
Received January 14, 2022, accepted January 26, 2022, date of publication February 7, 2022, date of current version February 16, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149505

Hardware Acceleration of a Generalized Fast 2-D
Convolution Method for Deep Neural Networks
ANAAM ANSARI , (Graduate Student Member, IEEE),
AND TOKUNBO OGUNFUNMI , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA

Corresponding author: Tokunbo Ogunfunmi (togunfunmi@scu.edu)

This work was supported by the School of Engineering, Santa Clara University, Dean Excellence in Research Award.

ABSTRACT The hardware acceleration of Deep Neural Networks (DNN) is a highly effective and viable
solution for running them on mobile devices. The power of DNNs is now available at the edge in a
compact and power-efficient form factor with the aid of hardware acceleration. In this paper, we introduce
an architecture that uses a generalized method called Single Partial Product 2-Dimensional Convolution
(SPP2D Convolution) which calculates a 2-D convolution in a fast and expedient manner. We demonstrate
that the SPP2D architecture prevents the re-fetching of input weights for the calculation of partial products,
and it can calculate the output of any input size and kernel with low latency and high throughput compared
to other popular techniques. SPP2D based architecture can reduce the memory access and execution time
related to input reuse by at least three times in comparison with the work done in Ardakani et al. (2018)
and approximately nine times that of the standard sliding window approach. We have implemented the
generalized SPP2D architecture on the Xilinx KC705 Kintex-7 evaluation board to illustrate that the new
SPP2D algorithm is well-suited for the hardware acceleration of DNNs. We implemented LeNet-5 and
VGGNet-16 using the SPP2D architecture. We demonstrate that the SPP2D based LeNet-5 has a high
throughput of 5 GOP/s and 14.8 GOP/s/W and 42 GOP/s/W for the convolution operation using the
SPP2D IP. Our LeNet-5 design achieves a similar throughput to Zhou and Jiang (2015) however using
3.3× fewer DSPs and an even smaller memory and lookup table (LUT) footprint. The SPP2D based
VGGNet-16 network has a latency of 91.3 ms which is 79%, 97%, 17% and 95% less than contemporary
designs respectively, while running at a low power of 298 mW which is similar to the power level of these
designs. The total processing time of our design with a parallelism factor of nine is 3.93 secs and it is 70%
less than that in Ardakani et al. (2018) and 24% less than that in Panchbhaiyye and Ogunfunmi (2021). The
SPP2D based LeNet-5 and VGGNet-16 accelerators provide a low-latency design with reduced memory
access thus leading to a low-power design. As a result, SPP2D convolution is very well suited for hardware
acceleration of DNNs.

INDEX TERMS SPP2D, convolution, convolutional neural networks (CNN), deep neural network (DNN),
hardware accelerator, processing engine, LeNet-5 , VGGNet-16 .

I. INTRODUCTION
In recent years Deep Neural Networks (DNN) have become
ubiquitous and therefore there are many variants that exist to
accomplish a myriad of applications. These tasks range from
object classification to natural language processing (NLP).
The robustness of DNNs to distortions and simple geometric
transformations makes them highly effective for processing
images [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

DNNs are becoming increasingly large and complex.
Therefore, the hardware architectures that implement them
need to be commensurate with their growth while deliv-
ering the cutting-edge throughput with minimum latency.
The demand for low power and low memory access has
also become more challenging with their growth. Hardware
acceleration of DNNs on FPGAs and ASICs are more energy
efficient and portable than GPU implementations (at least for
inference) [2].

Hardware imposes tremendous limitations on the design
of DNNs owing to its high computational complexity.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 16843

https://orcid.org/0000-0002-4081-1225
https://orcid.org/0000-0003-3517-9779

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

Low latency concerns and the need for a high memory-
access bandwidth also pose challenges in CNN accelerator
designs. It is challenging to reap the complete benefits of
logic resources within the architecture even after implement-
ing pipe-lining and time-efficient designs leading to a sophis-
ticated architecture being under-utilized. Implementing DNN
architectures involves, meeting the peak performance in the fa
ce of the aforementioned limitations. Therefore, the hardware
implementation of DNN calls for a huge design exploration.

