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ABSTRACT Roughly 10 percent of the insurance industry’s incurred losses are estimated to stem from
fraudulent claims. One solution is to use tabular data to construct models that can distinguish between
claims that are legitimate and those that are fraudulent. However, while canonical tabular data models enable
robust fraud detection, complex sequential data have been out of the insurance industry’s scope. For health
insurance, we propose deep learning architectures that process insurance data consisting of sequential records
of patient visits and characteristics. Both the sequential and tabular components improve the quality of the
model, generating new insights into the detection of health insurance fraud. Empirical results derived using
relevant data from a health insurance company show that our approach outperforms state-of-the-art models
and can substantially improve the claims management process. We obtain a ROC AUC metric of 0.873,
while the best competitor based on state-of-the-art models achieves 0.815. Moreover, we demonstrate that
our architectures are more robust to data corruption. As more and more semi-structured event sequence
data become available to insurers, our methods will be valuable for many similar applications, particularly
when variables have a large number of categories, such as those from the International Classification of
Disease (ICD) codes or other classification codes.

INDEX TERMS Deep learning, embeddings, fraud detection, health insurance, social media and text,
structured data.

I. INTRODUCTION
Fraud causes substantial costs and losses for the finance and
insurance industries. Examples include fraudulent credit card
transactions and insurance fraud. Indeed, experts estimate
that each year roughly 10 percent of the insurance industry’s
incurred losses and loss adjustment expenses stem from
fraudulent claims.1 Fraud detection is a critical function
and core competence in these industries and their claims
management processes.

The proliferation of digitization in finance and insurance
has led to big datasets suited to fraud detection. In this paper,
we propose architectures for categorical sequence embed-
dings via deep learning that help improve the classification

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .
1Cf. https://www.iii.org/article/background-on-insurance-fraud.

of fraudulent and valid claims compared to other machine
learning methods.

Analyzing fraud with statistical and machine learning
methods poses particular challenges. First, claims data are
often available in a so-called unstructured format that is chal-
lenging to process using classicmachine learning approaches.
Second, fraud data are highly unbalanced because the number
of fraudulent cases is minimal compared to the number
of non-fraudulent ones, and we can consider each fraud
an anomaly. Third, claims do not have a fixed length
because the number of items billed in a claim varies. These
characteristics influence the choice of classification approach
and performance measures.

It is well known that deep learning outperforms other
machine learning methods for analyzing unstructured data,
such as text or images. In this paper, we develop deep
learning architectures tailored to claims data and to han-
dling each of the challenges mentioned above. For our
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FIGURE 1. Workflows for a prediction model for classic machine learning and deep learning. The development of machine learning models requires
accurate feature engineering, whereas deep learning models can handle unstructured categorical sequences without sophisticated preprocessing and,
thus, we can skip the Feature engineering step. In the paper we briefly consider each step of the data-based model construction, while focusing on
approaches in the middle stage related to the model construction.

analysis, we use claims from outpatient doctor visits, which
have a particular structure. These consist of unstructured
categorical sequences of treatments and have properties
of text data (for example, the varying number of billed
items mentioned above). Moreover, medical claims usually
encode treatments as categorical variables with thousands of
categories. In this paper, we develop methods for analyzing
such (semi)unstructured data.

We test our methods on a dataset from a major health
insurance company. Our empirical results show that they
outperform other state-of-the-art methods in the prediction
of fraudulent claims, making the claims management process
more efficient. The summarized workflow we follow is
presented in Figure 1.

We start with some information on insurance fraud and
fraud detection and an overview of the literature in section II.
In section III, we present models and methods for analyzing
general text data and analyzing the unique structure of claims
data to detect insurance fraud. After this, we describe our data
in section IV. Similarly, we describe the models available for
these tasks in section V. Further, in section VI, we present the
results of our analysis and experiments. Finally, we conclude
in section VII. Additional results of our analysis can be found
in Appendix.

A. INNOVATION
Many approaches to anomaly/fraud detection require
problem-specific solutions. At the same time, deep learning
promises to provide more general models that will extract
insights as embeddings or representations: from unstructured,
complex and high-dimensional data, deep learning generates
a meaningful representation of small dimensions that we
can easily use to indicate a particular system state. There
are many successful cases and applications where this was
achieved in complex settings. Numerous cases back this hope
for complex scenarios with unstructured data, sequential data,

and imbalanced class distribution. Nevertheless, one should
still carefully examine the robustness of the various deep
learning models by deploying them.

We aim to address this gap in the literature. There are
no deep learning models that consider fraud prediction for
medical insurance based on both claims data and general
patient features.

II. BACKGROUND AND RELATED WORK
The literature review consists of four parts related to different
aspects of the studied domain. We start with a description of
anomaly detection as a major challenge in machine learning
and its relation to fraud detection. After that, we provide an
overview of the application of fraud detection algorithms in
various fields, such as healthcare and insurance sector. Then,
we discuss how the concept of embedding is leveraged in
order to work with diverse types of sequential data. Finally,
we review different ways to cope with class imbalance
problem that is typical for fraud detection.

1) ANOMALY DETECTION
Detecting anomalies in data is one of the core problems
in data analysis ( [1]). Researchers from many disciplines
investigate it for application domains, including time-series
modeling, [2], [3], predictive maintenance of technical
systems, [4], [5], and applications in the finance and
insurance industries, [6].

