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ABSTRACT This paper reports an initial study on the simultaneous estimation of unknown road roughness
input and tire normal forces for automotive vehicles using a long short-term memory (LSTM) model. Active
safety systems and the improvement of ride comfort using vehicle information have garnered increasing
attention in the automotive industry. In particular, active safety systems rely significantly on road roughness
data and the normal force of the tires. If these factors can be measured in real-time for a driving vehicle, the
measured data can be used for automotive control systems for tasks, such as semi-active and active suspension
control, rolling motion control, and torque vectoring. However, it is typically difficult to measure the road
roughness and tire normal force directly in real-time by mounting physical sensors on the vehicle. In this
study, we explore the simultaneous estimation of these factors using an LSTM model that requires only
time-series data of the vehicle body. The LSTM model is implemented by using MATLAB/Simulink and
includes data preprocessing, learning, and verification steps. To evaluate the estimation performance of the
LSTMmodel, we compared it with a Kalman filter and used CarSim vehicle simulation software to simulate
and interpret the dynamic behavior of vehicles.

INDEX TERMS Long short-term memory model, discrete Kalman filter-unknown input, 7-DOF full-car
suspension model, tire normal forces, road roughness.

I. INTRODUCTION
Robust vehicle control is necessary to improve vehicle safety
and performance and has drawn considerable research inter-
est in recent years. In particular, active safety systems have
been recently developed using chassis information from vehi-
cles to improve driver’s comfort and safety [1]. For example,
the active body control (ABC) system, including the active
roll stabilizer (ARS) system and active damper system, can be
governed by the characteristics of vehicle vertical dynamics.
These control systems are designed to enhance the turning
stability of the vehicle and reduce vibrations in the vehicle
body due to the irregularity of road inputs; therefore, the road
roughness (frequently referred to as road profile) and tire
normal force plays a key role in designing these controllers
because they act as unknown disturbance inputs to the control
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system [2], [3]. However, many previous studies for active
body control system has considered only the vertical motion
of sprung mass such as vertical speed or acceleration due
to the difficulty in real-time estimation of road roughness
and tire normal force [4]. The real-time information on road
roughness can significantly improve the comfort and safety of
autonomous vehicles because road roughness also can serve
as a reference index for autonomous path planning [5].

Road roughness can be measured directly using a laser
sensor or an optical device, such as a camera or a light
detection and ranging (LIDAR) system [6], [7]. However,
in the case of direct measurement methods, it is inconvenient
to install expensive sensors. Furthermore, the algorithm of the
3D imaging method is generally complicated, resulting in a
high computational burden. Thus, some researchers proposed
an alternative method of road roughness estimation using a
Kalman filter based on the measured system response due
to the disturbance applied to the vehicle system. Several
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FIGURE 1. Overall schematic of the simultaneous estimation of unknown road input and tire normal force using
LSTM-based estimator (model).

researchers have studied Kalman filters to estimate road
roughness. For example, Kang et al. applied this algorithm for
estimating road roughness [8]. Kim et al. estimated the state
information of the suspension control system and validated its
performance [9]. From these studies, the DKF–UI algorithm
has been known as an effective algorithm to address the esti-
mation problem with unknown input and state information,
as it does not require any prior information.

Recently, data-driven engineering approaches have been
introduced as an alternative approach for estimating unknown
inputs and state information. In the data-driven approach,
a highly nonlinear mapping from the input to the output data
is learned during an offline training process. There are several
inherent advantages of adopting a data-driven approach. First,
the model learns the dynamics of the system directly from the
data; thus, the need for explicit physical modeling is not nec-
essary. Second, the forward-path for evaluating a pre-trained
deep neural network consists solely of basic operations and
nonlinear activation functions. Hence, it is computationally
efficient compared with a model-based Kalman filter algo-
rithm. Previous data-driven approaches have focused solely
on estimating road roughness. Some studies have attempted
to classify road roughness using machine-learning algo-
rithms [10], [11]. A previous study used a fuzzy model along
with a static nonlinear autoregressive exogenous (NARX)
model to successfully estimate the road roughness using
simulated data [12], while a further study validated the per-
formance of the NARX model with field-test results [13].
To estimate the unknown road roughness and four system
states, Kim et al. proposed a new encoder-decoder struc-
tured recurrent neural network (RNN) model with a two-
phase attention mechanism to better characterize the dynamic
behavior of suspension systems [14].

