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ABSTRACT Teleoperation systems have been getting significant attention from many application areas for
decades. However, classical teleoperation systems suffer from problems such as lack of natural feedback,
latency, and inefficient operator throughput. Researchers attempted to address these issues by performing
some of the teleoperation sub-tasks autonomously whenever requested by the operator. Nevertheless,
these systems still need the operator to see the need for autonomous actions and initiate these actions
manually, which is demanding for the operators. This paper proposes a novel end-to-end Stochastic Assistive
Teleoperation System (SATS) that always stays in the loop, automatically detects applicable actions with
probabilities, and produces visual scene estimations for each of these actions, which results in increased
operator efficiency and throughput.We introduce several methods that combine ideas fromMarkov processes
and recurrent neural networks to stochastically predict future action sequences and scene configurations with
tractable algorithms. Experiments performed with a group of operators on real and simulative teleoperation
environments show that operators issue a considerably smaller number of commands compared to alternative
methods. We also showed that the operators can manipulate multiple robots simultaneously using our
technique, which boosts the operator throughput even further. We provide supplementary video material
that demonstrates SATS in action.

INDEX TERMS Action-conditioned prediction, assistive teleoperation, Markov chains, recurrent neural
networks, semantic video segmentation, stochastic video prediction.

I. INTRODUCTION
A typical teleoperation system is composed of a human oper-
ator maneuvering a slave robot working on a remote or hard
to reach environment [1]–[4]. Motivated by the large variety
of applications, ranging from space explorations [2], [5] and
deep underwater explorations [6], [7] to UAV operations [8],
[9] and nuclear waste decontamination [10], [11], teleoper-
ation have been studied extensively. However, some of the
fundamental problems of teleoperation remain to be solved.
For example, the lack of natural haptic feedback and data
transfer latency between the remote system and the operator
are some of these problems that cause inefficiencies for the
operators. Besides, humans are prone to errors in environ-
ments where repetitive tasks have to be handled often, which
is the case for many teleoperation environments [12]–[14].
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In order to address these problems, autonomous teleoperation
systems are often proposed for missions in remote environ-
ments such as deep sea [6], [7], [14], air [8], [9], space [15],
nuclear disaster sites [11], industrial sites [16], [17] or for
any generic site [18]–[23]. Many of these autonomous tasks
mainly involve basic processes like grasping [16], rotat-
ing [19] or dragging [17] an object, opening a valve [7],
or hot-stabbing [6]. The operators of these autonomous sys-
tems usually perform their tasks manually, and they trigger
the autonomous system when it is needed. In other words,
the overall teleoperation process is not monitored by the
autonomous system; the initiation of the autonomy is sup-
posed to be done by the operators, which brings extra mental
loads to the operators.

In this paper, we propose a Stochastic Assistive Teleop-
eration System (SATS) that continuously monitors the com-
plete teleoperation process, including the operator actions,
robotic arm, and the remote site configurations. During this
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FIGURE 1. Overall structure of SATS. Left. SATS is trained using actional and visual data obtained while the operator is trained. Right. During regular
operation, SATS always stays in teleoperation loop and continuously makes action sequence suggestions. Each suggestion includes visual scene
estimations with probabilities.

continuous monitoring process, when SATS automatically
detects autonomously applicable actions, it offers these
actions to the operators as a list sorted by the likelihood of the
action applicability. Different from the classical autonomous
teleoperation systems, the SATS operators also see the esti-
mated visual outcomes of these actions if applied. The visual
scene estimations, along with their probabilities, make it
more convenient to choose a selection out of all possible
actions. SATS is an end-to-end smart teleoperation system
because it is always in the teleoperation loop and ready for
making action suggestions. Therefore, in contrast to classical
autonomous systems employing learning from demonstration
techniques [7], [14], SATS does not require any triggering
from the operators for generating suggestions.

For practical teleoperation systems, operator training is
usually performed in simulative environments that are quite
similar to their real counterpart in robotic system dynamics,
and environmental appearance [24]. Similarly, SATS can
employ a simulative environment for operator training in
which operators can control a robotic arm to perform various
tasks (Fig. 1, left). We define a set of teleoperation scenarios
and hold training sessions to train the operators for these
scenarios. SATS collects a large amount of actional and visual
data during these sessions. Actional data are obtained from
robotic commands issued by the operators, and visual data
are captured from simulative or real RGB cameras placed
on fixed positions at the teleoperation site. We train the
SATS model using the data collected (Fig. 1, center). SATS
deploys the trainedmodel tomake it observe the teleoperation
process while the operators perform their tasks by controlling
the robot manually (step 1 in Fig. 1, right). After observ-
ing the environment for a short time, the model generates
multiple actional and visual predictions (step 2 in Fig. 1,
right). The generated suggestions sorted with respect to their
likelihoods are shown to the operators on the screen as a list.
If the operators find a suggestion useful, they just choose
that suggestion to activate the autonomous mode and make
SATS perform the suggested action sequence autonomously

(step 3 in Fig. 1, right). SATS keeps monitoring the scene
while it performs the assigned task. Therefore, it is always
ready to generate further predictions at any time during the
teleoperation. Note that the operators stay free while SATS
executes the sequence of actions chosen by the operator.
SATS is designed in a way that the operator can use this
free time to control another available robot. As a result, the
throughput of the operators increases considerably, making
our assistive system potentially very efficient for the teleop-
eration missions.

The defined problem is an example of stochastic sequence
prediction tasks in which sequences of observations are emit-
ted from a set of unknown hidden states. One of the pop-
ular ways of solving these kinds of problems is to employ
Hidden Markov Models (HMM), where observations corre-
spond to captured RGB frames, and hidden states correspond
to high-level information about the scene such as semantic
segmentations of the scene objects or events of the scene [25].
Although HMM’s are attractive for our task due to their
inherent stochastic nature and strong theoretical foundations,
using HMMs for a complex task like ours is intractable,
as will be discussed in detail in the following sections. Hence,
we introduce a technique incorporating deep neural networks
and Markov chains in a unique way to offer a feasible
and efficient solution to our stochastic sequence prediction
problem.

Recently, the video prediction community introduced var-
ious approaches to predict future video frames for a given
sequence of video frames [17], [26]–[28], which is concep-
tually similar to our problem of visual prediction. However,
many of these methods do not consider the case where mul-
tiple alternative future frame sequences are possible. Most
of the time, the generated video frames turn out to be the
average of all possible future frames [17], which makes them
blurry and unusable for our problem. There are several future
frame prediction methods [27], [28] that produce multiple
alternative future frames. However, the produced alternative
video frames are random, and they may miss many likely
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cases, which would be very limiting for our purposes. Unlike
these video prediction approaches, the proposed method pre-
dicts future frames in a stochastic way, which generates all
the possible future frame sequences with actions and their
probability distributions at once as a list at each time-step.

We provide thorough experiments to validate our system.
The experimental results verify that the operators issue a
much smaller number of commands compared to the alterna-
tive methods. It is shown that visual cues provided by SATS
facilitate decision making process of operators when there
are multiple possible future sequences. We demonstrated that
SATS significantly boosts the throughput of the operators by
enabling them to use multiple robots. Finally, we showed
that the proposed method can be trained on synthetic data,
which is obtained from simulative environments and can be
deployed in real environments.

Our main contribution in this study is developing an
AI-powered assistive teleoperation system that learns task
patterns in an unsupervised way, makes multiple actional
and visual estimations continuously during teleoperation, and
performs autonomous teleoperation whenever possible. It is
important to emphasize that our teleoperation system does
not have all the features of the traditional teleoperation sys-
tems. We abstracted the basic teleoperation sub-tasks such
as gripping and releasing because we focused on managing
teleoperation missions at higher levels as a first step. With
that being said, we believe that our framework is sufficiently
sophisticated to show the potential applicability of SATS.
We will further explain this point throughout the paper. Our
contributions in this study can be listed as follows:
• An end-to-end assistive teleoperation framework that
always stays in the loop and detects applicable actions
automatically;

• A novel incorporation of deep neural networks and
Markov chains to efficiently generate multiple future
sequence predictions along with their probability
distributions;

• Stochastic actional and visual future predictions that are
shown to boost operator efficiency significantly;

• Increased operator throughput by allowing operators to
control multiple robots simultaneously while the system
performs autonomous tasks.