Anomalies in data are worthy of attention because they
can translate into important and often critical actionable
information in a wide variety of application domains. For
example, in credit card transactions, anomalies can indicate
when unauthorized purchases have occurred due to credit
card or identity theft, [7]. Money laundering, as a type of
financial fraud, can be detected by a simultaneous analysis
of trading networks and features of its entities, [8]. The
outcome of seeking a low-rank approximation and analyzing
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the residuals of a graph-based similarity matrix and feature
matrix leads not only to detection of fraud patterns but also
to tracing of the suspicious features. For a comprehensive
overview, we refer to the reviews by [1] and [9], which are
dedicated to various fraud detection problems and based on
machine learning.

Similarly, anomalies in health insurance claims can flag
up potential insurance fraud carried out to gain inappropriate
compensation for services not rendered, [10].

2) MACHINE LEARNING FOR HEALTHCARE AND INSURANCE
While experts have been using machine learning methods
to solve healthcare and insurance problems successfully for
several years, the literature does not seem to have covered
deep learning and embeddings for fraud detection until
recently. Reference [11] provide one of the few examples
focusing on detecting automobile insurance fraud. They
process text descriptions of the accidents, extract standard
text features manually, and combine these with deep-learning
models. Although the accuracy of their model is superior to
that of existing approaches, neither the precise architecture
of the best model nor the approach to training and validating
it is outlined clearly in their paper. Another example
is [12]. The authors use hierarchical clustering with deep
neural networks to detect fraud in candidates’ descriptions
during job recruitment, significantly improving the prediction
accuracy of conventional methods. Reference [13] uses
manually-crafted features to predict instances of automobile
insurance fraud. Reference [14] highlight the importance
of constructing robust data-based models in healthcare.
The authors generate adversarial examples for predictive
models based on multivariate electronic health records
(EHR), represented by temporal sequences of numerical data.
To find efficient attacks on medical records, they propose
an optimization-based attack strategy limiting the size of
the perturbation of the initial input. An analysis of the
best attacks helps to identify susceptible locations in each
patient’s medical records and subsequently prevent mistakes
in the most critical measurements. Reference [15] develop
an unsupervised deep learning model for fraud detection by
utilizing the information on insured people. The authors use
the Autoencoder to obtain the aggregate reconstruction error
(A-RE) for the underlying data and further indicate high
A-RE instances as fraud. Reference [16] present a compar-
ison of metrics when using various machine/deep learning
models with combination of data-imbalance techniques to
detect health insurance fraud.

3) MACHINE LEARNING EMBEDDINGS
We can use embeddings to address anomaly detection
problems in different application domains. For example, [17]
develop an approach to embedding entities, representing
events from computer systems, into a common latent
space. Each event involves heterogeneous attributes such as
time, user, source process, destination process, and more.
Reference [18] study the problem of detecting structurally

inconsistent nodes in graphs, to identify, for example, outlier
authors in a network in which different authors connect
through co-authorship of papers.

At the moment, however, the community is especially
interested in embeddings for applications related to natural
language processing. Given the breadth of the field, we focus
here on works with embeddings of simple entities, such as
words. These include the classic TF-IDF approach, [19],
the more recent and well-known word2vec, [20], and
GloVE, [21]. The last two methods consider concurrences
of words, whereas TF-IDF is solely a normalized one-hot-
encoding for a dictionary of words at hand.

For event sequences related to sequences of clients’ visits,
there are also numerical approaches such as that described
in [22]. For a related use case, [23] construct unsupervised
embeddings based on deep learning architecture for various
types of event sequence data. Financial transaction data
are another type of event sequence. Here, deep learning
provides significant quality improvements, allowing better
model and embeddings quality, for example, in the works
of [24] and [25]. However, [26] emphasizes the importance
of assessing the robustness of this type of approach.

In addition to embeddings for single events, we need
those for whole sequences. There are multiple approaches
to concatenate embeddings of simple entities. For example,
we can construct a text embedding from an embedding of
each word within a given text. Simple heuristics include
taking the maximum value among each dimension for word
embeddings or taking mean values, [27]. More complex
approaches use convolutional neural networks, recurrent
neural networks and transformers, [27]–[29].

4) IMBALANCED CLASSIFICATION PROBLEMS
Skewed distributions or imbalanced classes are one of
the most critical challenges to solving fraud detection
problems. Generally speaking, there are far fewer instances
of fraudulent items than normal ones. We refer to classes
with fewer objects as minority classes and other classes as
majority classes in the literature. The resulting imbalance
makes it difficult for learners to detect patterns in theminority
class data. Reference [30]mentions three broad approaches to
learning from imbalanced data:
• Data-level methods that modify the dataset to achieve
balance between the minority and majority classes in
their distributions and remove difficult observations,

• Algorithm-level methods that directly modify existing
learning algorithms to alleviate the bias towardsmajority
class objects and adapt them to mining data with skewed
distributions,

• Hybrid methods that combine the advantages of these
two approaches.

For the data-level approach, [31] use under-sampling for
a skewed class in a fraud detection system for credit cards,
and [32] assess how resampling the multiplier selection
influences classification accuracy. For the algorithmic-level
approach, [33] use cost-sensitive classifiers to address
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the class imbalance problem. In turn, [34] propose the
FraudMiner model to handle class imbalance by entering the
unbalanced data directly into the classifier. Some papers try to
combine both approaches to make them work for the general
data scenario such as [35]. More general-purpose approaches
include over-sampling, [36], combinations of over- and
under-sampling, [37], and meta-learning to automate the
selection of imbalanced classification methods, [38]. Refer-
ence [39] explore highly imbalanced datasets connected with
credit card frauds and show that features selection methods
can enhance the metrics of the classifiers. Reference [40]
consider financial transactions and develop the proactive
strategy to fraud prevention that helps to overcome the
issue of imbalanced data. The proposed conversion of the
time-series into a transformed domain allows exploiting only
a legitimate class, thereby making it possible to operate even
in the absence of previous fraudulent cases. Reference [41]
provide the comprehensive overview of existing classic
machine learning and deep learning techniques to address
class imbalance. Moreover, the authors discuss various
metrics and their particular application to achieve a better
reflection of models performance.