Although the vehicle normal force of a road on a tire
at the contact patch can be used in many vehicular control
applications (e.g., active roll control to prevent the rollover),
there were few types of research because the measurements
of tire normal force are challenging. Because the use of
physical sensors to directly measure the normal force of
an automotive tire is expensive and impractical [15], many
analytical and experimental studies have investigated the use
of virtual sensors (i.e., sensor data fusion) for the indirect

measurement of tire force. For example, the longitudinal
and lateral tire force history and vehicle conditions were
estimated using an EKF-based 9-DOF vehicle model [16].
However, the estimator did not determine the normal force
of each tire because it used a half-car model. Samadi et al.
estimated the longitudinal tire forces per wheel and lateral
tire forces per axle using a square root EKF-based four-wheel
vehicle model with a Gauss–Markov model for friction [17].
Doumiati et al. used EKF to estimate the normal forces of
each tire, regardless of the tire model [18]. However, it was
assumed that the vehicle was traveling on a flat road with no
irregularities on the road surface.

Based on the individual studies on the estimation of road
roughness and vehicle’s several state variables, the simulta-
neous estimation of road roughness and state variables has
been recently attempted to alleviate the computational com-
plexity. The simultaneous estimation of tire normal forces
and road roughness enables dynamic interpretation of the
vehicle system considering road roughness and improves
the driving force distribution and control performance of
the brake system [19], [20]. Tsunashima et al. designed an
estimator using multiple interacting models considering the
vehicle’s internal state and road state simultaneously from the
measurement of the lateral acceleration and yaw rate [21].
Rath et al. simultaneously estimated the road roughness and
tire road friction of the quarter car system using higher-
order sliding mode and nonlinear Lipshitz observer [22].
Wang et al. used the adaptive unscented Kalman filter to
classify various road conditions while estimating the vehi-
cle state [23]. Because previous studies [19]–[23] are asso-
ciated with physical model-based simultaneous estimation,
physical model inaccuracy leads to low estimation perfor-
mance. Recently, Kim et al. estimated the road roughness
and vehicle state based on model-free prediction such as
a deep-learning-based observer system [14]. The sequence
data calculation input to the offline pre-trained deep-learning
model consists of only the calculated nonlinear activation
function, resulting in a small computational burden com-
pared with the Kalman filter. Although previous studies
have shown promising results in estimating road roughness
and state variables, the following issues should be further
considered.
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• The simultaneous estimation of the road roughness and
tire normal force is required for full-car control-system
applications because it plays a key role in designing
these controllers such as ABC and ARS.

• The number of sensors should be minimized from the
viewpoint of cost-effectiveness and simplicity because
the use of multiple sensors results in complex and expen-
sive chassis-control systems.

Therefore, the objective of this study is to explore a new
method for estimating the tire normal force and unknown
road input simultaneously based on a deep-learning esti-
mation system called the long short-term memory (LSTM)
model, as described schematically in Figure 1. To evaluate
the performance of the proposed method, we designed a
DKF–UI model based on [8] and compared it with the LSTM
model. CarSim R©(V 9.0) vehicle simulation software was
used as a full-vehicle dynamics simulator to generate vehicle
sensor data used as the learning and test data. It was also
used for the validation of the LSTM model because it has
been widely used as an accurate alternative platform to real-
world in-vehicle tests [24]. To validate the LSTM model,
we additionally performed physical-model-based simulations
considering the vertical and longitudinal dynamics of the
seven degree-of-freedom (DOF) vehicle model.

II. DATA-DRIVEN ENGINEERING APPROACH
A. OVERVIEW OF LSTM MODEL
The LSTMmodel was initially proposed for the deep learning
application with time-series data such as speech, sentences,
and video [25]. LSTM can maintain both long-term and
short-term memory and is a type of recurrent neural network
(RNN). It introduces a structure called a gate and memory
cell. This structure allows the model to inherit only the infor-
mation needed at the next point in time while determining
the amount of historical information that needs to be remem-
bered. Figure 2 shows a schematic of the proposed data-
driven engineering approach for simultaneously estimating
the unknown road input and tire normal force using the LSTM
model. The unknown road roughness acts as an input to the
CarSim model. Five sensor data points were acquired from
the CarSim model and used as measured values for input
into a pre-trained LSTM model. The LSTM has a circular
structure similar to an RNN and has a complex internal
structure. The LSTM cell has three gates and one memory
cell, where xt is the input, ht is the output at time t , and ht−1
is the output immediately before t and l denote the order of
the LSTM cells. In Figure 2, arrows indicate the flow of data,
and circles indicate operations between matrix elements. The
number of cells represented by n is given by the total data
divided by thewindow size. The forward-propagation process
can be expressed as follows:

• Forget gate

f (l)t = σ (W
(l)
xf xt +W

(l)
hf ht−1 + b

(l)
f ) (1)

FIGURE 2. The proposed method for simultaneously estimating the road
input and tire normal force using LSTM (a) overall schematic, (b) detail
Internal structure of the LSTM model.

