecommunication networks. This is
mostly attributed to the massive volumes of available data,
major advancements in ML methods, and latest progress in
the capacity of computational resources. Without a ques-
tion, ML algorithms are being constantly implemented to
provide solutions to a wide range of complex issues in
mobile and wireless communication networks control and
management [125].

ML is utilized in a wide range of computational appli-
cations, when the creation and implementation of efficient
explicit methods is infeasible. ML applications may include
solutions to problems in which traditional approaches require
extensive fine-tuning, or lengthy lists of rules, for which a
single ML algorithm may provide code simplicity and outper-
form the conventional processing techniques. Furthermore,
due to the capacity of ML algorithms to adapt to new data,
ML methods can address a series of highly complicated issues
that lie in fluctuating computational environments, for which
traditional approaches offer no viable solutions, and also to
gain insight about vast volumes of data.

Since there are many different types of ML algorithms, it is
important to categorize them into broad classes, based on:
1) whether they are trained under human supervision and a
learning signal or feedback is available to the learning sys-
tem (supervised, unsupervised, and reinforcement learning);
2) whether they can learn incrementally on the fly (batch and
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online learning); and 3) whether they function by comparing
new data points to known data points, or by identifying pat-
terns in the training data and constructing a prediction model
(instance-based and model-based learning) [126].

A. SUPERVISED LEARNING

In supervised learning (SL) the algorithm supplies examples
of the inputs and their intended outcomes. The intended
answers termed as labels, are part of the algorithm-fueled
training data set. Supervised models train algorithms with
use of a predetermined quantity of labeled data [127]. When
there is input data and an intended label, the algorithm uses
them to compute a label-data pair. The objective is for a
function to be derived that incorporates mappings between
input data and the output labels, using example data-label
pairs as training dataset. In a specific scenario, where the
algorithm only knows a portion of the sample data-label pairs,
and parts of the intended output labels of incoming data are
absent, the related learning model is referred to as semi-
supervised learning [128].

SL models are categorized into two types based on whether
the data they are called upon to evaluate are discrete or
continuous: 1) classification, in which inputs with discrete
values are split into two or more classes, and during training
it is created a model that allocates the unobserved inputs
either to one class in single-label classification mode, or more
classes in multi-label classification mode; and 2) regression,
which aids assessing the correlation between variables with
continuous values, and allows the prediction of an output
variable based on the value of a single or multiple predictor
variables. The main SL algorithms are depicted in Table 7.

TABLE 7. Main supervised learning algorithms.

Method Type
Linear Regression
regression (LR)

Description

Linear model of the connection
between a scalar output and
independent variables

Support vector Classification & A hyperplane or set of
machine Regression hyperplanes constructed in a
(SVM) high-dimensional space
K-nearest Classification & Non-parametric instance-based
neighbors Regression learning approach

(KNN)

Decision trees Classification & Mapping observations to the
(DT) Regression target value

Random forest  Classification & Ensemble of decision trees to
(RF) Regression improve performance

B. UNSUPERVISED LEARNING

In unsupervised learning (UL) the algorithm does not include
any labels, letting the pattern embodied in the input data to
be discovered on its own, as the system attempts to learn
without the assistance of an instructor. Unsupervised models
are employed when it is required from the ML algorithms to
infer a function from unlabeled data, in order to identify their
hidden structure [124]. The accuracy of the structure cannot
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be assessed, since the training samples provided through the
learning process are unlabeled, and therefore, they are not
benchmarked. The problem of density estimation in statistics
is a basic instance of UL, although UL algorithms cover many
additional issues that require the synopsis and elucidation
of significant aspects of the unlabeled data. Because UL is
not hinged on labeled data for training, it is appropriate for
applications where the objective is unknown, or scalability is
critical. The main UL algorithms can be seen in Table 8.

TABLE 8. Main unsupervised learning algorithms.

Method Type Description

K-means Clustering Distance-based clustering

clustering approach

Expectation- Latent Statistical model of a maximum

maximization variable likelihood iterative approach

learning

Principal Latent Orthogonal transformation of

component variable possibly correlated training

analysis learning samples into uncorrelated
variables

Independent Latent Decomposition of multivariate

component variable variables into a series of additive,

analysis learning statistically distinct & non-

Gaussian subcomponents

C. REINFORCEMENT LEARNING

In reinforcement learning (RL) only feedback on the per-
formance of the algorithm in a dynamic setting is provided,
in terms of rewards and penalties. The learning system,
termed as an agent, must then learn for itself the optimal
method, known as a policy, to maximize reward over time.
The RL methodology is based on the area of behaviorist
psychology [124]. In RL models, the agent uses a trial-and-
error method because it lacks a comprehensive model of the
surrounding environment, and so does not know the conse-
quences of an action. The environment alters its condition
and produces reward and punishment information as the agent
performs different actions. The agent subsequently modifies
its actions dynamically in response to the acquired state and
reward, seeking to maximize the benefit of its efforts. The
main RL algorithms are included in Table 9.

D. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) refer to computational
modeling techniques that have gained widespread acceptance
for modeling difficult real-world issues across many fields of
applications. ANNs can be specified as computational struc-
tures made up of densely interlinked fundamental processing
components, known as artificial neurons or nodes, that can
perform huge numbers of parallel computations for imple-
menting data processing and knowledge representation [129].
ANNs resemble the interaction amongst neurons in the
human brain in two ways: 1) the network obtains its knowl-
edge from the environment via a learning process; and 2) the
interneuron connection strengths, namely synaptic weights,
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TABLE 9. Main reinforcement learning algorithms.