III. METHODS
A. LEARNING OF CLASSICAL DATA-BASED MODELS
The typical scenario for supervised learning starts with
data consisting of a sample of observations. More formally,
we define {(xp, yp)Pp=1} as our dataset with P input/output
pairs. For each input xp, an N -dimensional vector, we have
a corresponding output yp, a categorical or discrete variable
with so-called labels.

Each sample, (xp, yp), contains a description of an object
given by features, xp, and the value/label of the target variable
for that object, yp. In disability insurance, for example, annual
income, education, occupation, age, and past medical records
describe a customer. Furthermore, the target variable, yp,
is a binary label, yp ∈ {0,+1}, that represents whether the
customer’s claim is fraudulent (+1) or valid (0).

Our dataset stems from a large international health
insurance company. The observations consist of medical bills,
including information about the treatments provided, as well
as their costs, types, total amounts, and general client features
such as age and occupation. The target variable depends
on whether the bill was classified as fraudulent by a clerk
handling the claim.

Thus, we can learn a model that predicts the target variable,
yp, by taking a new object’s features, xp, as its input.

The power of machine learning is that we can learn amodel
that adapts to a given sample and is able to generalize well to
unseen data similar to that in the training sample. Machine-
learning methods make it possible to learn non-linear and
complex relationships in datasets.

Data scientists have devised various ways to generate
features manually from complex but unstructured data such
as images and texts. They use these features as input for
classic machine learning models. The standard limitation of

these approaches is that they require object descriptions in
a restrictive format. Usually, they use fixed, small-length
vectors, which is not feasible for many real-world objects
such as texts or images with millions of pixels.

For insurance-related tasks, the corpus consisting of bills
has different lengths for different patients and describes visits
to a doctor. Each patient has a different number of visits
or medical bills listing a varying number of treatments.
We can construct one-hot-encoding features counting the
number of specific prescriptions or specific visit types for a
given patient. In other fields, such as economics, manually
generated features are also widespread. For example, the
variable ‘‘age’’ is often constructed from the variable ‘‘date
of birth’’. However, we observe that such approaches yield
results of reasonable but limited quality.

B. THE DEEP LEARNING REVOLUTION
The deep learning revolution changed the rules of the
game for machine learning data-based models, [42]. Now
algorithms can learn representations or embeddings of
object descriptions to generate features that are informative
enough to provide accurate predictions while using relatively
simple machine learning models. Examples are the fully
connected neural networks (FCNs) with only a few layers.
The strength of deep learning lies in feature extraction, which
means learning informative features from high-dimensional
unstructured and complex input data.

Themost successful applications of deep learning are in the
field of image processing. However, deep learning impacts
other areas, [43], such as natural language processing, [44],
or graph data, [45].

The key idea behind deep learning is to apply a sequence
of non-linear transformations on object descriptions, the
so-called layers of the neural network. The objective is to
produce an informative embedding and then use it as input
for a final classifier.

Deep learning models enjoy numerous architectures and
variations that can be chosen for the task at hand. With this
in mind, in this study, we test several basic architectures
from the deep learning literature, to find the best one
for our settings. These are Gated Recurrent Unit (GRU),
Long Short-Term Memory (LSTM), Convolutional Neural
Network (CNN), Simple Word Embeddings-based Models
(SWEM), and Transformer. GRU and LSTM belong to the
family of Recurrent Neural Networks (RNN), which have
unique mechanisms for regulating the flow of data and
handling the problems of the canonical RNNby enabling long
memory and efficient training. CNN is an architecture widely
used in computer vision tasks. However, the leveraging
of processing data with convolutional kernels might also
be beneficial in other domains. Furthermore, the SWEM
is sometimes comparable with more complex models and
deserves study when working with embeddings. In addition,
we consider the Transformer model, whose attention-based
mechanism has revolutionized deep learning for natural
language processing.
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C. CONCEPT OF EMBEDDINGS
In this paper, we address the problem of representing health-
care insurance data by using embeddings for fraud detection.
An embedding is a transformation of object descriptions to
vectors that belong to the same low-dimensional space. These
low-dimensional representations have the characteristic that
similar instances have a smaller distance between them in the
embedded space. For example, a helpful embedding provides
vector representations of words so that the relationship
between two vectors mirrors the relationship between the
two terms. We can see this in the popular word2vec model
by [46] from the natural language processing literature.
It constructs a low-dimensional vector of real numbers. As a
result, words appearing in a similar context have similar
vector representations. In short, embeddings are a general
framework for dimensionality reduction and a practical
approach to extracting features of intrinsic relations between
complex objects.

In our case, we learn an embedding space explicitly con-
structed for sequential data from healthcare insurance claims.
Such representation significantly helps in the detection of
fraudulent patterns.

To make these ideas clear, let us suppose that a text
consists of words from a dictionary of V different words.
The classic way to transform the text into numeric features is
with a one-hot encoding for each word in the text. In other
words, we represent each word in the text sequence as a
V -dimensional vector consisting of zeros except for one entry
at the location corresponding to that word. This approach
is standard for encoding categorical variables. However, the
representation is not efficient if the dictionary is extensive,
as is typical for general texts and healthcare data. In turn, via
modern approaches, we can represent embeddings of words
from the dictionary with real-valued s-dimensional vectors,
such that s is much lower than the size of V . This allows for
a compressed representation of the textual input description.
In this representation, the entries of the embedded vector
are usually all different from zero. The embedding of the
dictionary into the vector space should also maintain some of
the relations between the words. For example, the desirable
property of the word embedding is that the difference in
the vector space between the words ‘‘queen’’ and ‘‘king’’
should be similar to that between the words ‘‘woman’’ and
‘‘man’’. Learning word embeddings with such properties
makes them a powerful tool for text analysis [47]. We can
learn such embeddings from unstructured data in a supervised
or unsupervised way.