• Input gate and new memory

i(l)t = σ (W
(l)
xi xt +W

(l)
hi ht−1 + b

(l)
i )

c̃(l)t = tanh(W (l)
xc xt +W

(l)
hc ht−1 + b

(l)
c (2)

• Output gate

o(l)t = σ (W
(l)
xo xt +W

(l)
ho ht−1 + b

(l)
0 ) (3)

• Cell state ct and hidden state ht

c(l)t = f (l)t ◦ c
(l)
t−1 + i

(l)
t ◦ c̃

(l)
t

h(l)t = o(l)t ◦ tanh(c
(l)
t ) (4)

The forget gate adjusts how much of the memory cell’s
contents are left behind. A sigmoid function is used for the
forget gate. The output value ht−1 at the previous time and xt
entering the LSTM cell at the current time is multiplied by
the weight and added to the bias bf . This output value is used
as the input for the sigmoid function. Here, ft passing through
the sigmoid activation function is multiplied by ct−1, and the
data then flows to the next step. The input gate adjusts how
much of the output is reflected in thememory cell at time t−1.
Then, it that passes the activation function tanh becomes a
new memory that is added to the memory cell. A ct is created
by multiplying the new memory it by the c̃t passed input
gate. The created ct stores only the necessary information
and is passed to the next LSTM cell. Finally, it remains to
decide what to export as an output. This output is a filtered
value based on the cell state. First, it decides which part of
ct to output as the input data to the sigmoid layer. Then, ct
is passed through the tanh layer and multiplied by the output
of the sigmoid gate calculated earlier. Thus, the exported data
contains only the desired portion as output ht .

Figure 3 shows the expansion structure of the LSTMmodel
and time series data learning process, where n is the number
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FIGURE 3. Extended structure of LSTM model showing the learning process of time series data.

of cells in the LSTM model, which is equal to the window
size. The window has a fixed size in units for training the
LSTMmodel. If there are 10 window data points, 10 previous
data points are used to predict the value of the next time unit.
For forward propagation, the output data is calculated through
the fully connected layer. Training is then performed to deter-
mine all optimal weight values through the backpropagation.

B. TRAINING DATA ACQUISITION
All input data used for training were generated for a D-class
sedan vehicle model with a driving speed of 60 km/h using
CarSim. In this study, the tire model of Pacejka 5.2 is used
with standardized magic formula model coefficients to rep-
resent visco-elastic properties of tires [26], [27]. A parallel-
track road model was used, and the road elevation (i.e.,
road roughness, profile) on the left and right tracks were
synthesized. Then, continuous data of the vehicle’s response
to this synthesized road input were obtained. Standard ISO
8608 specifies the road classification of longitudinal random
road roughness based on the power spectral density (PSD)
of vertical elevation [9]. In this study, the road roughness
was synthesized for C-class roads (stationary roads). The
slopes of the PSD graphs of the test roads were −1.94 and
−1.86 respectively. These values are close to the value (−2)
of the level road roughness classified as an international
roughness index, as shown in Figure 4 [28].

In this study, only the input data of the sprung mass in
CarSim were required for the use of deep learning. Thus, 6-D
inertial measurement unit (IMU) sensors and accelerometers
were used to measure the motion of the sprung mass. The
6-D IMU provides information on the vehicle’s longitudinal
acceleration (ax), lateral acceleration (ay), and yaw rate (ψ).
Acceleration sensors are used to detect the vertical movement
of a vehicle. We generated input data using sensors, and the
output data were the four normal forces and the unknown
road input of each tire from the learned model, as shown in
Table 1. The input data for the LSTM model are the pitch

FIGURE 4. Synthesized road roughness profiles used as the unknown
road input. (a), (c) road roughness of parallel tracks, and (b), (d) their
corresponding PSD.

rate (θ̇ ), sprung mass vertical speed (żs), acceleration (z̈s), roll
acceleration (ϕ̈), pitch acceleration (θ̈ ). To reduce the number
of sensors, the proposed LSTM model only use an inertial
measurement unit (IMU) and accelerometer, which have been
successfully applied to the automotive industry because they
are cost-effective and highly reliable. From the IMU such
as gyro sensor and accelerometer, sprung mass acceleration
along z-axis and roll and pitch rate were directly measured.
Then, the integral with high-pass filtering for reducing the
drift error and differential operations with low-pass filtering
for removing electrical noises are implemented to acquire the
sprung mass velocity and roll/pitch accelerations. The deep
learning-based estimationmethod has the advantage that only
the measured sensor data of the sprung mass are required.

The tire normal force and road roughness in the
LSTM model was also estimated through training, verifi-
cation, and testing processes. In this study, shuffle division

16658 VOLUME 10, 2022



S. J. Im et al.: Simultaneous Estimation of Unknown Road Roughness Input and Tire Normal Forces Based on LSTM Model

TABLE 1. Input and output data for LSTM model.

FIGURE 5. Schematic of full car suspension model (7-DOF).

cross-validation was used because it allows the alleviation
of overfitting concerns and rapid operations for large data
sets [29]. The hyper-parameters used for training were max-
imum epochs, initial learning rate, learning rate drop period,
learning rate drop factor, and mini-batch size. An optimiza-
tion algorithm called adaptive moment estimation (ADAM)
is used to efficiently learn [30]. The hyper-parameters are
discussed in detail in Section III-B.