The rest of the paper is organized as follows: in Section II,
related work is investigated. The design steps of the proposed
method are described in Section III. In Section IV, the real
and the simulative 3D environments, as well as corresponding
datasets, are introduced. In the same section, testing proce-
dures of the proposed system are described, and the experi-
mental results are shown. Finally, in Section V, we provide
concluding remarks.

II. RELATED WORK
Since our contributions are mainly in the fields of assistive
teleoperation and action or video prediction, we set our focus
on recent work in these fields.

A. SEMI-AUTONOMOUS/ASSISTIVE/SHARED
TELEOPERATION
There is a strong demand for automated and smart teleop-
eration systems in the community. [29], which is our prior
work, introduced a solution for scene analysis in assistive
teleoperation by analyzing 3D reconstruction of the teleop-
eration scene and extracting segment sequences. This work
is based on learning from demonstration, which requires
manually extracted samples of each teleoperation task. [30]
presented another learning from demonstration technique to
automate industrial robots using deep learning models. They
used a surgical da Vinci robot to manipulate objects in the
teleoperation scene. [31] proposed a semi-autonomous tele-
operation technique that also can learn from demonstration.
They used Gaussian Mixture Models (GMM) to build the
proposed assistance system, which reduces the workload of
the operators. Similarly, [32] proposed a semi-autonomous
teleoperation framework that contains robots that are capa-
ble of learning from previously performed tasks. [6], [7],
[14] are focused on semi-autonomous teleoperation systems
based on HMM models that work on deep-sea environment
to complete tasks such as opening a valve via a robotic arm.
Although many other similar techniques, such as [18]–[21],
proposed various levels of autonomy in teleoperation, their
techniques are mainly used for performing only local and
basic tasks autonomously.

[33] and [34] proposed deep models for mobile robots
that can be used to estimate future traversability. Their mod-
els generate future robot velocities and video frames to
autonomously control the robot and give an idea about the
consequences of the autonomous control to operators. The
main focus of these methods is autonomous collision avoid-
ance in robot navigation. Their method requires a manual
input point on the image space of the robot camera, indicating
the target point to initialize autonomous control.

The methods described so far are mainly based on learning
from demonstration technique, which has significant restric-
tions on building sophisticated models. First, each sample of
action sequence is needed to be manually labeled during the
data collection process, which is costly in terms of experi-
enced operator time. In addition, the resulting model should
be triggered manually whenever it is needed for each desired
action type during the real operation. Conversely, our data
collection process is transparent to the operators. We do not
force the operators to perform actions just for collecting data.
Operators only try to train themselves to get familiar with
the teleoperation environment. We record all the raw data
observed during the operator training process and train our
system with the collected data. Furthermore, operators do
not have to manually trigger the autonomous control for a
specific action type in our system. SATS always monitors the
environment and automatically detects possible applicable
actions in real-time.

The reason we choose the term assistive teleoperation is
that our system is not designed for helping the operators in
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low-level subtasks but designed for supporting the operators
at higher levels as a generative decision support system.
The proposed system generates multiple predictions about
probable future sequences in terms of actional and visual
aspects and offers them to the operators as decision sugges-
tions which makes the proposed method a high-level assistive
system. In contrast, a typical shared-control system is more of
a low-level assistive system which is useful in simpler tasks,
i.e., assisting operators when approaching a target object by
decreasing the DoF of the robot [35]–[37]. Similarly, semi-
autonomous teleoperation term is not sufficient to describe
our work, as it is commonly used for learning from demon-
stration systems. Please note that those systems are inferior to
the proposed method due to the reasons we have mentioned
previously. Finally, we did not use the term autonomous
teleoperation to describe our work as our system is not fully
autonomous in the sense that it still is supposed to work with
an operator. In conclusion, the broadest term that describes
AI-powered high-level supportive teleoperation systems is
assistive teleoperation.

B. ACTION AND VIDEO PREDICTION
SATS, in part, is conceptually similar to state-of-the-art video
or action-conditioned video prediction systems. We briefly
describe these systems and explain the differences from the
proposedmethod. [38] proposed a convolutional network that
can generate future video frames from a given input sequence.
Particularly, they investigate how choosing different types of
loss functions affects the quality of the frame predictions. [39]
proposed a deep learning framework based on a Genera-
tive Adversarial Network (GAN) for video prediction and
completion in human action videos. Both [38] and [39] pre-
dict future video sequences without considering user actions.
There are other methods that take the user actions and previ-
ous video frames into consideration during the future frame
prediction, which is called action-conditioned future frame
estimation. For example, [26] introduced a deep architec-
ture for predicting the future video frames that are depen-
dent on both previous frames and agent actions in Atari
games. They collected 500000 frames using DeepMind’s
Deep-Q-Network for Atari Games to train their model.
They showed that the method is able to predict realistic
future frames on the Atari game domain. They focused on
only Atari games, and the applicability of their method
on real videos remained unclear. Similarly, [40] suggested
an action-conditioned video prediction model that incorpo-
rates appearance information from previous frames and robot
instructions. They reported that the model can produce satis-
factory results for more than 10 time-steps into the future.
[17] presented a learning-based approach for basic robot
manipulation, which is trained using 50000 randomly gen-
erated object pushing attempts. They use a deep predictive
neural network model to plan actions that should be taken by
the robot. Their method generates an action sequence that can
be used by the robot to achieve the desired goal. Unlike our
method, their technique takes the source and target locations

as input and uses that information in the objective function
during the operation. Both [40] and [17] focus only on basic
tasks like pushing or dragging objects on the scene. Another
action-conditioned video prediction system is by [41] that
introduced a light-weight video prediction technique that can
predict up to 10 frames in the future in a LEGO Mindstorms
robot environment. Their method can generate only a single
visual future sequence at a time-step. While the idea of future
video frame prediction of the above studies is similar to
our method, they do not take into consideration the case of
possible multiple future sequences.

[27] focused on a stochastic variational video prediction
model and developed a deep model that predicts different
future video sequences employing latent variables. [28] pro-
posed a model based on Variational Auto Encoder-GANs
to achieve stochastic video prediction. The main differ-
ence between [27], [28], and our method is that our sys-
tem generates a video sequence distribution of future video
frames. In other words, each predicted video sequence is
assigned a probability value that would be used for priori-
tizing these suggestions while offering them to the operator.
Both [27] and [28] produce alternative future frames by
sampling a special latent random variable, which produces
no information about the occurrence probabilities of the
sequences. Please note that none of the action and video
prediction methods use assistive teleoperation as a target
application. To the best of our knowledge, our system is the
first to use action conditioned video prediction methods for
the task of assistive teleoperation.

III. THE METHOD
We define a number of action categories A = [G,F , B,L,R,
D,P,N ] each of which stands for Grip the object, move
Forward, move Backward, move Left, move Right, Drop the
object, rotate the object Positive 90 degrees around Y axis
and rotate the object Negative 90 degrees around Y axis,
respectively. Formally, we define an operator action at time-
step i as a one-hot encoded vector ai ∈ {0, 1}n, where
n = |A|. The hot element of ai indicates the index of the
corresponding action category defined in A. For example,
ak = [0, 1, 0, 0, 0, 0, 0, 0] means the user issues a Forward
command at time-step k . There must be exactly one action
for each of the video frames or time-steps. We omit time-
steps that do not contain any actional information. A sequence
X = [x0, . . . , xc−1] is defined as a vector of action frame
pairs, where xi = [ai, fi]. The video frame fi ∈ R2 contains
visual information about the scene. Note that, although our
formulations consider only a single video frame for each
time-step, it is trivial to extend this model with multiple
frames from multiple cameras. Given an input sequence X,
our goal is to predict a distribution of future sequences Y =
[Y0, . . . ,Yn−1]. The elements of Y represent an alterna-
tive future sequence ordered by their estimated probabilities,
which sum up to 1.0 as expected. Elements of a predicted
future sequence Yi =

[
[ai0, f

i
0], . . . , [a

i
L−1, f

i
L−1]

]
contains
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predicted actions (aij) and the corresponding Visual Semantic
Segment Information (VSSI) (fij) for each time-step, where
L denotes the length of the predicted future sequence. The
estimated VSSI images are the same size as the input images,
and they assign a semantic segment label for each pixel of the
scene. These labels areForeGround (FG, objectsmanipulated
by the robotic arm), Robotic Arm (RA, the pixels that cor-
respond to the arm itself), and BackGround (BG, any scene
element other than objects and the robotic arm). We use VSSI
images mainly for displaying the predicted future scenes to
the operator.