Method Type Description
K-armed bandit ~ Model- Mimics a decision-making state where
based rewards are based on a stationary
probability distribution linked with the
actions
Markov Model- Decision-making framework in a
decision based discrete-time stochastic environment of
process Markov state transitions
Temporal- Model- Mix of Monte Carlo techniques and
difference free dynamic programming that gathers
learning knowledge from raw experience
State-action- Model- Updates the Q-function based on
reward-state- free interactions with the environment
action
Q-learning Model- Modifies the Q-function based on the
free maximum reward

are utilized to preserve the acquired knowledge [130]. The
input of each artificial neuron in a typical ANN model is a
real valued signal, and its output is subjected to various non-
linear processes, such as activation functions [131]. In order
to regulate the pace of the learning activity, artificial neurons
and their connections generally utilize a weighting factor.
Furthermore, artificial neurons are arranged in layers, where
different layers transform their inputs in different ways, and
input signals go from the initial to the final layer through a
number of hidden layers.

Deep neural networks (DNNs) are ANNs with multi-
ple hidden layers between the input and the output layers,
opposed to ANNs with only one hidden layer, that are referred
to as shallow ANNs [132]. The main objective of DNNs is to
approximate complicated functions by combining basic and
specified actions of units or neurons. An objective function of
this kind may be of practically any sort, including classifica-
tion, regression, or control. Depending on the model’s struc-
ture, the functions are generally specified by a weighted blend
of a certain collection of hidden units that have a non-linear
activation function. These procedures, adjunct with the units
in the output, are referred to as layers. A DNN learns multiple
levels of representation and abstraction, by modeling high-
level data abstractions via numerous nonlinear transforma-
tions. Recent advances in computational capability, the broad
disposal of data for the training of a DNN, and the advent
of efficient DNN training methods, are the major incentives
that have facilitated the shift from traditional, shallow ANNs
to DNN [131]. The main ANNs algorithms are depicted in
Table 10.

VI. MACHINE LEARNING QoE PREDICTION MODELS

In this section of the survey, we analyze and classify
ML-based QoE prediction approaches. The process of pre-
dicting end-users’ QoE consists the first stage in the optimiza-
tion of the multimedia streaming service provision. What
is more, QoE prediction offers a deeper insight in the way
that the technical parameters of the communication net-
work impact the quality of service as it is perceived by
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TABLE 10. Main artificial neural networks algorithms.

Method Learning type Description

Multilayer Supervised, Data modeling using simple

perceptron unsupervised, correlations

reinforcement

Deep neural Supervised, Modeling of complicated

networks unsupervised, operations using a weighted

(DNNs) reinforcement combination of a set of hidden
levels with a non-linear
activation function

Recurrent Supervised, Modeling of sequential data &

neural networks  unsupervised, dynamic temporal

(RNN) reinforcement characteristics

Random neural Supervised, Modeling of

networks unsupervised, neurons interaction by

reinforcement

exchanging excitatory and
inhibitory spiking signals

Convolutional Supervised, Modeling spatial data &
neural networks  unsupervised, mapping multi-dimensional
(CNN) reinforcement features

Generative Unsupervised Generation of data and
adversarial creation of realistic artifacts
networks from a target distribution
(GANs)

Restricted Unsupervised Probabilistic generative
Boltzmann models that extract features
machines from their input data

(RBMs)

Deep Reinforcement Modeling & controlling
reinforcement high-dimensionality scenarios,
learning under complex, changeable, &

heterogeneous environments

the end-users. The classification of the state-of-the-art pre-
dictive models is application-oriented, as it includes solu-
tions concerning video streaming, virtual reality and video
gaming applications. We provide a thorough comparative
analysis for each application genre, aiming to outline the dis-
tinction between conventional video streaming services and
the emerging virtual reality and video gaming applications,
with regard to the differentiation in the factors that have a
significant influence on QoE, as well as in the metrics used
to evaluate QoE.

A. VIDEO STREAMING

The comparative analysis of QoE prediction models for
video streaming services as it is depicted in Table 11,
includes approaches concerning video streaming applications
of dynamic HTTP (DASH) video, HTTP adaptive stream-
ing (HAS) video, HTTP video, H.264/AVC video, mobile
video, YouTube video, 4K ultra-high definition (UHD) video
and 5G video.

The predictive models for DASH video streaming [133]-
[135] take into consideration the technical characteristics and
network’s conditions that impacting video quality and con-
sequently QoE. The assessment of QoE relies on subjective
metrics such as MOS and ACR [134], [135], as well as objec-
tive metrics including the FR MS-SSIM, the RR STRRED
and the NR NIQE metric [133]. The highest prediction accu-
racy is achieved through the utilization of a model based on a
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combination of RNN and long short-term memory (LSTM)
algorithms [133], which succeeds to reflect the nonlinear-
ity and complicated temporal dependence owing to adaptive
streaming speed adjustments of QoE. In [134], a QoE video
DASH metric approach is presented that relies on three-
dimensional convolutional neural networks (3D CNN) and
LSTM, and utilizes the ridge regression technique to provide
a QoE metric, which dynamically describes the correlation
among the input characteristics vector and the MOS value.
In [135], adaptive bitrate streaming (ABS) algorithms are
analyzed, and an ML model based on decision tree regression
(DTR), multi-linear regression (MLR) and random forest
regression (RFR) is provided to evaluate QoE in DASH video
streaming with respect to network metrics.

In the case of HAS video, the prediction models exam-
ine IFs that derive from end-user’s traffic pattern charac-
teristics [136] and incorporate both forward and backward
dependence of the continuous QoE prediction [137]. The
most accurate model however [138], is an end-to-end and
unified predictive approach based on deep learning (DL) as a
mix of CNN and LSTM that uses the MOS metric to assess
QoE. In [136], the predictive model utilizes three distinct
component selection methods and six different classifiers,
by employing SL techniques, whereas, in [137], the inputs
from perceptual visual quality metrics, rebuffering, and tem-
poral memory-related data are analyzed, with use of bidirec-
tional LSTM (BLSTM). As we can observe in the Table 11,
both the models that employ ANNs methods attain higher
prediction accuracy than the model based on SL algorithms.