D. APPLICATION OF EMBEDDINGS
In recent years, learning embeddings that represent complex
relationships within data is becoming common in themachine
learning community. Authors apply different embedding
types to various domains, such as natural language processing
(NLP), network analysis, and computer vision.

As noted above, word embeddings, such as the word2vec,
GloVe by [21], AdaGram by [48] and others, provide

vector representations of words such that the relationship
between two vectors mirrors some linguistic connection
between the two terms. In supervised problems, word and
sentence embeddings have proven effective for natural lan-
guage processing tasks such as part-of-speech tagging, [49],
phrase-based machine translation, [50], named-entity recog-
nition, [51], and word sense disambiguation, [48].

Beyond text, we can use embeddings for all types
of data representations. For example, graph and network
embeddings attempt to capture local and global attributes
on graphs. One option consists of engineered graph fea-
tures, and another of training on graph data. Classical
approaches for graph embeddings include feature-based
methods, such as graph kernels, [52], [53], and data-driven
algorithms that yield distributed graph representations,
[54]–[56]. Using such embeddings, we can solve various
tasks related to network data analysis. One example is [57]
who use anonymous walk embeddings for graph influence set
completion.

IV. DATA DESCRIPTION
A. OVERVIEW
Our dataset consists of many health insurance claims from
the outpatient care setting. It comprises about 0.38 million
patients’ medical bills with 3.3 million items in total.
Each data point is a sequence of treatments encoded with
anonymized IDs.

There are 15 input features in total. In the data, we have two
types of feature for each patient: general and visit-specific.
The first type includes age, sex, insurance type, and doctor
specialty. These features relate to the patient, insurance, and
doctor in general. For each patient, visit-specific features
describe individual outpatient visits. For this type of feature,
we consider treatment IDs, the type of treatment, the number
of treatments, the cost of therapy, a factor that increases the
cost of treatment due to potential complications, the total
billable amount, the billing type, the cost category, and the
performance type. We encode the type of treatment using
one of more than two thousand categories. However, some of
the available features are uninformative, and our experiments
reveal that the models perform better if we discard them.
In the following discussion, all features except treatment IDs
will be referred to as global features.

For each record, we have a label. The label is either
‘‘fraudulent’’ and coded as 1 or ‘‘non-fraudulent’’ (valid) and
coded as 0. Here ‘‘fraudulent’’ refers to the fact that the final
amount of the bill was amended, which can happen for many
reasons. About 2% of records are fraudulent. The challenge
is to identify whether the record corresponds to a fraudulent
activity based on the input features available.

We present in Table 1 a sample of the final version of the
refined data, which consist of both input features and a target
to train all our models.

The number of treatments on a bill varies significantly
among patients. In Figure 2, we provide a histogram of
the number of treatments and items for the dataset. The
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distribution of treatments is nonuniform. Most patients
have only a small number of treatments in the outpatient
setting.

We make a represenatative random subsample of our data
and its description on a public repository available.2

B. TREATMENTS
Our approach aims to determine whether information from
labels of treatments can help automatically identify fraud.
Because the number of treatments varies for each patient,
we must aggregate all treatments into one vector. To do so,
we construct an embedding of all treatments into a vector
of a fixed dimensional size. In the literature, we can find
approaches to dealing with varying input sizes. One example
is [58].

In our case, the natural way to construct embeddings is
to use methods that have their roots in natural language
processing (NLP) because a medical bill lists a series of
individual treatments from a sizeable but finite dictionary.
Each anonymized treatment belongs to a dictionary of size
2205. We summarize treatments in up to 17 upper-level
treatment groups. Similarly, we create another dictionary
feature with a size of 24 for the type of benefit.

Also, we emphasize that specific treatments are not more
prone to fraud. If we measure the correlation between the
presence of a particular treatment and the target variable,
the maximum absolute value for correlation is only 0.0243.
We must therefore use more sophisticated machine learning
approaches to make it possible to identify fraudulent series of
treatments.

C. DISTRIBUTION OF TREATMENTS
To understand the essence of our data, we rank the
number of treatments in the dataset. For example, the most
frequent treatment has a rank of one. This approach is
close to the empirical Zipf’s law, [59], commonly found in
NLP. Intuitively, the frequency of any treatment is roughly
inversely proportional to its rank in the frequency table.
Figure 3 demonstrates this behavior for our dataset as a
log-log plot. However, we observe a heavier tail with rarer
treatments having higher frequencies than what we would
expect from Zipf’s law. One interpretation is that there are
few rare treatments in our data and that the diversity is higher
for tasks using natural language texts.

V. MODELS
A. CLASSIC MACHINE LEARNING APPROACH
Using classic machine learning algorithms, we consider two
types of representations for the sequence of treatments.
These are bag of words (BoW) and term frequency-inverse
document frequency (TF-IDF).

The idea behind BoW is to represent a sequence t =
{w1,w2, . . . ,wit } by counting the number of times nw,t a
token w appears in it. This technique generates a vector

2https://github.com/fursovia/fraud_detection/tree/2021_update

of frequencies of the tokens in the considered sequence.
Some terms, such as ‘‘a’’, or ‘‘the’’, appear multiple
times but provide little information in sentences. Therefore,
a normalized version of BoW leads to TF-IDF. A TF-IDF
is the product of the term frequency and inverse document
frequency for texts and documents. For the frequency term,
we divide nw,t by the total number of words in the text∑

w′ nw′,t , whereas, for the inverse document frequency,
we divide the logarithm of the total number of documents by
the number of records that contain the considered word w.
We can swiftly transfer the idea behind the TF-IDF to other
contexts beyond words, texts, and documents. We emphasize
that neither of these approaches considers the order of a token
in a sequence. However, neglecting the order can decrease
performance in many problems.