II. RELATED WORK
There are hardware acceleration solutions for GPUs [3],CPUs
[4]–[6] FPGAs [7]–[15] and ASIC platforms [16]–[19].
Recently there has been a migration of inference applica-
tions to FPGA devices. FPGAs provide a flexible sandbox
for development and deployment of DNNs for inference.
This provides an excellent platform for testing rapidly evolv-
ing DNNs [20]. FPGAs are also cost effective in terms
of energy savings. They deliver better performance for the
same amount of energy spent to perform DNN computations
compared with GPUs [21]. For all these reasons, FPGA
hardware acceleration is appropriate for inference. The CNN
accelerator described in [7] is a combination of hardware
and software design processes. In [17] the authors explored
the design space of the available loop blocking parameters
using the roof-line model. They determined the optimum
loop unrolling parameters based on design space exploration.
The loop unrolling factors are variable in nature, and the
authors select a fixed unroll loop parameter that tolerates a
degradation of 5% in throughput and performance. In [22]
we focused on increasing the computational throughput using
a novel processing unit design called nested processing ele-
ment (NPE) using the variable unroll parameters calculated
in [17] to achieve a throughput enhancement of 94%. Eyeriss
[18] is a design in which the authors limit external memory
accesses using a memory hierarchy. For this purpose, they
used local scratch pads and global buffers. They achieved
energy efficiency by adopting a reuse scheme known as row-
stationary. Energy efficiency is the result of reducing external
data access.

There are many designs that approach the problem from
both the software and hardware fronts. Studies such [23]
have investigated the effect of quantization on the accuracy
of models. Optimizations such as quantization minimize the
storage of input feature maps and weights so that they can fit
on the on-chip memory [24]–[26]. Our work in [27] explored
the effect of fixed-point quantization on the accuracy of
DNNs. The pruning and quantization of weights results in
sparse networks. Sparse networks generate associative data
that is inconvenient to handle. Their increased complexity
makes it difficult to use traditional methods such as matrix
multiplication and calls for tailored solutions. Therefore,
there is a need for simple solutions that can exploit exist-
ing dense computation techniques. All of the techniques
described above aim to reduce the number of memory trans-
fers in creative ways.

A commonly used operation in Deep Neural Networks
is 2-D convolution. The number of calculations required
to implement a deep neural network is of the order of
millions [28], [29]. Many solutions such as [30]–[33]
exploit sparseness to overcome this impediment. Works such
as [34]–[41] reduce the inputs and weights to binary values
leading to a smaller memory footprint and less memory trans-
fer. Works such as [31], [42] use Winograd’s filter technique
to calculate convolutions [16]–[19] in a fast manner. A fast
Fourier transform can also be used to calculate the convolu-
tions in an expedient manner [43].

The convolution operation is at the heart of deep neural
network and therefore research in alternate ways to imple-
ment this operation is relevant and opportune owing to the
rising trend of deep learning. There are several methods for
performing the convolution operation. Convolutions can be
implemented using matrix multiplication and vector multi-
plication [2]. However, convolution using matrix multiplica-
tion introduces redundant operations by converting the input
matrix into a Toeplitz matrix and convolutions using vector
multiplication take a long time if done serially or require large
memory transfers if the operation is carried out in parallel.
Solutions such as [18] propose the reuse of input weights
to avoid fetching them from the off-chip memory. Reuse
is an important mechanism in implementing DNNs as the
traditional sliding window method without any reuse results
in fetching some input pixels and weights multiple times.
In [16], the authors presented an architecture that aimed to
reduce the latency of networks by implementing the reuse
of input pixels. In [44] the authors designed a convolution
method that removed redundant multiplication operations
from both 1-D and 2-D convolution computations at the cost
of increased addition operations. In [45], we performed a
redundancy analysis of the weights in order to avoid repeat-
edly sending similar data from off-chip to on-chip. In [46],
we implemented an architecture to perform SPP2D convolu-
tion. The design was able to perform 2D convolution of an
input of size 5×5 with kernel 3×3 in approximately 9 clock
cycles. Although, being fast the design had several limita-
tions. We addressed those limitations to deliver a complete
SPP2D convolution-based CNN architecture in this work.