III. PERFORMANCE VALIDATION
A. DKF-UI WITH TIRE NORMAL FORCE ESTIMATOR
In this study, the discrete Kalman filter–unknown input
(DKF–UI) with tire normal force estimator is developed to
validate the performance of LSTM. A 7-DOF full-car sus-
pension model is used for the DKF-UI model, as shown in
Figure 5 [31], [32]. This full-car model assumes that each
wheel affects the springs and dampers of the other wheels.
The wheel model consists of only weight and tire stiffness.
Because the actual vehicle tire damping is very small com-
pared to the tire stiffness, it is generally neglected.

The 7-DOF suspensionmodel consists of four wheels mov-
ing vertically in the z-direction, a rotational moving body of
the vehicle about the x-direction (roll motion), a rotational
body of the vehicle about the y-direction (pitch motion), and
a rotational body of the vehicle about the z-direction (yaw
motion). The response of the vehicle system is caused by
vertical excitation owing to the road disturbance applied to
the four wheels. The road roughness input for the DKF-UI
model is shown in Figure 4. The governing equation of the
full-car suspensionmodel is derived fromEquations (5)∼(11)

msz̈s = −Fc1 − Fc2 − Fc3 − Fc4 − Fks1
−Fks2 − Fks3 − Fks4 − msg (5)

TABLE 2. Parameters for the full-car suspension model.

Iyθ̈ = −a1(−Fc1 − Fks1)− a1(−Fc4 − Fks4)

+a2(−Fc2 − Fks2)+ a2(−Fc3 − Fks3) (6)

Ix ϕ̈ = b1(−Fc1 − Fks1)+ b1(−Fc2 − Fks2)

−b2(−Fc3 − Fks3)− b2(−Fc4 − Fks4) (7)

mu1z̈u1 = Fc1 + Fks1 − ktf (zu1 − z1)− mu1g (8)

mu2z̈u2 = Fc2 + Fks2 − ktf (zu2 − z2)− mu2g (9)

mu3z̈u3 = Fc3 + Fks3 − ktf (zu3 − z3)− mu3g (10)

mu4z̈u4 = Fc4 + Fks4 − ktf (zu4 − z4)− mu4g (11)

where ms is the mass of the vehicle body, mui(i = 1, 2, 3, 4)
is the mass of each wheel, and Ix and Iy are the roll and
pitch mass moments of inertia, respectively. In addition, ktf
is the tire stiffness, assuming that all four wheels have the
same stiffness; zs is the vertical displacement of the vehicle
body mass; zui(i = 1, 2, 3, 4) are the vertical displacements
of each wheel; zi (i = 1, 2, 3, 4) are the unknown road inputs
applied to each wheel; ϕ and θ are the roll and pitch angular
displacements, respectively; and Fci and Fksi(i = 1, 2, 3, 4)
are the damping force and restoring force of each wheel,
respectively. The state vectors and unknown input z∗ are
defined in Equations (12) and (13), respectively. The physical
parameters for the full-car suspension model are listed in
Table 2.

x =
[
zu1 żu1 zu2 żu2 zu3 żu3 zu4 żu4 ϕ ϕ̇ θ θ̇ zs żs

]T
=
[
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

]T
(12)

z∗ =
[
z1 z2 z3 z4

]T (13)

Although a DKF–UI applied system should be a linear
system and the input applied to the system is a known value,
the DKF–UI model can be applied to estimate unknown
road inputs using a random walk model. Kang estimated
the unknown road input by applying the DKF–UI model
to a quarter-car model [8]. In this study, four unknown
road roughness values applied to each wheel of a full-car
model were estimated using the DKF–UI model, and the
normal force was indirectly estimated based on the estimated
unknown road input. The following equations represent the
main estimation process of the DKF-UI algorithm and the
detail process is described in [8] and [9].
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TABLE 3. Input and output data for DKF-UI model.

• Initialization of parameter at k = 0

x̂0 = E [x0]

ẑ0 = E
[
z∗0
]

(14)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)T

]
S0 = E

[
(z∗0 − ẑ

∗

0)(z
∗

0 − ẑ
∗

0)
T
]

(15)

• Prediction step

x̂(k| k − 1) = Ad x̂(k − 1)+ Bd z(k − 1)

P(k| k − 1) = AdP(k − 1)ATd + Q (16)

• Kalman gain calculation

K (k) = P(k| k − 1)CT (CP(k| k − 1)CT
+ R)−1

(17)

• Unknown input estimation step

S(k) =
[
DTR−1(I − CK (k))D

]−1
ẑ∗(k) = S(k)DTR−1[I − (CK (k))][q(k)− Cx̂(k)]

(18)

• Correction step

x̂(k| k) = x̂(k| k − 1)+ K (k)