To apply the ideas of BoW and TF-IDF in our setting,
we form a dictionary of all unique treatment IDs. In this
case, the quality of the classic machine learning models with
BoW features is slightly better than with TF-IDF. Hence,
we discard the latter and consider only amore straightforward
BoW processing in the following discussions.

1) LOGISTIC REGRESSION, RANDOM FOREST AND
GRADIENT BOOSTING
The literature considers logistic regression a common base-
line for predictive modeling. Despite the simplicity of the
rules underlying the construction of the relationship between
features and the probabilities of belonging to a particular
class, this model gives solid results for many problems.

Another popular model in the classic machine learning
literature is the Ensemble of decision trees according to [60].
In this model, each decision tree distributes the input objects
to the leaves based on the features of the object and learned
rules in the nodes. In a leaf, the classifier returns the
probability of belonging to a specific class. In the Ensemble,
we use a weighted sum of basic decision tree classifiers.
The ensemble of decision trees offers many benefits: it is
fast to construct, can almost avoid overfitting, successfully
handles missing values and outliers, and provides competitive
performance, [60].

A popular and efficient way to perform classification
using the predictions of several decision trees is the Gradient
boosting algorithm. It trains sequentially by setting the
target to the next tree based on the errors of previous
trees. One of the many advantages of Gradient boosting
is its ability to solve imbalanced classification problems
and easily incorporate various imbalanced classification
heuristics, [35].

We select the LightGBM framework presented by [61]
as our preferred implementation of Gradient boosting for
our experiments. This high-speed implementation provides
state-of-the-art performance, needs less memory to run, and
supports learning on graphical processing units (GPUs).
An added benefit is that we can tune it by adjusting a vast
number of hyperparameters.
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TABLE 1. Example of data used in our model. The target indicates whether the record is fraudulent (1) or not (0). DXX corresponds to a specific treatment
given in a particular order to a patient.

FIGURE 2. Histogram of the number of billing items for patients. The right orange bar
represents the number of patients with 50 or more billing items. Most patients have less
than 5, with most of them having 2. The orange column corresponds to the number of
patients with more than 50 treatments.

FIGURE 3. Log-log plot for ranks and corresponding frequencies and
groups of treatments, as well as benefits in the dataset. The chart
significantly deviates from the straight line expected according to Zipf’s
law.

B. DEEP LEARNING APPROACHES
We examine several deep learning models to identify those
capable of processing our specific data best and yielding the
most precise predictions. For this, we describe the overall
pipeline of working jointly with diverse types of features to
obtain the fraud probability distribution for each insurance
claim.

1) MODEL PIPELINE
a: TREATMENTS EMBEDDING LAYER
First, we embed each treatment in a sequence into a vector of
dimension d . The model identifies its optimal values during

the learning process. However, there are a different numbers
of treatments for each patient. Thus, we pad all lists of
treatments with empty treatments to achieve an equal length
across our vectors. In conjunction with this, we construct
masks for the padded parts to pass them to the subsequent
layers and ignore them.

b: OBTAINING THE ENCODING VECTOR FROM TREATMENT
EMBEDDINGS
Then, we pass the resulting embeddings to the input of
one of the following neural models: CNN, GRU, LSTM,
SWEM, and Transformer to get a single output vector. At this
stage, we construct a so-called encoding vector, which should
encapsulate as much information as possible from a sequence
of embeddings.

c: APPROACHES TO USE GLOBAL FEATURES
Third, the global features consist of numerical and categorical
features. As part of our pipeline, we scale them beforehand.
Then, we try to use information from categorical features
in two ways for our classification problem. In the first
approach, we treat all global features in each record as
a vector and pass it as an input for several feed-forward
layers. After that, we concatenate the resulting vector
with the encoding vector obtained from the treatments,
i.e., the visit-specific features. In the second approach,
we obtain the embedding of each distinct global feature and
then receive an encoding vector by simply averaging all
embeddings.
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FIGURE 4. The model architecture to identify fraudulent claims. We pass
each treatment’s embedding to the input of a Neural Network model, for
example, an LSTM, to obtain the encoding vector. Then, we concatenate
this encoding vector with processed global features and pass it to the
several layers of linear and non-linear transformations to obtain the final
probability distribution.

d: OBTAINING THE FINAL PROBABILITY DISTRIBUTION
Fourth, we process it further to get the final probability
distribution after obtaining the concatenated vector, which
incorporates global and visit-specific features. In particular,
we apply dropout and then several fully connected layers
such as a gated combination of linear and non-linear
transformations. Finally, we implement a linear layer to
obtain logits, which we can transform into probabilities
through the softmax function. Then, by analyzing the output
probabilities, we can decide whether a record is fraudulent.

An example of the architecture we use to obtain the
encoding vector from treatment embeddings with an LSTM
model is available in Figure 4. We depict the global features
related to the patient as a single vector. We assume that we
process them with one of the above mentioned methods.

2) TRAINING DEEP-LEARNING MODELS
We train the full model for 100 epochs and set the parameter
‘‘patience’’ to 5 epochs. This means that if our target metric
does not improve after five epochs, we stop training. We use
the Adam optimization algorithm by [62] with a learning
rate equal to 0.001 and minimize cross-entropy loss. Our
classification problem is imbalanced, so we train the model
with balanced batches for more effective learning, implying
oversampling from the minority class, because this approach
shows the best results in general and specifically for our
problem.