In this paper we present an SPP2D based architecture on
Xilinx’s KC705 Kintex 7 evaluation board. We implemented
the LeNet-5 and VGGNet-16 networks using the SPP2D
architecture. This design can implement a 2-D convolution
of an input of any size with a kernel of any size. Our archi-
tecture design addresses the two prominent concerns in this
area of research - computational complexity and latency and
power consumption due to memory movement. In this work,
we contribute to the following:
• We have designed an architecture based on SPP2D
convolution which has a generalized and improved
processing engine that can compute the outputs
of a 2-D convolutions by avoiding the re-fetching
of any input for the calculation of any partial
product.

16844 VOLUME 10, 2022

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

• The SPP2D architecture supports the convolution of an
input of any size and a kernel of any size which leads to
a network-agnostic architecture design.

• We implemented the LeNet-5 and VGGNet-16 net-
work using SPP2D architecture. We implemented
VGGNet-16 using a parallelism factor of 1 and 9. The
LeNet-5 design handled the same workload as [47] with
a smaller resource footprint and higher throughput than
in [48], in which the authors presented a design with
a reduced number of parameters. The SPP2D based
VGGNet-16 design achieved a low total latency of
91.3 ms which is lower than [11]–[13], [16], [18], [19]
at 298 mW for a parallelism factor of 9.

This promising concept helps resolve latency issues previ-
ously experienced and observed in other popular designs such
as [16], because it avoids the re-fetching of input pixels for the
calculation of partial products. This results in the low overall
number of operations required to compute a frame.

The remainder of this paper is organized as follows: In
Section III we explain the concept of the Single Partial
Product 2-D Convolution and its analysis in Section IV.
We explain the hardware architecture in Section V and
the implementation process of LeNet-5 and VGGNet-16 in
Section VI. This is followed by the results and conclusion in
Sections VII and SectionVIII.

III. SINGLE PARTIAL PRODUCTION 2-D CONVOLUTION
A. 2-D CONVOLUTION OPERATION
The 2-D convolution operation can be described using a slid-
ing window operation. Consider an input I of sizeN × N and
a kernelW of size k × k . We can describe the outputO of size
M × M whereM = N − k as the output of the convolution
of input I and kernel k with a stride of 1 (Figure 1). There is
a lot of information that can be gleaned about the movement
of data during the sliding window operation. By analyzing,
the interaction of the input pixels’ with the kernel elements,
we can understand how many times an input is required for
calculating the output. This has broad implications in terms
of memory requirements and dealing with the burden of data
movement in the case of the CNN architecture design process.

B. FREQUENCY OF REUSE
The convolution operation involves the reuse of the input
pixels in calculation of partial products.We define the number
of times an input pixel is required to calculate the output as the
frequency of reuse of that input pixel. The reuse of the input
pixels in calculating the output pixels influences the design
of memory traffic infrastructure in hardware for acceleration.
We denote the frequency of reuse as N(x) where x denotes
the frequency itself. Note: Here N(x) is not the same as N
which is the number of input pixels. The frequency of reuse
for all the pixels in a 5×5 input convolved by a kernel of size
3 × 3 is shown in Figure 2a. There are some key takeaways
such as the maximum frequency of reuse is N(9) and the
minimum frequency of reuse isN(1) for an input of 5×5 and

FIGURE 1. 2-D convolution: Sliding window operation.