For the QOoE prediction in HTTP video streaming,
objectivity-aware and psychology-aware impacting param-
eters are considered [139], and the influence of buffering
and initial delay is examined [140]. Moreover, in [139], the
characteristics of video content, encoding settings, network
transmission metrics, and playout buffer parameters are taken
into account, while in [140], the proposed model demon-
strates that buffering pattern descriptors, particularly those
associated with the occurrence of the last stalling event, have
a clear effect on QoE. Both the approaches use subjective
metrics to assess QoE and are based on SL algorithms. The
model that employs the SVM algorithm achieves high QoE
prediction accuracy, whereas the model based on the M5P
tree model manage to substantially reduce the prediction
errors.

In the QoE prediction for the H.264/AVC video, the mod-
els take under consideration cross-layer, application layer,
video content and terminal equipment features [141], as well
as lossy compression distortion and network transmission
distortion [142]. As we can see in Table 11, these meth-
ods offer similar prediction accuracy, although they rely on
different approaches. Both models use subjective as well
as objective metrics to assess QoE, but the model in [141]
is based on the employment of a feed-forward ANN with
strong approximation capabilities, i.e., the radial function
network (RBFN), whereas, in [142], an SL model based
on DT algorithm is employed, which utilizes a set of basic
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TABLE 11. Comparative table of QoE prediction models for video streaming services.

Application ML technique Influencing factors Assessment Prediction Reference
metrics accuracy
DASH video LSTM Short time subjective quality (STSQ), STRRED, MS-  0.907 to 0.985 [133]
streaming playback indicator (PI), time elapsed since ~ SSIM, NIQE PCC, 0.875 to
last rebuffering 0.971 SROCC
DASH video C3D, LSTM Avg. bitrate, proportion of bitrate, frame MOS 0.9124 PCC, [134]
streaming rate (FPS), avg. playback interruption 0.9170 to 0.9465
length, avg. rebuffering, initial buffering, SROCC
avg. bitrate switching count, variance in
proportion of bitrate
DASH video DTR, multi-linear Round trip time (RTT), throughput, MOS, ACR 72.37 to 87.63% [135]
streaming regression, RFR number of packets per video segment,
rate-based, buffer-based, & hybrid ABS
algorithms, number of stalls
HAS video LR, linear discriminant Bitrate, FPS, resolution (Res), device, ACR 73.5 to 86% [136]
streaming analysis, KNN, DT, application, SI, TI, QP, user profile,
Gaussian naive Bayes, gender, duration
SVM
HAS video BLSTM STSQ, PI, time elapsed since last video STRRED 0.894 PCC, 0.830  [137]
streaming impairment SROCC
HAS video DL as combination of Text, video, categorial information, MOS 88.74% [138]
streaming CNN & LSTM continuous information, sequence data
HTTP video SVM SI, TI, brightness (Br), color information MOS 91.3% [139]
streaming (CI), encoding bitrate (EBR), FPS, Res,
PLR, initial buffering delay, rebuffering
time ratio (RTR)
HTTP video MS5P Stalling patterns, initial playback delay, MOS, DMOS, 25 to 50% [140]
streaming video duration, frames-per-second, content ~ ACR prediction errors
class reduction
H.264/AVC video RBFN Bitrate, FPS, Res, PLR, screen size, SI, T, MOS, PSNR 0.89 PCC, 0.28 [141]
streaming Br, CI RMSE
H.264/AVC video DT Avg. quantization parameter, avg. MOS, SSIM, 88.9 t0 90.5% [142]
streaming bits/pixel in intra frames, avg. bits/pixel in ~ VQM
inter frames, avg. ratio of bits/inter frame
to bits/intra frame in the same pictures set,
% of successfully received slices, % of
correctly decoded frames, avg. burst
length
Mobile video Random neural network Encoder quantization parameter, PLR, MOS, VQM 0.39 RMSE, 0.90 [143]
streaming Mean burst length (MBL), content class R?
Mobile video Multiclass incremental Delay, packet loss, rate, video type, MOS 89% [144]
streaming SVM movement, Res, video size, mean bitrate,
FPS, frame lost, audio rate, audio lost,
buffer time, vlc-catching, starting video
time, lag between image and audio, image
quality, audio quality
Mobile video RF RSSI, RSRP, RSRQ, SSSP, total reference =~ MOS, PSNR 75 to 85% [145]
streaming signal power, CQI, MCS index, CINR,
frame delay, frame skips, blurriness
Mobile video DNN Visual quality, loading, stalling, overall MOS 0.8686 RMSE, [146]
streaming quality, & 89 network parameters of 0.7609 MAE
mobile video transmission
Mobile video TCN Short time subjective quality, PI, number STRRED 0.820 to 0.892 [147]
streaming of rebuffering events, time elapsed since PCC, 0.733 to
the last video impairment 0.885 SROCC,
4.811t06.97
RMSE
Mobile video DL as combination of Video, text, categorical information, MOS, ACR 90.94% [148]
streaming word embedding, C3D continuous values
& representation
learning
Mobile video Hierarchical & K-means Encoding bitrate, PLR, FPS, content MOS, PSNR, 0.215t0 0.251 [149]
streaming clustering classification single stimulus ~ RMSE
impairment
scale (SSIS)
YouTube video KNN, DT, RF Video identifier, video lifetime, upload MOS 0.408 t0 0.712 [150]
streaming time, time between video uploading & RMSE
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TABLE 11. (Continued.) Comparative table of QoE prediction models for video streaming services.

data collection, category description, view
number, favorites count, likes number,
dislikes number, shares number,
discussion density, video total duration

YouTube video BSVR Delay, packet loss, rate, FPS, audio rate, MOS 0.47 RMSE [151]
streaming video size, mean bitrate, Res, audio lost,

frame lost, buffering, vlc-catching, video

type, movement
4K UHD video DL based on CNN Brightness, colorfulness, RMS contrast, MOS 78% [152]
streaming sharpness, image bitrate, resolution, JPEG

compression quality, noise, JPEG artifacts,

aliasing, lens and motion blur, over-

sharpening, wrong exposure, color

fringing, over-saturation
5G video LR, SVR Access node downlink (DL) throughput, MOS 0.1 t0 0.15 MSE [153]
streaming access node uplink (UL) throughput, user

equipment (UE) DL throughput, UE UL
throughput, DL CQI, UL CQI measured at
UE, measured RTT at the UE, Smoothed

RTT using a moving average, statistic

metrics

characteristics extracted from the compressed bitstream and
network to predict QoE.