VI. RESULTS
A. METRICS
To evaluate the classification models, we can use many
metrics. However, handling our imbalanced classification
problem requires detecting the minority class with high
precision. For fraud detection, it is crucial to find all actual

TABLE 2. Confusion matrix for binary classification.

positive events. An outstanding classifier would correctly
predict all instances of the minority class with a low false
alarm rate.

Belowwe consider the canonical metrics for measuring the
quality of imbalanced classification problems.

The confusion matrix forms the basis of our metrics.
Using Table 2, we can generate the most common metrics
in the literature to estimate the performance of a classifier
with different focuses, such as the area under the ROC curve
(ROC AUC) and the area under the PR curve (PR AUC).
These metrics use standard concepts such as recall, precision,
and false-positive rate. To be more precise in our discussion,
we introduce the following notation.

The recall is the true-positive rate, TP
TP+FN . It is the

percentage of positive instances correctly classified. When
this metric is equal to one, it means that we can identify all
fraud cases.

The precision is the percentage of positive instances among
positive predictions. We define it as TP

TP+FP . A high value for
precision means that our model captures the underlying fraud
behavior.

The false-positive rate is FP
FP+TN and represents the

percentage of positive instances that the model misclassifies.
We define the F1 score as 2 Precision·Recall

Precision+Recall . It lies in the
interval [0, 1]. Hence, we prefer higher F1 scores.
The canonical ROC curve shows how well the model

classifies items in the two classes. Ideally, the first class
must display a high value for the true-positive ratio (TPR),
whereas the second class must show a low false positive ratio
(FPR). Therefore, a high-quality prediction corresponds to a
‘‘balance’’ between these values.

Similarly, the PR AUC describes how well the model
classifies the minor class, or fraud, class. We want to
maximize the TP number. This metric is well-suited for
imbalanced datasets, because it reflects the model’s ability
to identify fraudulent behavior. The focus on the minority
class enables the PR AUC metric to predict the most relevant
category better than than other metrics.

To sum up, we consider four relevant metrics to evaluate
the performance of our models: ROC AUC, PR AUC, F1
score, and Confusion matrix. ROC AUC, PR AUC, and F1
score lie in the interval [0, 1], and our goal is to maximize
them. Confusion matrices that we provide have the following
structure: [[TN ,FP], [FN ,TP]]. Reference [41] prove that
our chosen metrics ensure the comprehensive performance
review.

B. VALIDATION PROCEDURE
To evaluate the performance of the model, we use data
splitting. We randomly split the dataset and follow a standard
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approach among data science practitioners, using 60% of
the medical bills during the model training phase and the
remaining 40% to validate and test our models. Given our
imbalanced data, we do the splits in a stratified way: the
ratios of classes in the training and test samples coincide
with those of the initial selection. In practice, to get a more
reliable estimate of model performance, we generate several
partitions and distribute them into train and test sets (cross-
validation). In subsection A in Appendix we show that the
metrics evaluated on several splits and a single split are close.
Due to this fact, we provide an analysis of the experiments for
a fixed train-test split.

C. RESULTS
In this section, we evaluate the metrics of our classic machine
learning and deep learning models. We compare the results
for different subsets of features and identify the model that
performs best. Besides, we try several techniques to alleviate
class imbalance issue. Also, we provide dependencies of
metrics on the size of the train set, the dimension of encoding,
and embedding vectors. Moreover, we explore the robustness
of our models by corrupting the initial data. Such a thorough
analysis of the models provides a clear picture of the best way
to construct the classification model considering the nature of
the data. For reproducibility purposes, all implementations
and experiments are available on a public repository.3 All
necessary packages and their versions to train deep learning
models are indicated in poetry.lock and pyproject.toml files in
our repository. To build classic machine learning models we
use scikit-learn library [63] and LightGBM framework [61].
The technical details for the experiments are specified
in subsection B in Appendix.

1) PERFORMANCE OF MACHINE LEARNING MODELS.
USEFULNESS OF VISIT-SPECIFIC FEATURES
We recall that we have two types of feature. One set consists
of global features, and the other is visit-specific. With this in
mind, we generate BoW features from the visit-specific ones
and compare three different sets of features. These are global,
visit-specific, and a combination of the two. We present
the results of Machine Learning models in Table 3. The
results indicate that using all available features leads to the
most accurate predictions and, consequently, the highest ROC
AUC and PR AUC values among all models. Thus, we focus
on the use of both sets of features in further discussion. With
the LightGBM model, we achieve the best ROC AUC score.

2) PERFORMANCE OF NEURAL NETWORK MODELS
In Table 5, we report the performance across different models
to obtain the encoding vector from treatment embeddings in
our overall pipeline.

GRU and LSTM process input embeddings sequentially,
taking one vector at each step and computing the correspond-
ing functions to use on further timesteps. In the CNN encoder,

3https://github.com/fursovia/fraud_detection/tree/2021_update

each convolution layer outputs a vector of fixed dimension.
This output dimension corresponds to the number of filters
learned by that layer. After several convolutions interleaved
with max-pooling layers, we receive an encoding vector,
and we transfer it to the next steps in the pipeline. In turn,
SWEM does not have learnable parameters. This model
produces an encoding vector by simply taking the average
of the treatment embeddings. Lastly, in the Transformer
model, we encode a sequence of treatment embeddings
into another series of vectors of the exact dimensions with
the attention mechanism. Subsequently, we average the
sequence of new vectors to obtain a final encoding vector.
We note that higher-quality results are produced by the
Optimized LSTM with hyperparameters optimized for better
performance.