×
[
q(k)− Cx̂(k| k − 1)− Dẑ∗(k)

]
P(k| k) =

[
I + K (k)DS(k)DTR−1C

]
× [I − K (k)C]P(k| k − 1) (19)

The input data for the DKF-UI model are the sprung mass
vertical displacement zs, z̈s, ϕ̈, θ̈ , and unsprung mass accel-
eration of each tire z̈ui(i = 1, 2, 3, 4), as shown in Table 3.
Several acceleration sensors, displacement sensors, and laser
sensors are required to measure the unsprung mass data for
DKF–UI model [8]. This is a disadvantage because several
expensive sensors are required, which are inconvenient for
installation inside vehicles. Figure 6 presents an overall flow
diagram of the unknown road input estimation process. The
notation ′ˆ′ represents the estimated value.
After estimating the unknown road roughness, the tire nor-

mal forces were estimated. The unknown road roughness acts
as an input to the 7-DOF suspension system. The DKF–UI
model estimates the input of 14 vehicle states and 4 unknown
road inputs. The estimated data can be used to obtain the tire
static normal force using a longitudinal vehicle model [33].
The dynamic tire normal force of the vehicle considering
the longitudinal load transfer can be calculated using the tire
normal force calculator. All parameters of the longitudinal

FIGURE 6. Overall flow chart for the DKF-UI model.

vehicle model are defined in Figure 7. The corresponding
moment equilibrium equation is as follows.∑

MA = Nr l − lfmg+ hmax = 0∑
MB = −Nf l + lrmg− hmax = 0 (20)

where
∑
MA and

∑
MB denote the summations of the

moments at points A and B, respectively; N1 is the left front
tire normal force; N2 is the left rear tire normal force; N3 is
the right front tire normal force, and N4 is the right rear tire
normal force. Further, Nf is the sum of N1 and N3, and Nr
is the sum of N2 and N4. In this study, it is assumed that the
vehicle is traveling at a constant speed, and the acceleration
ax of the vehicle in the longitudinal direction is assumed to
be zero. Therefore, the static tire normal force for each tire is
determined as follows.

Nf =
lr
l
mg, N1 = N3 =

Nf
2

Nr =
lf
l
mg, N2 = N4 =

Nr
2

(21)

The calculation of the dynamic tire normal force of the vehi-
cle considering the load transfer is expressed as follows.

Fv = Fg + Fd + Fs + Fts + Fsv (22)

where Fg is the force considering the wheel load, Fd is the
damping force, Fs is the restoring force, Fts is the force due
to tire stiffness, and Fsv is the static tire normal force. The
dynamic normal forces of each tire are as follows.

Fv =
[
Fv1 Fv2 Fv3 Fv4

]T (23)

Fv1 = mu1g+ cs1(żc1 − żu1)

+ks1(zc1 − zu1)− ktf (zu1 − z1)+ N1 (24)

Fv2 = mu2g+ cs2(żc2 − żu2)

+ks2(zc2 − zu2)− ktf (zu2 − z2)+ N2 (25)

Fv3 = mu3g+ cs3(żc3 − żu3)

+ks3(zc3 − zu3)− ktf (zu3 − z3)+ N3 (26)

Fv4 = mu4g+ cs4(żc4 − żu4)

+ks4(zc4 − zu4)− ktf (zu4 − z4)+ N4 (27)
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FIGURE 7. Longitudinal vehicle dynamics model.

TABLE 4. Tuning parameters for the DKF–UI model.

zc =
[
zc1 zc2 zc3 zc4

]T
=


zs + b1ϕ − a1θ
zs + b1ϕ + a2θ
zs − b2ϕ + a2θ
zs − b2ϕ − a1θ

 (28)

where zc is a vector represented by an element with a vertical
displacement on each of the four sides of the suspension [38].
Finally, the dynamic tire normal force of each tire was esti-
mated using the state and unknown road inputs estimated by
the DKF–UI model.

F̂v =
[
F̂v1 F̂v2 F̂v3 F̂v4

]T
(29)

F̂v1 = mu1g+ cs1(ˆ̇zc1 − ˆ̇zu1)+ ks1(ẑc1 − ẑu1)

−ktf (ẑu1 − ẑ1)+ N1 (30)

F̂v2 = mu2g+ cs2(ˆ̇zc2 − ˆ̇zu2)+ ks2(ẑc2 − ẑu2)

−ktf (ẑu2 − ẑ2)+ N2 (31)

F̂v3 = mu3g+ cs3(ˆ̇zc3 − ˆ̇zu3)+ ks3(ẑc3 − ẑu3)

−ktf (ẑu3 − ẑ3)+ N3 (32)

F̂v4 = mu4g+ cs4(ˆ̇zc4 − ˆ̇zu4)+ ks4(ẑc4 − ẑu4)

−ktf (ẑu4 − ẑ4)+ N4 (33)

B. SIMULATION SCHEME
The simulation of the entire vehicle model was performed
assuming a vehicle traveling on a road at a certain velocity,
where both the DKF–UI and LSTMmodel were implemented
in MATLAB/Simulink R© (solver of ode4 Runge-Kutta, step
size of 0.001). For the DKF-UI model, the initial values of
x0 and P0 are set before the algorithm is executed. Because
it is difficult to set the initial values of the state vector and
covariance matrix to realistic values, they are initially set to
arbitrary values. The initial Q and R were updated using a
trial-and-error process. The initial values of x0, P0, Q, and R
are listed in Table 4.