The prediction models for mobile video stream-
ing [143]-[149] evaluate the impact of cross-layer IFs,
including QoS components from the application layer as well
as the physical layer. In [143], a no reference cross-layer end-
to-end estimation model for mobile video perceptual quality
is presented, based on random neural networks. In [144]
an online QoE prediction model is proposed, capable of
classifying user perception of video streaming services, based
on incremental multiclass SVM (multiclass-iSVM) algo-
rithm, which examines the efficacy of incremental learning
in handling large scale dynamic data and improving QoE
prediction accuracy. In [145], radio measurements of the
wireless communication channel are considered, including
the received signal strength indicator (RSSI), reference signal
received power (RSRP), reference signal received quality
(RSRQ), secondary synchronization signal power (SSSP),
total reference signal power, channel quality indicator (CQI),
modulation coding scheme (MCS) index, and carrier to
interference plus noise ratio (CINR). In [146] a QoE esti-
mation model with large-scale QoE dataset for mobile video
streaming based on DNN is proposed, and is designed to
learn the correlations among network characteristics and
the subjective QOE scores. In [147], CNN-QoE (a model
for continuously prediction of QoE) is proposed, and is
based on temporal convolutional network (TCN). The CNN-
QoE utilizes the benefits of TCN to overcome the computa-
tional complexity limitations of LSTM-based QoE models,
whilst also providing architectural enhancements to increase
QoE prediction accuracy. In [148], DeepQoE (an end-to-end
framework for QoE estimation) is presented. DeepQoE is
based on a combination of DL techniques, including word
embedding, 3D CNN and representation learning. In [149],
a QoE prediction model based on hierarchical and K-means
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clustering algorithms is proposed, which besides QoS param-
eters takes into account the video content classification in
estimating QoE in the case of multipath video streaming
over heterogeneous networks. For the QoE assessment of the
aforementioned models both subjective and objective metrics
are utilized as shown in Table 11. The highest prediction accu-
racy among the ANNs and ML implementations is achieved
with the approach in [148], where word embedding and 3D
CNN are utilized to capture generalized characteristics. These
characteristics are then aggregated and incorporated into a
neural network for representation learning, and subsequently
the learned representation is used as input for classification
or regression operations.

The prediction of YouTube video streaming QoE relies
on quantifying the relationship between social context fac-
tors, user engagement characteristics and QoE [150], together
with evaluating the impact of QoS and quality of applica-
tion (QoA) factors [151]. In [150], the proposed model relies
on boosting support vector regression (BSVR) with the goal
to examine the efficacy of integrating many learners rather
than the traditional individual learner for enhancing QoE
prediction performance. In [151], the prediction model is
based on SL algorithms, aiming to analyze the relationship
between social context factors, user engagement characteris-
tics and QoE, and calculate the end-to-end QoE for a specific
element of user. Both these approaches employ the MOS
metric for the QoE assessment and utilize SL algorithms.
The highest prediction accuracy is achieved through the
combination of KNN, DT and RF algorithms of the model
in [151].

The QoE prediction model [152] for UHD video streaming
takes raw RGB pixel images as input and operates in the
spatial domain. The no-reference image quality assessment
(NR-IQA) model is based on CNNs architecture to classify
the images within the MOS classes.
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TABLE 12. Comparative table of QoE prediction models for extended reality services.

Application ML technique Influencing factors Assessment metrics Prediction Reference
accuracy
3D video streaming ANN with gradient QP, content type, PLR, MBL MOS, VQM 0.008 MSE, 0.92 [154]
decent R?
AR still images Linear regression, EEG MOS, DMOS, ACR-HR, 0.211t00.83 PCC, [155]
overlay bound linear BRISQUE 0.33 to 1.36 MSE,
regression, LR 0.30 to 0.80
MAE, 0.26 to
0.71 MedAE
Stereoscopic videos K-means Depth video histogram, SI & PSNR, SAMVIQ, VQM,  95.4% [156]
clustering TI for the luminance SSIM
component, depth pixels
average time presence
Stereoscopic videos ~ C3D, SVR Automatically captured local ~ MOS, PSNR, SSIM 0.9478 to 0.9503 [157]
spatiotemporal features PLC, 0.9231 to
0.9426 SROCC,
0.7883 to 0.8038
KRCC, 0.3333 to
0.3514 RMSE
Stereoscopic videos ~ CNN Spatiotemporal feature MOS, PSNR, SSIM 0.9301 PCC, [158]
pooling strategy 0.9334 SROCC
Tele-immersive FFNN FPS, perceptual evaluation of CMOS Not specified [159]
applications speech quality,
synchronization, interactivity
VR video streaming ~ DTR Delay, packet loss, TCP K-fold cross-validation Residual error < [160]
throughput, tiling scheme, 0.03922 for over
startup delay, quality level 90% of the cases
(bitrate), quality switches,
stall time
VR 360-degree INN Bandwidth, packet loss, MOS 0.922 PCC [161]
video latency, quality score,
immersion score, non-
spinning sensation score,
global score
VR 360-degree C3D, LSTM User perceived video quality, =~ BBA, BOLA, viewport ~90% [162]
video quality variation within only, viewport plus
viewport, quality variation
across segments, miss ratio,
rebuffering
VR 360-degree LR, ANN based on QP, Res, rendering device, MOS, VRSP, VRSA, 86% [163]
video SGD gender, user's interest, user's VCA
familiarity with VR,
perceptual quality,
cybersickness
VR 360-degree ANN based on SGD  Fast, medium & slow video, MOS, ACR, IPQ, SSQ, 90% [164]
video fixed, horizontal, & vertical VRSP, VRSA, VCA
camera motion, none, single,
& multiple number of
moving targets,
cybersickness, perceptual
quality, presence, stalling
events
VR 360-degree DT Immersion & presence, MOS 91 t0 93% [165]

video

acceptability, reality
judgment, attention
captivated

In the model for 5G video streaming QoE prediction [153],
the network data analytics function links network statistics
with application measurements and the resulting QoE. The
model is based on SL algorithms that utilize the statistical
analysis of network-level characteristics to predict QoE in
terms of MOS scale.