A. CONVENTIONAL HIDDEN MARKOV MODEL APPROACH
In order to provide a solution to the described estima-
tion problem, one can propose employing HMMs due to
their inherent stochastic system state estimation capabilities.
HMMs can also relate the estimated system states between
the time-steps, which would incorporate crucial temporal
information during the future prediction process. However,
as we will show below, the standard employment of HMMs
is problematic for our specific problem due to computational
tractability issues.

An HMM of order N is defined by λ = (T ,O), where
T denotes transition probability matrix, and O represents
observation likelihoods. The hidden states of HMM describe
a combination of operator actions and VSSI of the teleop-
eration scenes. For the sake of explanation convenience, let
us consider a simplified example in which λ takes images
containing only a single pixel along with regular operator
actions. In such a case, the hidden system state table contains
3|A| = H states, which is a combination of 3 VSSI states
and |A| = 8 operator actions. The best hidden state sequence
of length 1 explaining the observed operator action-image
combination sequence can be estimated easily using the stan-
dard HMM decoding methods because the state size of 24 is
manageable for this case. However, if we extend the length
of the prediction sequence to L, we need HL hidden states to
represent all possible action-VSSI combinations. Obviously,
the number of hidden states in λ quickly becomes unmanage-
able to be implemented for practical values of L (e.g., 2420 for
predicting 20 frames in the future). Note that this is the simpli-
fied case for only one-pixel input images. If we consider the
general case for w× h input image sizes, the number of total
required hidden states becomes (whH )L , which is intractable.
Finally, the standard decoding methods of HMMs would
produce only the best estimated sequence. However, our
problem definition requires estimation of many alternative
sequences to be presented to the operator. Although HMMs
are powerful due to their stochastic nature and ability to
relate adjacent time-steps, they are not directly applicable to
our problem. As a result, we need to develop novel methods
to stay tractable while keeping desirable features of HMMs.

B. OUR HYBRID TECHNIQUE
We propose a new technique as a feasible alternative to
the HMM approach above. We incorporate a deep recurrent

FIGURE 2. Future sequence generation for one-pixel image using our
heuristic method.

neural networkN and a special version of first-order Markov
chain C = (T), where T denotes the state transition tensor
to replace HMM λ. By employing this approach, we come
up with a manageable and efficient future sequence pre-
diction system. For the sake of explainability, we describe
the proposed solution using the simplified one-pixel image
case as we did with HMMs. C has a set of 3|A| = H
states, each denoting Action-Conditioned Semantic Segmen-
tation (ACSS) labels. Basically, ACSS definesH = 24 labels
representing all VSSI-operator action combinations such
as [BG − F, . . . ,BG − D,RA − F, . . . ,RA − D,FG −
F, . . . ,FG − D]. The state transition probabilities of C are
defined slightly differently from the traditional Markov tran-
sitions. Conventionally, state transition probability matrix T
is anH×H matrix whose values are learned during the train-
ing phase, and these values do not change during a decoding
process. In contrast, we define a dynamic state transition ten-
sor T̂ as an L×H×H to allow each state transition probability
to take on different values at each iteration in the decoding
process. In other words, the state transition matrix T of C is
not constant and can take different values for each future time-
step tj during the decoding process. To do so, we train the neu-
ral networkN to learn to predict a state transition probability
matrix T̂ = [T̂0, . . . , T̂L] for each future time-step tj using
the input sequence of operator actions and images, which
produces L transition matrices in total (Fig. 2). We stack all
the predicted transition matrices T̂j into a 3D tensor T̂, which
becomes the transition parameter of the Markov chain C =
(T̂). C uses jth transition probability matrix T̂j at jth iteration
in the decoding process. Decoding (sampling) a future ACSS
sequence of length L can be done by just iterating L times
through C and its sequence probability can be computed by
calculating joint probabilities (i.e., transition probabilities) of
visited states. In this way, we simulate a Markov chain of
order N using a first-order Markov chain.

16704 VOLUME 10, 2022



A. Akay, Y. S. Akgul: End-to-End Stochastic Action and Visual Estimation System Towards Autonomous Teleoperation

As an example, let us generate a future ACSS for the
simplified one-pixel-image example. First,N takes the input
sequence and generates Cc at time-step tc. Then, we iterate L
times through Cc and emit an ACSS label at each iteration of
the decoding process. After we finish the iterations, we have
a future ACSS sequence of length L for the only pixel of the
input image (e.g. [FG-F, FG-F, FG-R, . . . , RA-D]).

In the general case, where input is a sequence of oper-
ator actions and images of size w × h, N samples w × h
matrix of Markov chains Cc at time-step tc. Elements of
the Markov chain matrix are defined as Cc,k,l . Each ele-
ment of this matrix samples a future ACSS sequence for
a pixel coordinate pkl starting from time-step tc. The gen-
erated ACSS sequence for each pixel coordinate is defined
as Ŝc,k,l = dec(Cc,k,l(T̂c,k,l)), where T̂ is a 3D ten-
sor of state transition tensors T̂ and dec is the decod-
ing function of the Markov chains. Each T̂c,k,l , which is
sampled at time-step tc, corresponds to a 3D transition
tensor T̂ for pixel coordinate pkl . Since we need top n
best ACSS sequences, we define a set of future ACSS
sequences Ŝ:,c,k,l = [Ŝ0,c,k,l, . . . , Ŝn−1,c,k,l] where n is
number of most probable ACSS sequences to be predicted.
Actually, we decode Cc,k,l(T̂c,k,l) n times with a special
heuristic algorithm, which is described in section III-D,
and store the resulting ACSS data in Ŝn−1,c,k,l . For example,
Ŝ0,10,3,3,5 represents ACSS of pixel coordinate (3, 3) at future
time-step 5 belonging to the most probable future ACSS
sequences, which is predicted at time-step 10. We define the
elements of output tensor Y as Yi = [Ŝi,:,:,:,0, . . . , Ŝi,:,:,:,j],
where Y0 is the sequence representing the most probable
future ACSS sequence.

Note that we only need to decode a set of first-order
Markov chains whose transition probabilities are learned by
N in training time, which makes the proposed method a very
efficient approximation of HMMs.

C. THE NEURAL NETWORK MODEL
The first part of our model N (Fig. 3) contains 3 layers
of 2D CNNs with 128 filters of size 5 × 5. We define
a 1-step stride along each dimension for these layers. After
each convolutional layer, we add a 2Dmax pooling layer with
a pool size of [2, 2], and a stride of [2, 2]. The output of the
last max-pooling layer is fed to a Fully Connected Neural
Network (FCNN) of two layers with dimensions 2048 and
96 units, respectively. The resulting visual feature vector
of size 96 and the actional feature vector of size 8 (ai) is
concatenated and fed to an LSTM module.