For the LSTM model, many hyper-parameters need to be
adjusted by the user. Six hyper-parameters were used in this

TABLE 5. Selected hyper-parameters for random search-based
optimization for LSTM model.

study, as listed in Table 5. The epoch refers to the number of
times the entire dataset is learned once, and the most efficient
maximum epoch setting is required to end learning. The point
at which the loss value converged to zero as much as possible
was selected as the maximum epoch value. The learning rate
is a constant value obtained by multiplying the error by the
partial differential value with a weight, and if the initial learn-
ing rate is too large, the point where the error is minimized
may not be found and diverged. The initial learning rate is
set and the learning rate is lowered every number of times
designated as learn rate drop period to proceed with more
detailed learning. The dropout method was used to randomly
ignore some of the input paths of the cell during the training
of the deep-learning model. The purpose of this method is
to regulate the deep-learning model to be less sensitive to
the weights of specific inputs and less prone to overfit the
training data. The computational cost of obtaining the loss
function value for each training dataset is high. To reduce
this cost, the mini-batch calculates the average loss function
value by extracting data from the population based on the
size of the mini-batch. The random search method has been
proposed so that the LSTM network’s hyper-parameters can
be obtained automatically. The random search method is
performed by randomly selecting arbitrary hyper-parameter
values within a specific range. It had been known that the
advantage of this method is reducing the number of unnec-
essary repetitions [34]. Based on the prediction error of the
LSTM model, the model will find suitable values for the
six hyper-parameters by minimizing the error value. These
hyper-parameters are selected by random search method and
listed in Table 5.

IV. RESULTS AND DISCUSSION
A. ESTIMATION PERFORMANCE
To evaluate the basic estimation performance of the LSTM
model, the simulation of the vehicle model with no noise
input data was performed assuming a vehicle traveling
on a C-class road at a speed of 60 km/h for 9 s (dis-
tance of 166 m). The root mean squared error (RMSE)
at the kth time instant is calculated for more rigorous
analysis [35], [36].

RMSE(k) =

√√√√1
k

k∑
i=1

(p(i)− p̂(i))2 (34)
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FIGURE 8. Comparison of tire normal force estimation (C-class road, 60 km/h); (a) LF, (b) LR, (c) RF, (d) RR.

FIGURE 9. Comparison of road roughness estimation (C-class road, 60 km/h); (a) LF, (b) LR, (c) RF, (d) RR.

FIGURE 10. Example of Gaussian random distribution of sprung mass
vertical acceleration sensor data (LSTM); (a) Case 1 (contaminated),
(b) Case 2 (more contaminated).

where k is a time instant at t = k1t , p(i) and p̂(i) are the
true (i.e., CarSim) and estimated values, respectively. The
steady-state mean of RMSE (MRMSE) was then calculated
to exclude the transient periods for the left front (LF) tire,
right front (RF) tire, left rear (LR) tire, and right rear (RR)

tire, as shown in Figure 8 and 9. The absolute MRMSE of
the normal force and road roughness for the LSTM model
were lower than the DKF-UI, as shown in Table 6, which
implies that the LSTM model is more accurate than that
of the DKF-UI model. The computation time is calculated
and compared to identify the lower computational burden of
the LSTM model under NVIDIA DGX STATION (Future
Automotive Intelligent Electronics Core Technology Center,
Republic of Korea). The computation time of the LSTM
model is 0.921 s in a simulation time of 9 s, whereas the com-
putation time of DKF-UI is 6.32 s, which indicates that the
LSTM model is more lightweight and suitable for real-time
control applications.

B. ROBUSTNESS ANALYSIS
The robustness of the proposed LSTMmodel under noise and
parametric model uncertainty is analyzed by introducing the

16662 VOLUME 10, 2022



S. J. Im et al.: Simultaneous Estimation of Unknown Road Roughness Input and Tire Normal Forces Based on LSTM Model

FIGURE 11. Comparison of tire normal force estimation for different sensor noise levels; (a) LF, LSTM, (b) RF, LSTM, (c) LF, DKF-UI, (d) RF,
DKF-UI.

FIGURE 12. Comparison of road roughness estimation for different sensor noise levels; (a) LF, LSTM, (b) RF, LSTM, (c) LF, DKF-UI, (d) RF,
DKF-UI.