kernel of size 3× 3. The frequency of reuse are arranged in a
pattern across in the input as demonstrated in all the examples
in Figure 2. The highest frequency N(9) is in the center of
the input - i12 in Figure 2a. The frequency of reuse for an
input of 6× 6 and kernel of size 3× 3 is shown in Figure 2b.
The maximum frequency isN(9) and the minimum frequency
is N(1). The maximum frequency of reuse pixels lie in the
‘‘middle’’ of the input and all the other lie on the boundary.
Consider two more inputs of size - 9 × 9 and 10 × 10 and
kernel of size 5×5 (Figure 2c and Figure 2d). The maximum
frequency of reuse is N(25) and the minimum frequency of
reuse is N(1). Some conclusions can be drawn from all the
above examples:
• This pattern of frequency of reuse is universal for a
kernel of size k and an input of size greater than or equal
to (2 ∗ k − 1)× (2 ∗ k − 1) with a stride of 1.

• The input pixels can be classified into three major
regions- ‘‘middle’’, ‘‘edge’’and ‘‘corner’’.

• The minimum frequency of reuse is N(1) and the max-
imum frequency of reuse is N(k2) for a kernel of size
k × k and an input of size greater than or equal to
(2 ∗ k − 1)× (2 ∗ k − 1) (Figure 3).

• The maximum frequency always lies in the ‘‘middle’’
• All other frequencies are present at the periphery of the
input spanning (k − 1) pixels along the entire boundary
where k is the kernel dimension.

• The ‘‘corner’’pixels are fixed in number. As the size
of the input increases, it has no effect on the number
of these pixels. The ‘‘edge’’and ‘‘middle’’pixels grow
with the increase in input size (Figure 2b and Figure 2d).
For example, in Table 1, we can see how the ‘‘edge’’and
‘‘corner’’pixels grow in number with the increase in size
of input and the ‘‘corner’’pixels remain fixed.

Figure 3 shows how the number of pixels in each region can
be determined and Table 2 summarizes the number of input
pixels that correspond to each region (‘‘middle’’, ‘‘edge’’
and ‘‘corner’’) for convolution between an input of any
size with a kernel of any size. The size of the ‘‘middle’’

VOLUME 10, 2022 16845

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

FIGURE 2. Conventional sliding window convolution.

TABLE 1. Number of inputs with the frequency
N(9), N(6), N(3), N(4), N(2), N(1) for various input sizes and a kernel of
size 3 × 3.

region is given by (N − 2(k − 1))2. The ‘‘edge’’ pixels are
given by (N − 2(k − 1))(k − 1) along each edge and there are
four edges and the four sets of ‘‘corner’’pixels are given as
(k − 1)2, where N is the size of the input and k is the size of
the kernel.

The work done in [16] deploys the reuse of input pixels to
combat the refetching of input pixels for the calculation of

FIGURE 3. Number of input in classified regions - (‘‘middle’’, ‘‘edge’’ and
‘‘corner’’).

partial products. In their design, they calculated the output
by preserving the partial products calculated between two

16846 VOLUME 10, 2022

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

TABLE 2. Number of input in based on region classification.

consecutive outputs and only calculating the new partial prod-
ucts introduced due to the stride. They reused input pixels
in their design, however there is still room for reuse. This
paper also reported a large amount of latency as the size of
the input increased. Based on our observations of the input
pixels and their frequency of reuse, we can avoid completely
re-fetching the input pixels. We designed an architecture that
exploits this strategy to avoid the re-fetching of the input
pixels, and extract the maximum use of the input pixel while
it is in the on-chip memory or buffers. The strategy involves
calculating all partial products that an input would generate
while the input pixel is in the buffer or on-chip memory
before it is discarded to the off-chip memory. The process
of simultaneous generation of partial products is described in
the following paragraph.