We employ an LSTM module with 4 layers, each of which
contains 512 hidden nodes as a sequence prediction model.
Input to LSTM is a vector whose size is the sum of the number
of visual features and actional features (96+8). The output is
a matrix Oi, whose rows correspond to each future time-step
of the predicted sequences. The number of future time-steps
can be freely determined within the memory limitations of
available GPUs. Each column of Oi represents the state

transition probabilities of ACSSs and action predictions. The
last |A| columns ofOi correspond to âj which is a probability
distribution representing what actions are expected in time-
step tj for the whole frame.
The output of the LSTM module Oi contains the state

transition probabilities of ACSSs in an encoded form. While
action prediction for a future frame is already estimated by
the LSTM module, state transition predictions should also
be decoded. We feed encoded transition probabilities to an
FCNN of two layers with dimensions 2048 and 96 units,
respectively. Then, the output of the FCNN is fed to a
3-layered 2D Deconvolutional Neural Network (DecNN)
whose outputs are the state transition probabilities of ACSS
states T̂. We set all parameters the same as those used in
the CNN module. We used a combination of tanh, relu and
leaky− relu as activation functions in all the layers.
Loss function. The loss function consists of two compo-

nents: action lossLa and state transition lossLt .La is used to
measure the accuracy of the actional predictions for a frame
by comparing the predicted action data âj against the one-hot
Ground Truth (GT) vector aj. We use

La(a, â) = SCE(a, â) (1)

to measure the difference between âj and aj, where SCE is the
softmax cross entropy which is defined as

SCE(y, ŷ) = −
n∑
i=0

yi log(softmax(ŷi)), (2)

where n = dim y.
The second term of the loss function Lt computes state

transition likelihood error between the GT state transition
matrix t and the predicted state transition matrix t̂. It com-
putes the softmax cross-entropy between predicted and GT
probability distributions of state transitions for each pixel
coordinate of a predicted frame and calculates average loss
for the frame.

Lt (t, t̂) = −
1

whm

h∑
i=0

w∑
j=0

m∑
k=0

SCE(tijk , t̂ijk ), (3)

wherem = 3|A|, h is image height and w is image width. The
joint loss function is defined as

Lf (aj,Tj, âj, T̂j) = λLa(aj, âj)+ Lt (Tj, T̂j), (4)

where λ is the weighting parameter for balancing the two
loss terms. In practice, the weighting parameter is set as
λ = 1 empirically.

Lf defines a loss function for a single future time-step tj.
The loss for a whole sequence of future time-steps is defined
as

L(ac,Tc, âc, T̂c) =
1
L

L∑
j=0

Lf (acj,Tcj, âcj, T̂cj), (5)
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FIGURE 3. Our neural network model N .

where ac and Tc are GT future action and state transition
sequences starting from time-step tc, respectively. Tc is com-
puted using GT operator actions and RGB frame segmenta-
tions. Note that, for all of our formulations, the terms with a
cap represent corresponding predictions. Finally, the model
optimization function is defined as

N ∗ = argmin
N

L(a,T,N (X)a,N (X)T ) (6)

Adam optimizer is employed with β1 = 0.9, β2 =
0.999 and learning rate of 1e− 4 in the optimization process.

D. FUTURE SEQUENCE GENERATION
Since we need to find top n most probable future sequences,
it is not possible to use optimal methods such as standard
Viterbi algorithm as they would generate only the best future
sequence. Instead, we develop a new heuristic method to find
the most probable future sequences. Even though it is not
guaranteed to produce the optimal future sequences, the final
results satisfy our problem requirements, which we validate
through extensive experiments on human operators.

In the first step of our heuristic decoding procedure,
N predicts T̂c by evaluating the input sequence of operator
actions and the images at time-step tc (Fig. 2). Then, we start
iterating through the Markov chains Cc. We create a set of
likelihood images IBG−F , . . . , IFG−D of size w × h for each
of the ACSS categories by using the transition probabilities at
each iteration. For example, the transition probabilities of the
states representing FG−F in Markov chains Cc,:,:,0 are used
to create image IFG−F at the first iteration. Note that transition
probabilities are updated at each iteration, which makes it
possible to generate different images at each iteration. The
pixel values of the images are obtained from corresponding
pixel coordinates of the transition probabilities Ij,:(k, l) =
Cc,k,l,j. We find the images containing a foreground region by
checking âc. Then, we run a blob detector on each of these
images to locate the foreground regions. We find centroids
of each of the foreground regions and get their transition
distributions. The state transition distribution of a centroid
indicates which types of actions are likely to affect that pixel
coordinate in the next time-step. If the transition probabil-
ity for a next state is greater than ε, which is determined
as 0.1 empirically, we iterate to that state for all the Markov
chains Cc,:,:,j. We record the action type and the likelihood
image before we iterate to the next state. If there are multiple
probable states at an iteration, we fork the process for each

FIGURE 4. Snapshots of our real robot in an experimental teleoperation
environment.

of the possible states. We perform the same procedure for
the subsequent iterations. In the end, we come up with a
set of predicted future sequences containing ACSS images.
We compute sequence probabilities by multiplying all ACSS
state transition probabilities in a given sequence. Note that
our model is a special case of the Markov chain, and we
should expect that the joint probabilities of all possible future
sequences should sum up to 1.0. We sort the produced future
sequences and get the top 5 most probable ones in terms
of sequence probabilities to form the actional and visual
suggestion list Ŝn,c,k,l,j. Note that our output is a set of ACSS
sequences, but it is trivial to convert them to VSSI sequences,
which are shown to the operators as visual suggestions.

By employing such a stochastic future sequence predic-
tion approach, our system can handle uncertainties in future
sequences. SATS lists all the alternatives in such cases, and
the operators choose an appropriate suggestion to resolve
any uncertainty in future sequences. That is one of the main
advantages of our method.

E. IMPLEMENTATION DETAILS
We used GT segmentations generated by the synthetic envi-
ronment as training data. Before training the model, all the
input data are normalized between [−1, 1] to facilitate the
training process. The proposed method is implemented using
TensorFlow library with Python language. Training of the
model takes 30 − 35 hours on a GTX 1080 Ti GPU. SATS
can generate future sequences in less than a second, thanks
to its efficient prediction module running on GPU, which
makes it very practical in real-world applications. Although
we defined 24 different ACSS labels for hidden states of C,
we use only 10 labels in the implementation to facilitate the
training process. Actually, we omit all ACSS labels belonging
to the robotic arm and background BG − F,BG − L, . . . ,
RA − D as we are not interested in what actions affect the
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FIGURE 5. Control architecture of our model.

robotic arm and background regions in practice. The mul-
tiple future sequence prediction process can be done using
only ACSS information about the foreground regions in our
application, which is why we omit ACSS labels related to the
robotic arm. We used only one ACSS label for each of the
robotic arm and background regions and 8 for the foreground
regions, which sum up to 10 labels.

IV. EXPERIMENTS
A. TELEOPERATION ENVIRONMENT
1) REAL SCENE
We build a miniature crane robot to simulate a typical tele-
operation system (Fig. 4, Fig. 5). The robot consists of an
aluminum frame, several servo motors, a power supply, and
an electromagnet, which are controlled by an Arduino Uno
microcontroller board. We assemble servo motors in the
directions of the X axis, Y axis, and Z axis, so it has three
degrees of freedom. We use plastic blocks and cylinders to
represent the foreground objects. We placed magnetic metal
pieces on their top to grip the objects using the electromag-
netic gripper. We also placed a camera in front of the scene
to provide visual feedback to the operator (Fig. 6-a). The
system is connected to a remote computer so that the operator
can send various commands (actions) to control the robot.
In order to perform an action sequence, the operator grips an
object using the electromagnetic gripper of the robot, moves
it to the target location, and finally releases it. In order to
make our environment more realistic, other than covering
the backside of the scene with cardboard, we did not try
to eliminate shadows or other background entities such as
cables.

2) SYNTHETIC SCENE
The real robot is very useful for evaluating our final system
with real operators. However, for convenient evaluation of

initial ideas and for producing training data for the neural
model, we also implemented a synthetic 3D teleoperation
scene using the Unity3D engine (Fig. 6-b). The virtual envi-
ronment is modeled roughly similar to its real counterpart,
and the virtual robot provides almost the same functionality
as the real robot. Different from the real robot, the virtual
system has an additional servo motor to rotate the electro-
magnetic gripper around the Y axis; therefore, it has four
degrees of freedom. The operator can move and manipulate
scene objects using a keyboard. Our virtual robot automati-
cally generates the raw RGB frames (Fig. 6-b) and their GT
segmentations (Fig. 6-c). We record this data along with the
corresponding operator actions during the operation of the
virtual robot.