FIGURE 13. Comparison of estimation results for vehicle mass uncertainty (LF), (a) LSTM, tire normal force, (b) LSTM, road roughness,
(c) DKF-UI, tire normal force, (d) DKF-UI, road roughness.
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FIGURE 14. Comparison of estimation results for tire stiffness uncertainty (LF), (a) LSTM, tire normal force, (b) LSTM, road
roughness, (c) DKF-UI, tire normal force, (d) DKF-UI, road roughness.

FIGURE 15. Comparison of estimation results for moment of inertia uncertainty (LF), (a) LSTM, tire normal force, (b) LSTM, road
roughness, (c) DKF-UI, tire normal force, (d) DKF-UI, road roughness.

TABLE 6. Comparison of MRMSE (C-class road, 60 km/h).

perturbation of sensor noises and main parameters. Because
the sensor information will be inherently contaminated by
electrical noises, the effect of electrical noise on the estima-
tion performance was examined. The white Gaussian random
noise was added to all sensor data. For example, a probability
density function of sprung mass vertical acceleration includ-
ing white Gaussian random noise is shown in Figure 10.
Because the random noise (error) distribution can be fitted to
a normal Gaussian distribution with the variance (σ 2

= 0.06,
Case 1), as shown in Figure 10 (a), it was confirmed by white
Gaussian random noise. An original random noise has been
modified to produce the more contaminated Gaussian noise

(σ 2
= 0.08, Case 2), as shown in Figure 10 (b). The variance

values of other input data were also added. For example, roll
rate, sprung mass vertical velocity, roll rate, and pitch accel-
eration for Case 1 were 0.3, 0.02, 0.2, and 0.2 respectively.
The proposed LSTM model seems to be robust against the
Gaussian random noise extracted from all sensor data because
the estimation results appeared to be similar to CarSim and
DKF-UI models, as shown in Figure 11, 12. Unlike the
DKF-UI model, the LSTMmodel learns to extract high-level
features from data (i.e., cell state ct and hidden state ht ) and
convert them into the values of interest. The LSTM model is
thus trained to focus on relevant information within the input
time series data, resulting in filtering out unwanted noises.

The robustness of the proposed LSTM model under para-
metric uncertainty such as vehicle mass was examined.
Because the sprung mass (i. e., vehicle mass) depends on
the number of passengers, the vehicle mass is one of the
significant model uncertainties. The nominal sprung mass
(1370 kg) was perturbed by −15% (1165 kg) and +15%
(1576 kg), respectively, as shown in Figure 13. The estimation
with perturbed tire stiffness was also evaluated because the
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FIGURE 16. Relative errors to nominal under noise and parametric
uncertainties (LF); (a) tire normal force, (b) road roughness.

relationship between the tire vertical stiffness and pressure
can be assumed to be linear characteristics under the normal
operation conditions (150 ∼300 kPa) and the tire stiffness
also can be one of the significant model uncertainties when
the tire inflation pressure varies [37]. The nominal tire stiff-
ness (240 kN/m) was then perturbed by −15% (204 kN/m)
and +15% (276 kN/m), respectively, as shown in Figure 14.
The nominal moment of inertia for rolling (671.3 kgm2) was
also perturbed by−15% (570.6 kgm2) and+15% (772 kgm2)
because it can be changed by vehicle loads and geometric
variables such as roll axis, as shown in Figure 15. The same
parametric uncertainties (i.e., perturbations) used for the
LSTM model were also applied to the DKF-UI model. The
estimation results demonstrated the advantage of proposed
model-free LSTM model because the results appeared to be
similar to CarSim under various parametric uncertainties to a
reasonable extent.

To further investigate the robustness of the proposed LSTM
model under noise and parametric uncertainties, the relative
error to nominal (i. e., normalized performance measure) is
quantitatively calculated and compared to theDKF-UImodel.

Relative Error =
|MRMSEPerturbed −MRMSENominal|

MRMSENominal
(35)

Because similar behavior is observed in all tires, the values of
the relative error to nominal for the only LF tire are illustrated

in Figure 16. The estimation performance of the LSTMmodel
for tire normal force is similar to DKF-UI except for vehi-
cle mass uncertainty. For road roughness, the LSTM model
seems to be more sensitive to noise and parametric uncertain-
ties, compared with the DKF-UI model because road input is
completely assumed as unknown input for the LSTM model
whereas DKF-UI considers unknown input estimation step in
Eq. (18). However, note that the performance measure is the
relative error to the nominal affected by the denominator in
Eq. (35) (MRMSENominal, the absolute MRMSE). The LSTM
model seems to be directly affected by the training data
and the parameter perturbations beyond the training limit.
Such limitations can be addressed by utilizing more advanced
techniques such as the attention mechanism [38], [14] and
physics-informed loss functions [39] that can better guide the
networks to learn the vehicle dynamics from training data.