Following the example of an input of size 5 × 5 being
convolved with a kernel of size 3× 3 (Figure 4), we organize
the input pixels in the descending order of their frequency of
reuse and multiply them with the respective kernel weights
necessary to produce their respective partial products as
shown in Table 3.We can aggregate the partial products being
generated to arrive at the output theoretically at N × N
iterations where N is the size of the input. The partial product
aggregation process is described in the Table 3. In Table 3
we arrive at the output in 25 aggregation iterations. There
are a few design critical takeaways from Table 3. The first
takeaway is that 9 weights are used with 9 multipliers and
input pixel i12 occupies all these multipliers while all the
other input pixels leave gaps or not occupy all the multipliers.
The second takeaway from Table 3 is that there are comple-
mentary sets of inputs that can occupy all 9 multipliers, and
they are highlighted with similar colors. The complementary
sets are as follows: (i7, i22), (i2, i17), (i11, i14), (i6, i19,
i21, i24), (i1, i4, i16, i19), (i10, i13), (i5, i8, i20, i23), (i0,
i3, i15, i18). The complementary sets of inputs help engage
all 9 multipliers. This gives us an opportunity to combine the
input with complementary sets and parse them into 9 mul-
tipliers with weights. This is presented in Table 4. In this
manner, we can engage all the 9 multipliers corresponding
to the number of weight kernels. The combined process of
simultaneous generation of partial products and combining
the inputs to the complementary set helps us reduce the aggre-
gation cycles from 25 to 9. The color scheme described in
Table 4 represents the aggregation pattern. The accumulation
of all the similar colors in the Table 4 provides the output. For
example the accumulation of partial products- w0i0, w1i1,
w2i2, w3i5, w4i6, w5i7, w6i10, w7i11 and w8i12 gives the
output pixel o0 (Figure 4)

C. TYPES OF INPUT PIXELS
Examining the pattern of frequency of reuse for inputs of
different sizes we can conclude that we can classify the pixels
into 3 broad categories - ‘‘middle’’, ‘‘edge’’and ‘‘corner’’.In
addition to the broader classification shown in Figure 3,
we divided the pixels into finer categories. This gives rise to
the (2k − 1)2 category of pixels that is 25 types of pixels for
an input of any size and kernel of size 3× 3 and 81 types of
pixels for an input of any size and kernel of size 5×5. Figure 5
depicts the categories of the input pixels T0 to T24. The
pixel of type T12 lies at the center of the input. The types of
input pixels are classified to facilitate the organization of the
input data for hardware processing. Pixel-type classification
enables us to have a second level of discrimination of pixels
in addition to the frequency of reuse. As the size of the input
increases (and the kernel is 3 × 3) the number of pixels of
T12 with frequency N(9) also increases. This type of pixel
needs to be combined with all 9 weights. Therefore, the
T12 type pixel can be classified as the ‘‘middle’’. A large
chunk of the inputmust bemultiplied by all the 9weights. The
second major categories of input pixels are - T2, T7 which
are N(3) and N(6) pixels respectively, T17 and T22 which
are N(6) and N(3) respectively, T10 and T11 which are N(3)
andN(6) pixels respectively and T13 and T14 which areN(6)
andN(3) pixels respectively. These pixels can be classified as
the ‘‘edge’’. The other pixels that belong to the ‘‘corner’’are
T0, T4, T20 and T24. They have frequency N(1). Pixels T6,
T8, T16 and T18 have frequency N(4) and pixels having
frequency N(2) are T1, T3, T5, T9, T15, T19, T21 and
T23. The complementary types of pixels are T12, {T2, T17},
{T7, T22}, {T10, T13}, {T11, T14}, {T6, T9, T21, T24},
{T5, T8, T20, T23}, {T1, T4, T16, T19}, {T0, T3, T15,
T18}. The number of pixel types changes with the kernel size.
As stated earlier, the number of pixel types depends on the
size of the kernel k and is given by (2k − 1)2.