Although it might be preferable to use a more sophisticated
real-world robot mechanism with a more advanced control
scheme in such a study, we believe that our system is ade-
quately sophisticated to prove the validity of our novel ideas.
Let us consider transportation and object stacking-based
teleoperation tasks such as removing nuclear debris from a
nuclear disaster site, constructing basic settlements on a dis-
tant planet, or gathering raw material from an asteroid. Such
operations include phases of gripping an object, carrying it
to a target point by following a specific track, and releasing
it onto the destination, each of which can be performed by
using the functionalities that our system provides. Besides,
other properties of the robotic mechanism such as velocity
or acceleration are relatively less important in such sys-
tems because it typically moves at a constant speed through
transportation.

B. DATASETS
We created 4 different datasets: Real, Synthetic General
Missions (GM), Synthetic Wall Builder (WB) and Synthetic
Pyramid Builder (PB) using the real and synthetic teleop-
eration environments for evaluating the performance of the
proposed system as well as demonstrating its usefulness on
practical applications. We have 6 types of action sequences
in the Real dataset and 22 types of action sequences in the
GMdataset. Fig. 7 shows the projections of themoving object
paths of these sequence types on the X − Z plane. Each
action sequence type is represented by a different colored
arrowhead. The sequences start from the source point S and
move to one of the target points (T ). We used two types
of backgrounds a and b having 4 and 6 types of different
action sequence types, respectively. For the Real dataset,
we only generated samples of patterns for only backgrounds
of type b. On the other hand, GM contains samples of both
background types. Annotations placed next to the arrowheads
in Fig. 7 indicate in which background that action sequence
is performed. When performing an action sequence type bi,
we first perform the sequences with no rotation, which pro-
duces 6 instances of different action sequence types. Then,
we resample the sequences after applying a rotation to the
foreground object with angles of−90 and+90, which is per-
formed right after the grip action. In this way, we augment the
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FIGURE 6. A set of samples from our datasets. (a) An image from the real scene, which is taken from our test dataset, (b) an image taken from our
synthetic training dataset, and (c) GT segmentation image of (b). We train SATS using the synthetic training dataset and test it using both synthetic and
real test datasets.

FIGURE 7. X − Z plane projections of action sequence patterns of the teleoperation tasks we
used in our scenario. The operator picks objects from a source point S, then carries it to a
target point T. We specifically choose these patterns containing many junction points to
generate data having splitting multiple future sequences.

number of type b action sequences from 6 to 6(no rotation)+
6(+90 degree rotation)+6(−90 degree rotation) = 18. Since
GM also has the action sequence types of a, the total number
of action sequence types of GM is 22. Note that the Real
dataset contains no rotations.

In order to create large training datasets using our virtual
robotic environments, we designed an autopilot sequence
generation tool that takes an action sequence type and pro-
duces many sequence instances of the same type with varying
time-step sampling rates and sequence lengths. SATS uses
a standard time-step duration of τ = 1 seconds system-
wide. In order to realistically model the latency differences
between the operators, we add uniformly distributed ±10%
noise to τ for each time step. We group consecutive steps
with the same primitive action type to form a subsequence,
which is represented as a line in Fig. 7. Our autopilot tool
models a subsequence with parameters of action type and
Normally distributed subsequence length N (µ, σ ). We set
µ = 10 and σ = 2 for both Real and GM datasets.
A sequence is a combination of several subsequences. The
sequences in Real and GM datasets contain an average
of 3-4 subsequences. A generated sequence starts from the
source location S, where the scene objects are waiting to be
carried. After the sequence is completed, the object being

carried is released on a target point T and the robot returns
to S to perform the next sequence.

We generated 50 instances for each of the 6 sequence
types in the Real dataset. Therefore, the total number of
sequence instances is 300. We have about 3 subsequences
for each sequence instance on average, and the average
number of actions in a subsequence is roughly 11, mak-
ing the total number of primitive actions, i.e., time-steps,
in Real dataset 9900. In GM, there are 100 instances for
each sequence type that makes the total number of sequence
instances 2200. Since the above calculation procedure also
applies to GM, the total number of primitive actions in GM
is 75000.

For the WB dataset, we designed another synthetic
3D environment in which an operator manipulates a robot
to build a wall by stacking bricks one by one (Fig. 16).
We used a different configuration of the autopilot tool
to generate actional and visual data using this 3D envi-
ronment. Similar to the GM dataset generation procedure,
the subsequences produced for this dataset use the same
noisy τ and subsequence length models. In the result-
ing dataset, we have several hundreds of wall-building
sequences. We applied a similar procedure for creating the
PB dataset.
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FIGURE 8. Visualization of hidden state vectors sampled by various teleoperation tasks using t-SNE technique. Left. List of
performed action sequences. BG-a and BG-b denote slightly different backgrounds. Middle. Visual representation of the
action sequences. These are only rough representations of the input sequences. Actual data have a relatively huge
variation because of the random noise added. Right. 2D t-SNE representations of the hidden state vectors.

C. VISUALIZATION OF HIDDEN LSTM STATES
After training our networkmodelN , we visualized the hidden
state vector of the last LSTM layer to demonstrate that our
model captures the meaningful features of the actional and
visual input sequences. To do so, we defined a set of action
sequence types, which are listed in Fig. 8-Left. The X − Z
plane projections of the same sequences are displayed in
Fig. 8-Center. We performed each of the action sequence
types to create a dataset for visualization. For example, the
operator issues 1 G, 10 R, and 9 F action commands sequen-
tially to perform an instance of the sequence 0. As we did
before, each sequence is produced with automatically added
noise. We repeat sampling each action sequence type 5 times
to generate a relatively well-distributed dataset. We feed
the collected action and image data to the neural model
and record the hidden state vectors of size 512 of LSTM
after each action sequence is performed. Then, we com-
pute the centroids of the vectors belonging to the same
action sequence types. We employed t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) technique [42] to reduce
the dimension of the centroids from 512 to 2. Fig. 8-Right
visualizes the resulting 2D centroids for each sequence type.
It can be seen that similar input sequences are close to
each other and distant from different types of sequences
(e.g., 0− 1− 2 and 3− 4− 5).
In order to investigate the effects of different backgrounds

on the hidden state vectors, we compared inputs having the
same action sequences but slightly different backgrounds,
i.e., performing the same action sequence in a partially mod-
ified background. For instance, sequences 0 and 10 have the
same type of actional data but slightly different visual data.
As a result of this, centroid 10 is far from centroids 0, 1, and
2 compared to centroids 3, 4, and 5. However, it is a little
bit distant from the (0 − 1 − 2) cluster because of the visual
differences in the background. The same relation also exists
between centroids 3 and 12.

The approach we applied in this experiment is closely
related to popular word representation techniques, such as
word2vec [43], which is widely used in the Natural Language

Processing context. In word2vec, words are converted to vec-
tors in a way that words that share common contexts are also
close to each other in the vector space. Similarly, our method
takes actional and visual sequences and produces a vector
space with each sequence being assigned a corresponding
vector in this space. With this experiment, we can argue
that SATS captures meaningful input sequence information
to make similarity measurements between them. We can also
argue that our system can behave sensibly even for cases
where the input sequence was not seen before.

D. SUGGESTION GENERATION AND ASSISTIVE
TELEOPERATION
SATS acts as an interface between the teleoperation environ-
ment and the operator. It continuously collects data from the
teleoperation environment and generates suggestions to help
the operators while they perform operations. SATS receives
actional and visual input data at each time-step (Fig. 9-a) and
predicts a set of possible future sequences (Fig. 9-b). The
operator side application retrieves the prediction sequences
and shows them on the screen by inserting various icons onto
the centroids of the predicted foreground object segments.
These suggestions are listed as images on the right of the
screen ordered by their sequence probabilities (Fig. 9-b). The
sequence probabilities are also displayed on the left of each
suggestion. The color of the probability text is proportional
to its probability value ranging from black to red (black
for 0 and red for 1). After the operators evaluate the suggested
actions, they can choose a suggestion (Fig. 9-c) tomake SATS
perform suggested actions autonomously (Fig. 9-d). SATS
keeps collecting actional and visual data while carrying out
the issued task autonomously. After it completes the task at
hand, it instantly generates a new set of suggestions for the
next task based on the data collected during the autonomous
control. Again, the operator checks the new suggestions and
chooses a suggestion to activate SATS. If no proper sugges-
tion is listed on the screen, the operator can simply continue
to control the robot manually until SATS generates a desired
suggestion.
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FIGURE 9. A step-by-step usage demonstration of the proposed system. (a) The operator uses the robot manually for a while. (b) SATS generates a set
of suggestions based on the data collected during manual control. (c) The operator chooses a suggestion to activate SATS. (d) SATS completes the
remaining task autonomously.