C. EXTRAPOLATION CAPABILITY
Because most deep learning models are fit to a response
variable within a trained range, this may lead to degraded
performance when it fits an actual response variable outside
the ranges and the extrapolation capability of the proposed
LSTM model should be accordingly examined. In this study,
the estimation results for two non-stationary road inputs (i. e.,
not trained ranges; different road class and vehicle velocity)
are evaluated and analyzed. The road class is initially set to be
C-class and suddenly varied to D-class (i. e., not trained) for
5 s (Case 1), and quickly recovered to the original C-class
road, as shown in Figure 17. Because the road roughness
is typically considered as a non-stationary random variable
when traveling at variable velocities, the MRMSE for differ-
ent vehicle velocity scenarios was also evaluated. The vehicle
velocity is initially set to be 60 km/h and suddenly accelerated
to 70 km/h and remained for 5 s (i. e., not trained), and quickly
recovered to 60 km/h (Case 2), as shown in Figure 18.

The robustness of the LSTM model under non-stationary
road conditions seems to be qualitatively similar to Casim
and DKF-UI model, which implies that the LSTM model
exhibited the fundamental capability of extrapolating to out-
of-distributed data. The proposed LSTM model did not over-
fit the training data and instead learned the vehicle dynamics
directly from data, as shown in Figures 18 and 19. However,
the LSTMmodel seems to bemore sensitive to non-stationary
road conditions except for Case 1 (road roughness, DFK-UI)
in terms of the relative error to nominal (i. e., C-class road,
60 km/h, Table 6), as shown in Figure 19. DFK-UI appeared
to be sensitive to the road roughness variation when Q and R
are not optimally tuned again for D-class.

For the implementation of the LSTM model to real in-
vehicle tests, the new model will be created based on the
proposed LSTM model and real measured sensor data under
free-ride driving conditions, including various driving speed
intervals and road conditions, which is called transfer learn-
ing techniques widely used to transfer the trained knowledge
to real-world. As feasibility has been proven through the
simulation, we aim to utilize our pre-trained model and
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FIGURE 17. Comparison of estimation results for non-stationary road conditions (C→D→C class); (a) tire normal force of LF, (b) road
roughness of LF, (c) tire normal force of RF, and (d) road roughness of RF.

FIGURE 18. Comparison of estimation results for non-stationary road conditions (60 km/h→accelerating→70 km/h → decelerating);
(a) tire normal force of LF, (b) road roughness of LF, (c) tire normal force of RF, and (d) road roughness of RF.

FIGURE 19. Comparison of relative errors to nominal (C-class road,
60 km/h) under non-stationary road conditions (LF); (a) tire normal force,
(b) road roughness.

incorporate transfer learning strategies to circumvent the
massive amount of real in-vehicle sensor data required for
re-training [40].

V. CONCLUSION
In this study, the road roughness and tire normal force of the
full car model (i. e, four wheels) were successfully estimated
using a deep learning-based LSTM model. The main contri-
butions of this study are summarized as follows.

• First, we conclude that the proposed model-free LSTM
model is a more lightweight and efficient model to
simultaneously estimate the road roughness and tire nor-
mal force by comparing the MRMSE and computation
time to the DKF-UI model. Thus, the proposed model
can be one of the promising alternative means to simul-
taneously estimate the road roughness and tire normal
force when the computational cost is a significant factor.

• Secondly, although the DKF-UI algorithm had a good
average performance in terms of the relative error to
nominal, some limitations were observed because the
nonlinear full car model used for DKF-UI is assumed
by a linear model. This limitation can be addressed by
using the LSTM model because neural networks can be
trained by considering tire or suspension nonlinearity.

• Lastly, another advantage of using the LSTM model is
that only five sensors for measured sprung mass infor-
mation are used; therefore, it does not require complex
physical models. With these advantages, the proposed
model can be applied to an active suspension system to
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create a compensation moment to prevent load transfer,
increasing the stability of the vehicles.

Overall, it is necessary to improve the robustness of the
LSTM model against noise and parametric uncertainties. For

Ac =
[
A1 A2
A3 A4

]

A1 =


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the future research direction, we will continue to address
some ongoing issues. In particular, the LSTM model will
be implemented in real vehicles, and its estimation per-
formance is compared with the simulation results because
the CarSim model does not consider the sensor mounting
inaccuracy, abnormal wear, unexpected payload, passenger’s
driving habits, etc. Another scope of future work includes a
better understanding of the black box-based LSTM model’s
mechanisms, thus improving the reliability and robustness of
the proposed model. Although our results indicate that the
LSTM model is particularly sensitive to parametric perturba-
tions, possible reasons remain to be discovered and could be
addressed by using interpretation algorithms.

APPENDIX
Detailed expressions of the system matrix (Ac), input matrix
(Bc), output matrix (C), and feedforward matrix (D) intro-
duced in Section III-B are given as shown at the bottom of
the previous page and the page.
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