We find that processing treatment embeddings with SWEM
yields the best results in our settings. Meanwhile, the
Transformer performs considerably worse, possibly due to
an inappropriate architecture for constructing the encoding
vector for this particular task. This more complex model fails
to capture the data patterns and yields results comparable to
those of other models. Obtaining the encoding vector with a
simpler model has therefore proven to be beneficial for our
problem.

We can observe better results when we process our global
features with linear layers rather than obtaining embeddings.
The reason for this might again be that a more straightforward
approach is more beneficial here. We hypothesize that we
can better preserve valuable information when we apply
some transformations to initial global features, whereas
constructing new representations becomes harder.

In some tasks, processing the data from two directions and
using both the previous and future contexts might improve
quality. To check whether this is the case for our problem,
we compare metrics from uni-directional and bi-directional
GRU and LSTM models in Table 4. As we can see, under a
bi-directional setting, we slightly improve the results of both
models.

3) OPTIMIZATION OF HYPERPARAMETERS
The model that performs slightly worse than SWEM but
outperforms all of the remaining models and has learnable
parameters is the LSTM. We decide to find optimal
hyperparameters of our entire pipeline and, especially for the
LSTM, to assess any possible improvements in the metrics
and whether we manage to beat the performance of the
classic Machine Learning model, LightGBM. To optimize
the hyperparameters, we use a modern software library for
automated hyperparameter search, Optuna ( [64]).

We search the optimal values of the 13 parameters,
including dropout rates, dimension of treatment embeddings,
the learning rate of the optimizer, number of linear layers,
and type of activation function between them, among others.
We present the results from the optimized model in Table 5.
The optimization procedure allows us to achieve metrics that
are superior to LightGBM for the same set of features.
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TABLE 3. Metrics for predicting fraudulent cases with classic machine learning models. Best metrics are highlighted in bold. We present the results for
different types of feature. The combined use of global and visit-specific features leads to the best performance.

TABLE 4. Comparison of ROC AUC metrics for uni-directional and
bi-directional models.

A deep learning model with properly fine-tuned hyperpa-
rameters and an optimal architecture is thus a suitable classi-
fier for our problem. Detrimentally, classicMachine Learning
models require constructing high-dimensional BoW vectors,
which may pose problems with memory and longer training
times if the dictionary size of unique tokens is large.

4) ADDRESSING CLASS IMBALANCE PROBLEM
Data in fraud detection problem are inherently imbalanced.
We try basic data-level approaches to address this problem in
case of using classic machine learning models. In particular,
we consider Random Under Sampling, Random Over Sam-
pling, SMOTE and ADASYN. In Random Under Sampling
method we remove random samples from the majority
class. When using Random Over Sampler, we duplicate
random fraudulent examples in the train set. SMOTE and
ADASYN generate new synthetic samples of the minority
class. We provide the performance of the models trained on
the initial set and on the resampled sets in Table 6. The results
are given for the optimal ratio of the number of samples
in the minority class over the number of samples in the
majority class. Some of the approaches significantly enhance
the metrics.

As for deep learning models, we incorporate balanced
batch sampler in the training procedure. It samples each
batch in such a way that the numbers of examples of each
class are equal. Balanced batch sampler may facilitate more
effective training of neural networks if we compare with
the case when we pick samples in the batch randomly.
The evidence of balanced batch benefit for some models is
observed in Table 6.

5) DEPENDENCE OF MODEL QUALITY ON SAMPLE SIZE
We examine how the size of the training set affects the
quality of the model on the test set. We train the model with
increasing random subsets of 10, 20, . . ., 100 percent of the
initial training data. In Figure 5, we see that the PR AUC and

FIGURE 5. Dependence of the ROC AUC on the size of training data.
An increase in the proportion of training data leads to a further increase
in the quality of the fraud detection model.

ROC AUC continue to increase as we increase the proportion
of used training data. Having limited training data is more
detrimental for LightGBM than for the LSTM model. This
fact should be taken into account when we are in a regime of
small data. We also see that the results are stable for different
datasets used. Thus, we can conclude that our deep learning
methods and LightGBM will provide satisfactory quality for
different subsets of our data.

6) DEPENDENCE OF METRICS ON EMBEDDING AND
ENCODING DIMENSIONS IN LSTM MODEL
To understand the dependency of metrics on the dimen-
sions of treatment embeddings and the encoding vector
obtained from them for the LSTM model, we conduct two
experiments.

First, we fix the size of the embeddings and increase only
the dimension of the encoding vector. We depict the result
in Figure 6a. After reaching some optimal value of about 100,
a subsequent increase of the encoding vector dimension leads
only to a deterioration in performance.

Second, we show that we can improve our performance
if we augment the dimension of the embedding vector
along with the size of the encoding vector. The evolution
of metrics when we simultaneously change the embeddings
and encoding sizes and set them to one value is visible
in Figure 6b.

Mapping from the initial feature space to an embedded
space of small dimension results in information loss and con-
sequently an increase in unsatisfactory model performance.
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TABLE 5. Metrics when predicting with neural network models. An asterisk * indicates that we construct the embeddings for global features. Otherwise,
we process global features with linear layers. We mark the best values in bold. The second best values are underlined.

TABLE 6. Comparison of metrics when models are trained on the initial set or on the resampled ones. For classic machine learning models four basic
resampling approaches are considered. For deep learning models we show how the use of balanced batch sampler changes the models performance.

7) RELIABILITY OF MODELS
Two significant issues for machine learning models are
reliability and resistance to malicious attacks. A relevant
challenge in fraud detection is when malicious users of a
decision model can provide slightly distorted data to the
system and fool it. In such a case, the method is of limited
use. We can see examples of this in [65] and [66] and surveys
in [67] and [68].