TABLE 1. Command (Action) automation fates (CAR) for the available datasets. The last column gives average CAR for all the datasets. Other columns
represent CARs for each individual action type. A CAR value of 1.0 is equal to 100% autonomy.

E. PERFORMANCE EVALUATION
SATS is designed to assist teleoperation operators in perform-
ing their tasks more effectively. In order to evaluate SATS
in this context, we used 5 volunteer operators to test it on
both synthetic and real data. We believe that, at least for the
first stage, the pool of 5 volunteers is sufficient to assess the
performance of SATS. There are two reasons for this view.
Firstly, we think that SATS performance can be measured
using quantitative metrics that are independent of the size
of the volunteer pool. As we discussed earlier, our study is
mainly focused on automating the teleoperation process as
much as possible and estimating additional information about
the ongoing teleoperation for the operators’ use. This is an
objective whose success rate can be measured, to a certain
degree, by employing quantitative metrics such as command
automation rate, dice similarity/F-score, etc. We, therefore,
just aimed to maximize and measure those metrics for now.
Secondly, we observed that many similar studies in the litera-
ture use five subjects, such as [14], [44] that show us our vol-
unteer pool is adequately enough to validate the capabilities
of SATS at its early phases. As we primarily aimed to show

the potential usefulness of SATS as an AI-powered assistive
system in teleoperation, we did not focus on analyzing human
subjects deeply. We left issues like questioning the volunteers
about their experiences with SATS for future work for this
reason.

The SATS instance that is used in the experiments is trained
on only 80% of the synthetic data. Each operator is trained
to familiarize themselves with the teleoperation environment
and robot manipulation by showing them the robot controls,
interface details, and SATS commands. They are allowed to
spend some time with the overall environment until they are
confident with their teleoperation skills.

1) COMMAND AUTOMATION RATE
In the first experiment, we assessed the action prediction
capabilities and automation efficiency of SATS. The opera-
tors are asked to complete as many teleoperation tasks as they
can in a 20-minute period. They are also required to use SATS
whenever possible (when there is a usable suggestion) while
performing tasks. We record manually issued commands
(i.e., actions) as well as autonomously issued commands
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during the whole teleoperation. Command Automation
Rate (CAR) is defined as the ratio of the autonomous com-
mand count to the total number of the issued commands in a
teleoperation mission. We computed the mean and the stan-
dard deviation of CAR values for each of the datasets which
are shown in the last column of Table 1. The CAR results
show that our system can achieve more than 90% automation
rates regardless of the dataset, which means the proposed
method can greatly reduce the number of manual commands
required to complete a teleoperation mission in both real and
synthetic environments. Table 1 also gives CAR results for
each of the individual action types, which shows that SATS
performs favorably regardless of action types. We also see
that some of the action primitives, such as the rotations, may
need more operator attention, which might be due to a lack of
training data for these types of actions.

2) COMPARISION WITH A BASELINE HIDDEN
MARKOV MODEL
In this experiment, we compared the action prediction capa-
bilities of the proposed method with a baseline Hidden
Markov Model (HMM). This model observes the sequence
of the action commands issued by the operator and estimates
future actions. In other words, it observes actions starting
from time-step ti−c to ti and estimates actions from ti to ti+L
at each time-step, where c and L are defined as the length
of the observation and the prediction sequences, respectively.
While the issued actions represent observations, the estimated
actions represent hidden states. This implies that both the
observation types and hidden state types are the same for
this model:G,F,B,L,R,D,P,N . We computed the starting,
the transition, and the emission probabilities of the HMM by
processing our original simulative General Missions dataset,
which was used to train SATS previously. Once we computed
all the parameters of the HMM, we tested it on our simulative
teleoperation environment. We first generate a sequence of
actions using the virtual robot. Then, we feed the generated
action sequence to the HMM as an observation sequence.
Next, we decode the HMM and find the best sequence of
hidden states explaining the observation sequence. The output
hidden state sequence is the expected action sequence for
future time-steps. We predicted 61.450 sequences using the
HMM and compared the estimated action sequences with the
ground truth data.We observed that the HMMcould achieve a
36.87% accuracy rate on our simulative dataset. This is a poor
performance compared to the SATS. Please note that SATS
achieved approximately 95% accuracy in the same dataset as
reported in the last column of Table 1.

3) INCREASING OPERATOR THROUGHPUT WITH
MULTIPLE ROBOTS
Our first experiment showed that more than 90% of the issued
actions can be automated, which means the operator will stay
idle for a long time. SATS would utilize the operator time
more efficiently if we can benefit from the available idle
time of the operators. We introduce a new operator efficiency

TABLE 2. Operator throughput of different teleoperation configurations.

metric, the Operator Throughput (OT), which is defined as
the number of tasks completed in a 20-minute period. As a
baseline OT measurement, we have created a virtual teleop-
eration environment and asked the operators to complete a
mission manually without using SATS. The measured OT
values for this experiment are reported in the first row of
Table 2. As expected, the OT values did not increase much
(the second row of Table 2) when the operator is asked to
complete the same mission using SATS because the operator
stays idle during the available free time and the overall time
for a task would be about the same. In order to increase the
throughput of the operators, the available free operator time
can be utilized by letting the operator control multiple robots
at the same time. For this purpose, the operator is asked to
complete similar teleoperation missions simultaneously with
the help of SATS using multiple robots (3 virtual robots
located in independent environments). Fig. 10 explains this
experiment by providing snapshots from the teleoperation
scenes. Please also see the provided supplementary video
material of the same experiment. In the beginning, the oper-
ator uses robot 1 manually until SATS produces sugges-
tions for automation for this robot. The operator chooses the
desired suggestion, and while SATS executes the suggestion,
the operator can switch to the second environment. After the
operator performs teleoperation in a 20-minute period using
multiple robots, we calculate total OT for all 3 missions,
which is reported at the last row of Table 2. Fig. 10 shows that
there is always a task waiting to be handled by the operator
(snapshotsmarkedwith ‘‘NeedsAttention’’), and the operator
is always active for each step, which results in a throughput
increase of more than 90% compared to manual control.

While the increase in OT is very promising, we like
to stress the importance of the Human-Computer Inter-
face (HCI) and usability design of the overall system. The
current system interface design is based on the assumption
of the importance of the visual information, which is verified
by running an experiment in which the operator uses SATS
to complete a mission without any visual cues about the pre-
dicted suggestions. Instead of visual cues, the operator only
sees a sequence of text showing the prediction action sug-
gestions. The experimental results showed that OT decreases
dramatically compared to manual control (the third row of
Table 2) when the operator cannot see the future sequences
visually.

We also observed that the most time-consuming part of
operating multiple robots is the operator perception time
of the SATS suggestions, which includes operator context
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FIGURE 10. Visualization of simultaneous multi-robot control using the proposed system. Each column shows snapshots from a different environment.
Each row demonstrates a step while the operator uses SATS (Refer to supplementary material for more results).

switch time between robots. The current HCI design of the
system is developed just to demonstrate the idea of multiple
robot control without much consideration for the operator’s
mental loads and interface usability. If the optimal HCI and
usability parameters of the system are selected, it might be
possible to gain better OT numbers and to integrate more
robots into the system to increase the system efficiency.