D. SPP2D CONVOLUTION OPERATION
We can explain SPP2D Convolution using an example. Con-
sider an input of size 5× 5 and a kernel of size 3× 3 described
in Figures 6a and 6b. The convolution operation is done with a
stride of 1. We highlight the input pixels using a color scheme
that denotes the frequency of reuse. The kernel weights are
used in an unfolded manner, and they can be aligned in the
form of a vector multiplier. The input pixels are combined
with the kernel weight in the optimized order as follows:{i0,
i3, i15, i18},{i1, i4, i16, i19}, {i2, i17},{i5, i8, i20, i23},
{i6, i9, i21, i24}, {i7, i22}, {i10, i13}, {i11, i14}, i12. This
is illustrated in Figure 7a. Once the partial products are
generated they must be sorted into their various output pixels.
The aggregation order is given by the color scheme described
in Figure 7b. For example, The output o0 is the aggregation
of sum{(3×1), (8×1), (7×3), (2×3), (2×2), (5×2), (5×
1), (8×1), (6×2)} is 77 as seen in Figure 6c. The final output
shown in Figure 6c is the result of the convolution of the input
matrix (Figure 6a) and kernel (Figure 6b).

VOLUME 10, 2022 16847

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

FIGURE 4. Convolution example of an input of size 5 × 5 and kernel of size 3 × 3.

TABLE 3. Input stream based on frequency of reuse.

TABLE 4. Optimized input stream.

IV. ANALYSIS OF THE SPP2D
We can calculate the number of times the inputs will be
operated by the sliding window technique by aggregat-
ing the frequency of reuse for each input pixel. This can
be a strong estimate of the number of cycles required
to perform the convolution operation using the sliding-
window technique. This is shown in Table 5 - columns
(a and d). The authors in [16] described an equation to
calculate the number of clock cycles required to perform
the convolution operation using their architecture. It is
described in columns (b and e) in Table 5. Following

the example of an input of size 5 × 5 being convolved
with a kernel of size 3 × 3 we can analyze the number of
clock cycles required to complete the SPP2D convolution
based on the size of the kernel. We obtained the clock cycle
estimate using the following formula: No. of clock cycles for
SPP2D = No of inputs with N(9) + 1

2×(No. of inputs with
N(6)+ No of inputs with N(3)) + 1

4× (No. of inputs with
N(4) + No of inputs with N(2) + No of inputs with N(1)).
We break down equation 1 into its constituent literals (equa-
tions 2,3,4). The number of inputs with frequency of reuse
N(9) (‘‘middle’’pixels) is given in Equation 2. In Equation 3,

16848 VOLUME 10, 2022

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

FIGURE 5. Conventional sliding window convolution.

FIGURE 6. The example input and the kernel.

we use the factor 1
2 since inputs with frequencyN(6) andN(3)

(‘‘edge’’pixels) are used together therefore, we need to divide
the sum of them by 2 as we use them together. In Equation 4,
we use the factor 1

4 since inputs having frequency N (4), N (2)
and N (1) (‘‘corner’’pixles) are used together and therefore
we need to divide their number by 4 as we use them 4 at a
time (N(2) is used 2× in a corner arrangement). Finally, the
number of clock cycles for the SPP2D convolution is given
by summing Equations 2, 3 and 4. The total number of clock

FIGURE 7. The partial products produced and sorted into outputs.

cycles is given by Equation 5. We can calculate the number
of clock cycles for an SPP2D convolution of input of any size
with a kernel of any size and a stride of 1 using Equation 5.
We can compare the number of clock cycles of the SPP2D
convolution using the sliding window convolution technique
and the convolution operation in the architecture described
in [16] in Table 5. We have demonstrated that the number of
clock cycles it takes to perform convolution on 5 × 5 with
3× 3 takes 9 clock cycles to generate an output of size 3× 3
(column c in Table 5) and it takes 25 clock cycles if the output
is of size 5× 5 (column f in Table 5). This can be scaled for
inputs with higher dimensions such as the input dimensions of
the layers of VGGNet-16 network. Columns a, b, c indicate
the number of clock cycles required to perform a convolution
operation on the input of a given dimension using the sliding
window, [16], and SPP2D convolution (w/o padding) and
columns d, e, f indicate the number of clock cycles required
by the sliding window, [16], and SPP2D convolution (with
padding). From Table 5 we see that the SPP2D convolution
requires approximately 3× (columns (b/c), (e/f)) less clock
cycles than [16] and 9× (columns (a/c), (d/f)) less clock
cycles than the sliding window technique for both operation
types - w/o padding and with padding.