We consider two approaches to evaluate the reliability
of our models. The first assesses whether ‘‘a model is
robust concerning random errors in data submitted to a
system’’, [69]. The second verifies whether ‘‘a model is
robust to malicious efforts when someone tries to break the
system in a particular way by corrupting the input to the
system,’’ [65].

In our case, we test the reliability of the history of
treatments. We ask ourselves: Can we change this slightly
and obtain an entirely different outcome with the model? To
do so, we compare the quality of the model before and after
corrupting the test data.

We test these issues in two ways. First, to test the model’s
reliability, we randomly add a different number of treatments
from the vocabulary to the end of the sequence of treatments
for each patient. Second, to test the model’s resistance to
malicious attacks, we select a subset of 100 treatments
from the vocabulary and add them one by one to the
patients’ treatment history to find the model output most
affected by the addition of a single treatment. After selecting
the most harmful treatment from our subset, we repeat
the same procedure to choose the second most malicious
treatment. This represents a greedy approach to performing
an adversarial attack on our data, [26].

In Figure 7, we show the ROCAUC values after corrupting
the sequences of treatments with a varying number of tokens.
We see that changing inputs to the trained model leads
to a drop in its quality, particularly if we use the greedy
strategy to attack the LightGBM model. At the same time,
we can observe that the LSTM model is more stable to data
corruption and shows only a slight drop in quality even after
adding a substantial number of malicious tokens.
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FIGURE 6. Dependency of metrics on embeddings and encoding
dimensions for LSTM model. A higher amount of dimensions leads to less
information loss, and therefore, better results.

FIGURE 7. Dependence of ROC AUC value on the number of added
malicious tokens for different models. The LSTM neural network is more
robust to malicious corruption of input data by the greedy approach than
is LightGBM.

However, to make the models more robust, we should
augment the training data with more cases and possible
distortions of the initial data, a so-called data augmenta-
tion, and keep the model undisclosed to avoid malicious
attacks.

VII. CONCLUSION
A constant challenge for insurers and financial companies,
insurance fraud is, in essence, an anomaly detection problem.
In this paper, we propose and examine deep learning
architectures that are tailor-made for insurance claims data
based on embeddings for unstructured data and compare
them with classic machine learning approaches based on
careful feature engineering. During the model training we
also construct embeddings for treatment IDs.

We analyze the performance of classical machine learning
models and our proposed methods in solving the task of claim
classification for a real-world data. Processing unstructured
categorical sequences related to outpatient doctor visits with
our best model, we get ROC AUC score equal to 0.873,
whereas state-of-the-art model shows a worse result with
ROC AUC 0.815. Moreover, our empirical experiments
confirm that we can improve our model further by optimizing
the neural network architecture, increasing the volume of data
used for training and incorporating techniques for addressing
class imbalance problem. The significance of choosing the
proper embedding and encoding dimensions in our deep
learningmodels is also demonstrated. In addition, we identify
that our architecture is robust to random disturbances of
the data, as well as adversarial and malicious changes, and
can enhance the claims management process. If we add
5 malicious tokens in a sequence, classic machine learning
performance degrades to ROC AUC 0.640, while the deep
learning model has small performance degradation with ROC
AUC value for corrupted input 0.840.

As digitization continues to proliferate, increasing amounts
of unstructured data in the form of text will become
available, including electronic health records, claims data,
personnel files, and financial statements. These data will
often have a unique structure and contain variables with many
categories that classical methods cannot handle. The deep
learning architectures and embeddings that we propose in this
paper are bespoke for such data. As a result, our approach
is relevant to researchers, administrators and mangers in
healthcare, organizational economics, insurance and other
fields.

APPENDIX
ADDITIONAL TECHNICAL RESULTS
A. CROSS-VALIDATION FOR PERFORMANCE EVALUATION
For a more credible assessment of the generalization ability
of the models, it is helpful to evaluate the performance not on
a single train-test split but several sets repeatedly. A popular
procedure for that is called cross-validation. The main idea
behind cross-validation is that we split our initial data into k
sets (folds). Then, we train the model on k − 1 folds and test
them on the remaining part.

We calculate the model metrics on a single train-test split.
To understand whether we get biased results, we evaluate
several models with a cross-validation procedure. We split
our dataset into three folds to preserve the testing to training
sizes ratio as for a single train-test split. In Table 7, we provide
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TABLE 7. Comparison of metrics with a single train-test split and a 3-fold
cross-validation procedure. We use both features. The results from these
two approaches are close.

TABLE 8. Comparison of training duration for different models.

the comparison of results calculated with a single train-test
split and 3-fold cross-validation.

As we observe, almost all metrics evaluated on a single
split lie within the standard deviation of the mean values that
we calculate with the cross-validation procedure. Therefore,
we can conclude that the size of our dataset is large enough
to get a reliable estimation of the models’ performance by
implementing a single train-test split.

B. EXPERIMENT DETAILS
We perform the experiments with a single NVIDIA TITAN
RTX GPU with 24 GB memory and Intel(R) Xeon(R) CPU
E5-2698 v4 @ 2.20GHz. All Deep Learning models were
trained using GPU. During the training process of Machine
Learning models only CPU was utilized. The overall size of
our data is about 240 MB. We launch all the experiments on
the system with Linux Mint 19.3 (Tricia) OS.

The training time for different models is given in Table 8.
We provide the averaged result of five runs. The running
times are acceptable in all cases given typical requirements
for the model training in industry.Moreover, they allow to run
hyperparameter optimization and utilization of large sample
sizes.
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