As we can observe in Table 11, the QoE models’ imple-
mentations are almost equally divided between utilizing
ANNs and ML algorithms. The prediction accuracy however

19528

is improved with the use of ANNs and specifically DNNs.
Moreover, the majority of the models utilizes subjective met-
rics for the QoE evaluation and maps QoS characteristics in
QOE values.

B. EXTENDED REALITY

In Table 12 it is depicted the comparative analysis of QoE
prediction models for XR applications. The analysis includes
applications focused on 3D video streaming, AR images,
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stereoscopic videos, tele-immersiveness, VR video streaming
and VR 360-degree video.

The model for 3D video streaming QoE prediction [154]
uses the relations between QoS and QoE so as to map the
parameters that lie in the network statistics and coding in
MOS values. The predictive model evaluates QoE in a mobile
3D video streaming scenario relied on the development of an
ANN with gradient descent optimization algorithm.

In the QoE prediction model for AR still images over-
lay [155], a comparison among user ratings, NR objective
picture quality measurements and the human subject dry elec-
trode electroencephalography (EEG) signals is introduced,
in order to discover significant connections between QoS
inputs and aggregated user ratings as MOS values with regard
to spherical images. The predictive model is based on SL
techniques.

As for the models for QoE prediction for stereoscopic
videos [156]-[158], the stereoscopic video quality assess-
ment (SVQA) evaluates the impact of spatiotemporal param-
eters using both subjective and objective metrics. In [156],
the proposed model is built upon the K-means clustering
algorithm, which employs customized content clustering via
spatiotemporal activity within depth layers, based both on
FR and NR metrics. In [157] a stereoscopic video qual-
ity assessment (SVQA) model is proposed, formed on 3D
CNN and SVR. The model is designed to collect local spa-
tiotemporal information in an automatic manner and take
into account global temporal clues. In [158], a no reference
SVQA technique is developed, relied on an end-to-end dual
stream DNN (EDN). Since the stereoscopic videos contain
left and right views, the EDN consists of two sub-networks
comprising of two CNNs with the same set up and parame-
ters shared between them. The EDN analyzes the perceptual
quality for every image patch pair in the left and right pivotal
frames of the stereoscopic video. Distortion-related and data-
driven features are learnt end-to-end, by integrating multiple
convolutions, max-pooling, and fully-connected layers with
regression in the model’s architecture. Next, a spatiotemporal
pooling method is used on these image patch pairings to
assess the overall stereoscopic video quality. As we can see
in Table 12, although all the approaches achieve prediction
accuracy >90%, the highest value is put through the imple-
mentation of an UL solution [156], which subsequently uses
discriminant analysis (DA) to predict opinion ratings for each
cluster, utilizing video quality metrics such as PSNR.

In the case of QoE prediction for tele-immersive confer-
ence applications, the predictive model [159] embodies the
link among 4-dimensional objective quality metrics and tele-
immersive application QoE, stated with regard to CMOS
values. The suggested model is based on a feed forward neural
network (FFNN).

For the VR video streaming application, PERCEIVE [160]
(a two-stage predictive approach) estimates the perceived
quality of adaptive VR videos as they are streamed over
mobile networks. The predictive model is based on SL
DTR algorithm and provides an estimation of video playout
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performance by utilizing network QoS metrics as predictors.
In a subsequent stage, it models and estimates the end-user
perceived quality using the expected VR video playout per-
formance metrics.

The QoE predictive models for VR 360-degree video appli-
cations [161]-[165], take into consideration the effect of
various parameters on QoE, such as the network transmission
characteristics, the physiological psychology and cognitive
neurology features, the cybersickness, the degree of famil-
iarity with VR and the level of interest in 360 degree video.
In[161], a VR QoE prediction approach incorporating online,
offline and mixed scenarios is proposed. Formed on network
transmission characteristics, this framework creates a subjec-
tive assessment technique and an objective QoE evaluation
model. It uses four dimensions for subjective assessment.
In the objective assessment section, an improved two-step
neural network (INN) algorithm is utilized by combining
physiological psychology and cognitive neurology features.
In VR transmission, this model reflects the inherent con-
nection among the original input network characteristics
and the resulting perception. In [162], the authors propose
Mosaic, which is a new approach that mixes a neural network-
based viewport estimation utilizing 3D CNN and LSTM,
with a rate control system that dispenses rates to distinct
tiles in the 360-degree frame. Mosaic models optimization
as a multi-choice knapsack issue and solves it utilizing a
greedy approach. Moreover, it creates an end-to-end testbed
with standards compliant constituents and takes into account
two cutting-edge algorithms for ordinary nontiled adaptive
video streaming, the buffer-based algorithm (BBA) and buffer
occupancy-based Lyapunov algorithm (BOLA), and two vari-
ants of tiled adaptive video streaming algorithms, i.e., the
viewport only and viewport plus. In [163], a QoE prediction
model for VR 360-degree videos is suggested, which utilizes
the LR algorithm and an ANN based on the stochastic gra-
dient descent (SGD) optimization algorithm. The suggested
model takes into account two key aspects of QoE, the per-
ceptual quality and cybersickness. Furthermore, it offers two
additional QoE-influencing parameters for the QoE evalu-
ation, the degree of familiarity with VR and the level of
interest in 360-degree video. In terms of cybersickness, the
QoE prediction model uses performance comparing methods
including VRSP, VRSA and VCA. In [164], a QoE prediction
method based on ANN optimized with SGD is developed,
which may estimate the level of cybersickness impacted by
360-degree videos under the influence of several stalling
events in VR applications. The cybersickness level is eval-
uating and predicted with the use of metrics such as SSQ,
VRSP, VRSA, and VCA, and the user’s sense of presence
is evaluated with the igroup presence questionnaire (IPQ).
In [165], a QoE estimation method relied on DT algorithm is
presented, which subjectively explore the influence of QoE-
affecting factors in VR 360-degree videos, such as quantiza-
tion parameters (QP), resolutions, initial delay, and different
interruptions. The model predicts the four most significant
VR QoE factors which include immersion, acceptability,
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reality judgment, and attention captivated, based on subjec-
tive data. As we can see in Table 12, the evaluation methods
rely both on subjective and objective metrics, and the imple-
mentations are based on ANNSs as well as SL algorithms. The
highest accuracy is achieved with use of the DT algorithm and
the evaluation of four significant VR QoE factors that include
immersion, acceptability, reality judgment and attention
captivated.