The performance of the operators is also affected by other
factors. If the mental loads of the operators are too low,
which is called underload, their attention level will decrease
considerably [45], which results in an OT decline. When the
operators use multiple robots, SATS continuously assigns a
new task to them to keep the mental loads of the operators at
an acceptable level, which prevents a possible OT decrease.
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FIGURE 11. 3 samples of future sequence segmentation. First Rows. Future GT RGB images, Second Rows. Future GT foreground segmentation images,
Third Rows. Foreground segmentation results generated by baseline MOG background subtractor. Last Rows. Predicted future sequence segmentations
generated by our method.

TABLE 3. Quantitative segmentation results on synthetic and real datasets. Note that, the SATS instance used in the real experiment is trained on
synthetic data and tested on real data.

4) EVALUATING SEGMENTATION QUALITY
As we mentioned in previous sections, the visual information
presented to the operator is essential for better OT values.
In this experiment, we measured the performance of the
visual prediction (i.e., semantic segmentation) capability of
the proposed method. The procedure we used in this exper-
iment can be described as follows. SATS generates a set of
future sequences while the operator performs a teleoperation
task in a synthetic or real environment. The operator checks
the suggestion list and chooses an applicable suggestion to
activate SATS. With this experiment, the semantic segmenta-
tion of the chosen sequence is compared with the correspond-
ing GT segmentation sequence.

Since the semantic segmentation sequences are probabil-
ity images indicating how likely their pixels belong to the
foreground object, we binarize them with a threshold value
of 0.05 to eliminate pixels having low probability values.
We run a connected component analysis algorithm to get
the foreground segment of the current frame. The resulting
segments are compared with corresponding GT segments.
We calculate the average accuracy, recall, and dice similarity
score of the generated segments and give them in Table 3 for
both synthetic and real datasets.

Since there are no well-known actional and visual future
sequence prediction techniques available to our knowledge,
we compare our segmentation method with a baseline Mix-
ture Of Gaussian (MOG) based background subtraction
method introduced by [46]. However, MOG is not designed
to generate any future information like our method. In order
to make MOG a super advantaged baseline, we directly feed
future GT RGB sequences to MOG and get the output fore-
ground segmentation sequences which are used as baseline
results. The first row of Table 3 shows the results achieved by
MOG. Although providing GT future frames gives MOG a
significant advantage over the proposed method, our method
outperforms MOG in most of the metrics on synthetic and
real datasets.

The qualitative segmentation result can be seen in Fig. 11
and Fig. 12 for synthetic and real datasets, respectively. Each
sample future sequence has 4 rows in these figures. The first
row in a sample shows future GT RGB sequence frames
sampled at each second. The second row presents future GT
foreground sequence segmentation frames. The third and the
fourth rows show segmentation results generated by MOG
and the proposed method, respectively. The GT action type
for each time-step is given on the lower right part of the
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FIGURE 12. 4 sample outputs of future sequence segmentation on the real robot environment. First Rows. Future GT RGB images,
Second Rows. Future GT foreground segmentation images,Third Rows. foreground segmentation results generated by baseline MOG
background subtractor. Last Rows. Predicted future sequence segmentations generated by our method. Note that, the SATS instance used
in this experiment is trained on synthetic data and tested on real data. Please see supplementary material for a video demonstration.

segmentation image generated by our method. It can be seen
that the proposed method can generate quite compact future
sequence segmentations. As expected, segmentations gener-
ated byMOG contain mostly themotion regions of the image,
which are scattered and inconsistent with GT data. Please
note again that whileMOG segments only a given future RGB
sequence, the proposed method produces segmentations for
the complete future sequence.

5) ROBUSTNESS TO UNSEEN ENVIRONMENTS AND
VIEWPORTS
The SATS instance employed in experiments on the real
dataset has been trained using only synthetic data. Consid-
ering the relatively good results that are given in Fig. 12
and Table 3, we can safely conclude that SATS is flexible
enough to carry out teleoperation tasks autonomously in
unseen/slightly different environments. There are two main
reasons for this conclusion. Firstly, there are some moving
objects such as parts of the robotic arm and cables in the

background in the real test data. There are also shadows in the
real data that move as the robotic mechanism moves. None of
those visual factors presents in the training dataset. Secondly,
the camera parameters in the test environment are not iden-
tical to the camera parameters in the training environment.
Both intrinsic and extrinsic parameters of the cameras are
slightly varied.

In order to clearly show the effectiveness of the pro-
posed method in teleoperation tasks performed in unseen
test environments, we performed two additional experiments.
We created a new dataset containing video sequences with
different backgrounds (Fig. 13-top) and have taken from
different viewports (Fig. 14-a and b) to diversify the visual
data. After completing each mission, we randomly picked
a new background out of three available images and set
it as the new background. We also updated the camera
pose right after changing the background image. Basically,
we pick a rotation angle out of a set of three predefined
rotation angles [0, 10, 20] and rotate the camera around the
scene by the chosen value. So we captured video data from
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FIGURE 13. Environments used in our experiments. Top. Snapshots from
environments used in training. Bottom. Unseen environments from the
test dataset.

FIGURE 14. Viewports from which our dataset is collected. (a) Positions
and orientations of all the viewports used in training and testing.
(b) Viewports from which training data is collected. Rotation angles are 0,
10, 20 degrees around the scene, respectively. (c) A bunch of snapshots
from unseen viewports from the test dataset. Rotation angles are
−5, 16, 25 degrees around the scene, respectively.

three different viewports in total. We retrained our model
using this new dataset and performed experiments to mea-
sure the performance of our model. In the first experiment,
we assessed the robustness of our model to unseen back-
grounds. We tested the model with a new test data containing
three different unseen background images (Fig. 13-bottom).
In the second experiment, we tested our model with a new

set of data collected from various new viewports (Fig. 14-b).
More specifically, we rotated the camera around the
scene by 1 degree and performed a mission; we repeated
this process for 27 iterations from −5 to 25 degrees
(viewports used in training are not included). We also

TABLE 4. Waypoint error rates in pixels on synthetic and real datasets.

changed the background randomly by picking an image from
the unseen set of images after each mission. In this way,
we collected actional and visual data from 27 different view-
ports containing unseen backgrounds. We then performed
experiments on this data and observed that the proposed
method performs relatively well in unseen environments.
We provided a bunch of snapshots in Fig. 14-c captured
during one of those experiments. (please see the unseenEnvi-
ronmentsAndViewports.mp4 video file for details). As a side
note, the quantitative results given in Tables 1, 2, 3 and 4
are the average values computed over all the experiments,
including this one.

6) MEASURING WAYPOINT DETECTION QUALITY
In the final experiment, we measured the waypoint detec-
tion capability of our method on future segmentation
sequences. A waypoint is defined as the centroid of a
foreground segment in a segmentation frame. Accurate
prediction of waypoints is important because the icons
used in the suggestion images are placed onto the images
using the predicted waypoint coordinates. Similar to the
previous experiment, we get the predicted future sequences
from the suggestions the operators have chosen while
performing teleoperation tasks. We obtain future sequence
segmentations from the selected suggestion and calculate a
waypoint for each of its frames. If no foreground segment
is found on a frame, we get the waypoint calculated for the
previous frame. Then, we compute the Euclidean distance
between the coordinates of the detected waypoint and the
corresponding GT waypoint.

We calculate the mean and the standard deviation of these
distances and give them in Table 4. Again, we compare our
method with the baseline MOG, which is fed with GT RGB
future images. The results of our method and MOG are given
in pixel errors in the first and the second rows of Table 4,
respectively. The first and the second columns of Table 4
show the results of the experiments performed on synthetic
and real datasets. It is observed that the proposed method
achieves much better results in terms of both the average error
and the standard deviation than the baseline MOG method in
both datasets.

Predicted waypoints on a number of sample future
sequences on synthetic and real datasets are shown in
Fig. 15-a and Fig. 15-b, respectively. While each row repre-
sents a sample future sequence, each column shows a frame
sampled at each second. We used blue markers for GT way-
points, yellow for the waypoints generated by MOG and red
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FIGURE 15. GT and predicted waypoints on (a) synthetic and (b) real environments. Blue crosses represent GT waypoints. Yellow and red crosses show
waypoints generated by baseline MOG and proposed method, respectively.

for the waypoints generated by the proposed method. The
GT actions for each of the future time-step is also given
at the lower right part of each frame. Visual analysis of
the information presented in these figures agrees with the
numerical results reported in 4.