As we can see in Table 12, the majority of the QoE predic-
tion models for extended reality applications utilize ANNs
and in particular DNNs solutions. These implementations
achieve better prediction accuracy values compared with ML
algorithms, with the exception of the utilization of an UL
solution for stereoscopic video applications. Moreover, the
QoE assessment is based on both subjective and objective
metrics, as well as on metrics for the evaluation of simulator
sickness that impacts VR applications.

C. VIDEO GAMING

The Table 13 contains the comparative analysis of QoE pre-
dictive models for video gaming applications. The analysis is
centered on 3D media platform, computer-generated imagery,
gaming video streaming and massively multiplayer online
role-playing games (MMORPGS) applications.

The QoE prediction model [166] for the 3D media plat-
form for interactive multiplayer video games applications
simulates a tele-immersive interactive multiplayer video
game. The monitoring parameters include Prometheus [177]
derived metrics, application-level metrics and MOS values
calculated based on the frame rate and PSNR. The model
implements a cognitive network optimizer (CNO) formu-
lated as an RL agent, based on a set of actual monitoring
factors such as infrastructure, application-level, and QoE
metrics.

For the computer-generated imagery for gaming video
streaming services applications, the QoE prediction
model [167] takes into account the effect of the unique
features of gaming video content when compared to conven-
tional video services, including ultra-high motion, specific
motion patterns, synthetic and repetitive content. The QoE
evaluation is based on the FR VMAF metric as ground truth
and the model’s implementation relies on the utilization of
a CNN.

In the case of gaming video streaming applications, the
QoE predictive models [168]-[175] investigate the impact of
IFs that lie on frame-level such as blur, naturalness, blocki-
ness and complexity, as well as the effect of spatiotemporal
features and psychometric parameters. In [168], NR-GVQM,
a no reference gaming video quality measurement based on
the SVR algorithm is developed. SVR’s training exploits nine
frame-level indexes as input features and VMAF scores as the
ground truth. NR- GVQM offers low complexity as it utilizes
characteristics that can be obtained exclusively in real-time.
In [169], two no reference ML-based lightweight QoE predic-
tion methods for gaming video streaming are proposed, i.e.,
the NR-GVSQI quality index and the NR-GVSQE quality
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estimator. The models’ design is formed on SVR, Gaussian
process regression (GPR), ANN, and RF. Because of their
low intricacy, both models may be utilized as the first stage
of a real-time optimized online gaming QoE management
framework, even on thin clients. In [170], an approach to
increase the video quality on compressed gaming content is
proposed, based on super-resolution generative adversarial
networks (SRGAN), which employs a DNN in conjunction
with an adversarial network to generate better resolution
images. The suggested approach includes a modified loss
function together with changes in the generator network, like
layer levels and skip connections, to enhance the flow of
information in the network, which was proven to considerably
increase perceived quality. In [171], “nofu”, a no reference
lightweight video quality module for gaming content is devel-
oped, based on the RFR algorithm. The suggested method
predicts video quality scores using only the recorded video,
and focuses on features that are easy to calculate. Moreover,
it employs as few features as feasible in order to create a
model capable of making real-time QoE predictions. In [172],
a method to create a CNN-based quality metric to evaluate
the quality of gaming video is proposed. The CNN is trained
using the objective quality model VMAF as ground truth,
and fine-tuned using subjective picture quality evaluations.
What is more, a new temporal pooling approach based on
frame-level predictions is presented to predict gaming video
quality. In [173], a real-time reduced reference gaming video
quality evaluation methodology is proposed. The methodol-
ogy is formed on low-complexity psychometric curve-fitting
approach. The ML techniques that the model utilizes include
DTR and ANNs. The suggested solution chooses the most
relevant objective features with the least amount of com-
plexity. Following that, the link between these features and
the ground-truth quality is modeled using HVS psychomet-
ric perception. In [174], DEMI is presented. This is a QoE
estimation model based on CNN and RF that considers both
gaming and non-gaming videos. In this model, the CNN in
the is trained using an objective metric, allowing the CNN to
learn video artifacts like blurriness and blockiness. Following
that, the model is fine-tuned using blockiness and blurriness
scores from a small image quality dataset. Finally, to esti-
mate video quality, an RF is utilized for pool frame-level
estimations and temporal information of videos. The model’s
low complexity makes it suitable for real-time applications.
In [175], ERAQUE is developed, an efficient hard-rank qual-
ity estimator for gaming video streaming based on CNN.
The estimation model includes a hard pairwise ranking loss,
which allows the model to focus more on distinguishing
alike pairs, as well as an effective adapted model distillation,
which incurs insubstantial performance loss. For the QoE
assessment of the aforementioned models, a combination of
subjective and objective metrics is utilized. As we can observe
in the Table 13, the majority of the approaches use ANNs
implementations and achieve high levels of prediction accu-
racy, but the highest accuracy value was put over through the
use of VMAF scores as ground truth and the implementation
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TABLE 13. Comparative table of QoE prediction models for video gaming services.