7) SCALABILITY AND RUNTIME PERFORMANCE EVALUATION
We performed an experiment to show that the DoF of our
system can be increased with relative ease. When we add
rotation capability to our previous 3 DoF synthetic system,
we observe that the training time increased from 23 hours
to 33 hours. As for the prediction time, it increases by only
about 3%. Other costs remain mostly negligible. So, it is
possible to increase the DoF of our system at an affordable
cost in training time.

We have compared the proposed method with some of
the closest alternative techniques in terms of computational
cost. [14] is one of the most basic alternative methods
which employs a HMM-based model to estimate robot
motion. It can generate motion estimations under 1ms. The
semi-autonomous teleoperation method proposed in [9] can
create predictions at every 60ms. [17] uses a deep neural net-
work to generate visual foresight for planning robot motion,
and it can replan the motion at each 200ms. As for the pro-
posed method, the computational cost for a prediction takes
about 250ms which makes our method inferior to the alter-
natives in terms of runtime performance. However, it should
be noted that our approach aims at much higher autonomy
and provides more complex outputs (future visual estima-
tions, multiple future predictions) than alternative methods.
Therefore, it should not be overlooked that this is not a fair
comparison.

F. WALL BUILDER APPLICATION
We developed a SATS application to show the effectiveness
of the proposed method in practical situations. In this demo
application, which we callWall Builder , an operator remotely
operates a robot to build a wall by stacking bricks one by one
(Fig. 16). We train a SATS model using the WB dataset with
the same parameters we defined in Section III. At the test
time, operators are asked to build a wall on the scene using
provided bricks at the corner of the scene. After the operators
carry and place several bricks, SATS starts generating rea-
sonable predictions. The remaining part of the wall-building
process can be completed autonomously using the sugges-
tions generated by SATS. Sample snapshots from an assistive
wall building process using SATS can be seen in Fig. 16.
Please also see the provided supplementary video material of
the same experiment. It can be observed that SATS places
bricks in a shifted form in subsequent rows in accordance
with the training data, which shows that the system produces
satisfactory qualitative results. We also reported favorable
quantitative results on the WB dataset in the second row of
Table 1, which shows very good CAR values achieved by the
Wall Builder application.

G. PYRAMID BUILDER APPLICATION
Finally, we performed a more sophisticated experiment using
our simulative environment in which the operators can con-
struct pyramids by stacking building blocks one on top of
others. In this experiment, there are four types of blocks
that can be placed in different parts of a pyramid (top left
image in Fig. 17). In order to build a pyramid, the operators
need to grip a block using the robot, transfer it to the correct
position, and finally release it. We build numerous pyramids
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FIGURE 16. Snapshots from the assitive wall builder application. Please see supplementary material for a video demonstration.

FIGURE 17. Snapshots from the assitive pyramid builder application. Please see supplementary material for a video demonstration.

in our simulative environment and record actional and visual
data to create a dataset to train a SATS instance. After we
trained a SATS instance using the generated dataset for about
40 hours on a GTX 1080 Ti, we deployed it on the simulative
testing environment (Fig. 17). As in previous experiments,
the operators control the robot manually for a while at test
time to allow SATS to collect some data required for making
predictions. Then, SATS starts to generate predictions and
offer suggestions to the operators. The operators choose one
of the available suggestions to make SATS complete the rest
of the task. In this way, most of the pyramid building task is
completed autonomously. To be specific, we observed that
SATS could autonomously perform 96.14% of the actions
required for building a pyramid. More detailed results are
provided in the third row of Table 1. Please see supplementary
for a video demonstrating how a pyramid can be built with the
help of SATS. We also provide another video to demonstrate
how SATS completes the pyramid construction task even if
some of the blocks are placed in incorrect positions.

Our system may be seen as an oversimplified design as
we abstracted some of the subtasks of classical teleoperation,
such as gripping an object or rotating in 3D, etc. However,
these experiments show that SATS can handle complex tele-
operation tasks in terms of planning and decision-making
which are more sophisticated than classical teleoperation
tasks. In conclusion, with these experiments, we validated
that SATS is an AI-powered assistance system that is capable
of helping the operators at higher levels, such as understand-
ing the current phase of the construction and suggesting the
next possible actions.

V. CONCLUSION
We presented an end-to-end Stochastic Assistive Tele-
operation System (SATS) that continuously monitors the

complete teleoperation process and suggests actions to the
operators whenever the system detects autonomously appli-
cable actions. SATS does not only predict a sequence of future
actions but a set of prediction sequences containing both
actions and visual representations of the scene. Employing
such an approach allows SATS to achieve several advantages.
Firstly, let us imagine a scenario in which an operator carries
cargo boxes by following two different paths; path A for
sunny weather and path B for rainy weather. Also, suppose
A and B are identical in terms of action types, up to a certain
step. So without visual processing, it is not possible to decide
which path should be suggested to the operator in different
weather conditions. Thanks to our design, SATS is capable of
generating correct suggestions in such situations. Secondly,
the visual output is quite useful for the operators to imag-
ine the expected outcome of the suggested actions, which
increases the throughput of the operators. Finally, generating
multiple predictions is extremely important when there are
multiple possible futures. The prediction subsequences after
a future junction point would not be reliable without such an
approach. Our novel stochastic prediction mechanism incor-
porating deep recurrent neural networks and Markov chains
makes SATS robust in those kinds of situations. To the best
of our knowledge, the proposed system is the first example to
employ stochastic action-conditioned video prediction tech-
niques in the autonomous teleoperation domain.

The operators can control multiple robots simultaneously
using SATS, increasing the throughput of the operators con-
siderably. In addition, our method generates predicted seg-
mentations and waypoints of the foreground objects for each
future sequence frame, which can be employed for further
scene analysis tasks.

We validated the proposed system thoroughly on both
synthetic and real datasets, which showed that our system
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can autonomously perform 93.42% of the actions required to
complete a teleoperationmission.Moreover, SATS boosts the
throughput of the operators by 92.05% as it allows the oper-
ators to control up to 3 robots simultaneously. Although this
increase in operator throughput is promising, it can be further
boosted by employing more sophisticated HCI techniques
because we observed that the most time-consuming phase
of managing multiple robots is the operator perception time
of the generated suggestions. We expect that designing an
optimal interface may help achieve lower operator perception
times. The experiments on future sequence segmentation and
waypoint prediction showed that SATS can achieve more
favorable results than the baseline method. The experiments
performed with t-SNE methods validated that the neural
network model employed in SATS can capture meaningful
patterns in the input data.

SATS can be trained with a synthetic dataset collected in
an environment roughly similar to the real counterpart and
then deployed in the real environment. Considering collecting
large amounts of training data from real teleoperation envi-
ronments is more costly than collecting data from synthetic
environments, and most of the teleoperation systems have a
simulative operator training environment readily available,
this feature could greatly reduce the development cost of
autonomous teleoperation systems. This result also makes
clear that SATS is flexible enough to carry out teleoperation
tasks autonomously in slightly different environments.

Finally, in order to show the effectiveness of our system on
practical applications, we created a realistic scenario in which
operators build walls and pyramids using simple bricks with
the help of SATS. The operators can construct walls and pyra-
mids with automation rates of 96.27% and 96.14%, respec-
tively, using the proposed assistive teleoperation system. This
result implies that SATS is promising for automating generic
industrial applications.

The pyramid building experiment shows us that SATS can
be helpful for the operators in different ways. For instance,
in the pyramid experiment, certain types of bricks should be
placed in a specific order to avoid irreversible mistakes in
the construction process. In such scenarios, more attention
is required, and it is harder for the operators to recall the cor-
rect order of the actions. Fortunately, SATS can suggest the
correct actions to operators in such situations with great accu-
racy, which decreases the mental load of the operators dra-
matically. Considering that these types of decision-making
problems are common in real-life scenarios, it can be said
that this would be an important additional feature enhancing
the usability of SATS greatly. We plan to focus on validating
and improving that kind of features of our method in future
work.
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