Application ML technique Influencing factors Assessment metrics Prediction Reference
accuracy
3D media platform for RL Transmitted network packet MOS, PSNR Not specified [166]
interactive multiplayer loss, received network packet
video games loss, bitrate, bitrate
(aggregated), FPS, FPS
(aggregated), consumed
profile, number of produced
profiles, output data bytes,
working frames per second,
theoretic load percentage
Computer-generated CNN DLM, mean co-located pixel VMAF, VIF 3.11t07.50 [167]
imagery for gaming difference, ANSNR RMSE, 0.937 to
video streaming 0.987 SROCC
services
Gaming video SVR SI, TI, noise, bluriness, MOS, VMAF, 0.89 to 0.98 PCC [168]
streaming Blockiness, contrast BRISQUE, NIQE,
PIQE, PSNR, SSIM,
STRREDOpt,
SpEED-QA
Gaming video SVR, gaussian SI, TI, Res, bitrate, blockiness, =~ VMAF, MOS, 0.905 PCC, 0.913 [169]
streaming process regression, blockloss, blur, contrast, BRISQUE, BIQI, SROCC
ANN, RF exposure, flickering, NIQE, SpEED-QA,
interlacing, noise, slicing, STRRED
spatial activity, temporal
activity
Gaming video SRGAN Blurriness, blockiness MOS, ACR, VMAF, 0.64 to 0.77 PCC [170]
streaming PIQE, NIQE
Gaming video RFR SI, TI, staticness, blockiness, VMAF, BRISQUE, 0.91 to 0.96 PCC, [171]
streaming blockmotion, blurriness, type NIQE, SSIM. PSNR, 0.75 to0 0.82
of motion SpEED-QA, KRCC, 0.91 to
STRRED 0.95 SROCC, 0.22
to 0.42 RMSE
Gaming video CNN Video fragmentation, video MOS, DMOS, ACR, 0.968 SROCC, [172]
streaming unclearness, temporal PSNR, SSIM, 0.30 RMSE
complexity, TI, VMAF, SpEED-QA,
STRREDOpt, PIQE,
BRISQUE, NIQE
Gaming video DTR, ANN SI, TI, SC, level of motion, MOS, ACR, PSNR, 0.953 PCC, 0.004 [173]
streaming blurriness, noise blockiness, SSIM, VQM, VMAF, MSE
jerkiness, motion, SpEED-QA
Gaming video CNN, RF Fragmentation (Blockiness), VMAF, PSNR, 0.93 PCC, 0.92 [174]
streaming Unclearness (Blurriness) SSIM, BRISQUE, SROCC
NIQE, PIQE, ACR,
MOS
Gaming video CNN Bitrate, Res, FPS, duration ACR, MOS, VMAF, 0.964 PCC, 0.964 [175]
streaming PSNR, SSIM, MS- SROCC, 0.843
SSIM KRCC, 2.638
RMSE
MMORPGs Linear regression, Delay, packet loss, jerkiness, MOS, ACR 0.62t0 0.86 RMSE  [176]

partial least squares,
ridge regression,
SVR with linear
kernel & radial basis
function kernel, RF,
gradient boosting
machine

FPS, gender, age, experience,
social context, action
categories

of the SVR algorithm [168], the training of which relies on
the Gaussian kernel.

The model for QoE prediction centering on MMORPGs
[176], examines system, user, and context elements and
assesses their influence on QoE. It also addresses certain
methodological issues linked to assessing gaming QoE and
delves deeper into a collection of quality metrics beyond
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MOS, like the percentages of users rating the gameplay sce-
nario, and acceptance measures. The model is developed with
use of a series of SL techniques.

As we can observe in Table 13, the implementations for
the QoE prediction in the case of video gaming applications
rely both on ANNs and ML methods, with the models of each
category achieving equally high levels of prediction accuracy.
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The QoE assessment however, is based on utilization of FR,
RR and NR objective metrics rather than mappings of QoS
parameters in QoE values, unlike the practice that is the norm
in conventional video content.

VII. CONCLUSION

QoE has received a lot of research interest in the last years,
and has been acknowledged as an important factor in deter-
mining network operating efficiency. Understanding measur-
ing, and modeling QoE for a variety of multimedia services
has gained significance, and CSPs have made considerable
efforts in providing dependable services with better person-
alized end-user experience. In this regard, the first stage in
optimizing a mobile multimedia streaming service delivery
is evaluating and predicting the end-user’s QoE, which helps
in acquiring a better understanding of how the technical
aspects of a network impact multimedia service quality as
experienced by end-users. Nevertheless, QoS metrics are not
immediately and clearly connected to an end-user’s gratifica-
tion and perceived experience, thus user-centric KQIs metrics
have been developed to assess quality. Understanding and
identifying a range of subjective and objective influencing
factors for KQIs, which may be categorized as human-related,
system-related, context-related, and content-related, is fun-
damental for appropriate QoE management. The parameters
that are necessary to be monitored and assessed are defined
in the QoE models, with the objective of implementing effi-
cient QoE optimization approaches, capable of efficiently
addressing QoE management issues. The quality assessment
includes two sorts of approaches, the subjective and objective
assessment. Subjective assessment techniques rely on human
assessors, whereas objective techniques are regarded as a way
for measuring subjective quality based solely on objective
quality metrics. Due to the exceptionally growing number of
factors involved, QoE assessment has become an increasingly
complicated issue, hence a variety of ML solutions have been
proposed in the last years in order to tackle this problem.
Since ML increases the accuracy of QoE models, assists
in QoE monitoring, and provides the methodological basis
for measuring the relationship between QoS and QoE, the
research community has adopted ML-based approaches to
achieve real-time, precise, and adaptable QoE management
frameworks.

In this survey, we define QoE within the context of mul-
timedia services, and provide a spherical analysis of the
QoE IFs. Moreover, we gather and analyze the more signif-
icant quality metrics, both subjective and objective, as well
as the methods for evaluating their performance, and the
mathematical models for correlating QoS parameters with
QoE. In addition, we look at the specific QoE features in
extended reality and video gaming applications, and highlight
the distinction between these emerging technologies and the
conventional video streaming services. We also provide a
comprehensive analysis of the quality influencing factors for
both extended reality and video gaming applications. Further-
more, we underline the importance of ML in the development
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of efficient QoE predictive models, describe its techniques,
and analyzed the more significant algorithms concerning
SL, UL, RL, and ANNSs. Finally, we examine state-of-the-
art ML-based QoE prediction models for video streaming,
extended reality, and video gaming applications. Since QoE is
a concept that has been introduced in recent years in mobile
and wireless networks design, especially in the case of the
emerging applications of extended reality and video gaming,
this survey focuses on the latest research outcomes, and
brings together the main publications of recent years, with
the majority of which concentrating in the last three years.
Although choosing the best-suited ML model for a certain
sort of application is still an open research question, the trend
of recent years, enhanced by the vast amount of available data
and high computational capabilities, tends towards solutions
implemented by using ANNs, and more specifically DNNs.
The major contributions of this survey can be found in the
following two points: 1) to the best of the authors’ knowl-
edge, this is the first endeavor to present a complete hands-
on guide on multimedia services QoE assessment, which,
contrary to existing surveys, includes extended reality and
video gaming applications in addition to conventional video
streaming; and 2) up to this date, this is the first survey to
provide a comparative study of ML-based QoE prediction
models that particularly focus on extended reality and video
gaming applications.

APPENDIX
LIST OF THE MAIN ACRONYMS AND ABBREVIATIONS
3D Three dimensions
5G Fifth generation
ACR Absolute category rating
ACR-HR  Absolute category rating-hidden reference
Al Artificial intelligence
ANN Artificial Neural Network
ANSNR Anti-noise signal-to-noise ratio
AR Augmented reality
B5G Beyond 5G
BLSTM Bidirectional long short-term memory
BRISQUE Blind/referenceless image spatial quality
evaluator
BSVR Boosting support vector regression
C3D 3D convolutional neural network
CDN Content distribution network
CI Color information
CINR Carrier to interference plus noise ratio
CNN Convolutional neural network
col Channel quality indicator
CSpP Communication service provider
DASH Dynamic adaptive streaming over HTTP
DCR Degradation category rating

DL Deep learning

DILM Detail loss measure
DMOS Differential mean opinion score
DNN Deep neural network
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DSCQS
DT
DTR
EEG
FFNN
FoV
FPS
FR
GAN
GoP
GSM
HAS
HMD
HVS
IF
I0A
KNN
KPI
KQI
KRCC
LR
LSTM
MAE
MBL
MCS
ML
MMORPGs

MNO
MOS
MOSp
MOVIE
MPOM
MR
MSE
MS-SSIM
NIQE
NR
NR-B
NR-P
OR
orr
PCC
Pl
PIQE

PLR
PSNR
QoE
QoS
oP
RBFN
RBM
Res
RF
RFR
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Double stimulus continuous quality scale
Decision tree

Decision trees regression
Electroencephalography
Feed-forward neural network
Field of view

Frame rate

Full reference

Generative adversarial network
Group of pictures

Gaussian scale mixture

HTTP adaptive streaming

Head mounted display

Human visual system
Influencing factor

Image quality assessment
K-nearest neighbor

Key performance indicator

Key quality indicator

Kendall rank correlation coefficient
Linear regression

Long short-term memory

Mean absolute error

Mean burst length

Modulation coding scheme
Machine learning

Massively multiplayer online role-playing
games

Mobile network operator

Mean opinion score

Predicted mean opinion score
Motion-based video integrity evaluation
Moving picture quality measure
Mixed reality

Mean squared error
Multiscale-SSIM

Natural image quality evaluator
No reference

No reference bitstream
Pixel-based no reference
Outlier ratio

Over-the-top

Pearson correlation coefficient
Playback indicator
Psychovisually-based image quality evalua-
tor

Packet loss ratio

Peak signal to noise ratio
Quality of experience

Quality of service

Quantization parameter

Radial function network
Restricted Boltzmann machine
Resolution

Random forest

Random forest regression

RL Reinforcement learning

RMSE Root mean square error

RNN Recurrent neural network

RR Reduced reference

RSRP Reference signal received power
RSRQ Reference signal received quality
RSSI Received signal strength indicator
RTR Rebuffering time ratio

RTT Round-trip time

SAMVIQ Subjective assessment methodology for
video quality

SC Scene complexity

SDSCE Simultaneous double stimulus for continu-
ous evaluation

SGD Stochastic gradient descent

N Spatial information

SL Supervised learning

SPEED-QA  Spatial efficient entropic differencing for
quality assessment

SRGAN Super-resolution generative adversarial net-
work

SROCC Spearman rank order correlation coefficient

SSIM Structural similarity index

SSSP Secondary synchronization signal power

SSO Simulator sickness questionnaire

STRRED Spatio-temporal reduced-reference entropic
differencing

STSQ Short time subjective quality

SVM Support vector machine

SVOA Stereoscopic video quality assessment

SVR Support vector regression

TCN Temporal convolutional network

TI Temporal information

UHD Ultra-high definition

UL Unsupervised learning

VCA Visual comfort assessment

VIF Visual information fidelity

VMAF Video multimethod assessment fusion

VOA Video quality assessment

VoM Video quality metric

VR Virtual reality

VRSA Virtual reality sickness assessment

VRSP Virtual reality sickness predictor

XR Extended reality
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