SPP2D Cycles

= No of inputs with N(9)

+
1
2
(No. of inputs with N(6) + No of inputs with N(3))

+
1
4
(No. of inputs with N(4)+ No of inputs with N(2)

+No of inputs with N(1)) (1)

Lets break down equation 1 into its constituent literals

No of inputs with N(9)

= (N − 2(k − 1))2 (2)

VOLUME 10, 2022 16849

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

TABLE 5. Theoretical number of clock cycles needed for various input sizes inputs.

1
2
(No. of inputs with N(6) + No of inputs with N(3))

= 2(N − 2(k − 1))(k − 1) (3)
1
4
(No. of inputs with N(4)+ No of inputs with N(2)

+No of inputs with N(1)) = (k − 1)2 (4)

SPPD clock cycles

= (N − 2(k − 1))2

+2(N − 2(k − 1))(k − 1)+ (k − 1)2

= ((N − 2(k − 1)+ (k − 1))2

= (N − k − 3)2 (5)

where N is the dimension of the input and N(x) is the fre-
quency of reuse.

V. HARDWARE ARCHITECTURE
The architecture of the SPP2D engine is described in Figure 8.
The design is implemented on Xilinx’s Kintex KC705 Board.
The architecture design has many features that are common to
most computer architectures such as pipelining etc. However,
it also has some custom components that are designed to
facilitate SPP2D convolution. It has input and weight buffers
to store part of the input and kernel weights on the board.
They are read from external memory which is the off-chip
memory. The Input stream block organizes the input pixels
in the order which is optimal for processing them. It classifies
inputs of all sizes into the types of pixels (which are T0 to
T24 for a kernel of size 3×3 and T0 to T81 for a kernel of size
5×5).We have implementedVGGNet-16 and LeNet-5 which
have kernels of size 3 × 3 and 5 × 5 respectively. The Mux
Array takes the input pixels as they are delivered in the form
of pixels of type- T0 to T24 and selects the complementary
sets from them. The output of the Mux Array is fed into the
Multiplier along with the weights from the Weight Buffer.
The Decoder block sorts the output of the Multiplier.After
sorting, the partial products are accumulated in the Accumu-
lator block.After accumulation,they get stored in theOutput
Buffer and then eventually back to External Memory.

A. INPUT STREAM
The input stream block of the architecture controls the
data-flow and parsing of the input pixels. The input was
divided into rows and the order in which it needs to be

FIGURE 8. SPP2D engine architecture with pipelining.

conveyed to subsequent blocks is determined. To understand
the order of conveyance we need to understand the properties
of the rows of the input which is being processed by a
kernel of size 3 × 3. There are N rows in an input spanning
from 0 to N − 1. As discussed in Section III-C input pixels
form complementary type sets. The input rows can also have
similar properties. The pixels in row 0 are complementary to
the pixels in the row N−2 (Figure 9a). The pixels in the rows
1 and N − 1 form complementary sets. Pixel sets {T2, T17},
{T0, T3, T15, T18},{T1, T4, T16, T19} from row 0 and
N−2 are complementary sets. Similarly, rows 1 andN−1 are
complementary rows and pixels - {T7, T22}, {T5, T8, T20,
T23} and {T6, T9, T21, T24} are complementary pixels.
Rows 2 toN−3 onwards we see that the only complementary
pixel sets are {T10, T13} and {T11, T14} (Figure 6b). The
pixel type T12 is a pixel which according to SPP2D convo-
lution combines with all weights and occupies all multipliers
and doesn’t require a complementary pixel. The pixels are
fetched using re-ordered rows seen in (Figure 9c). There are
(2(k − 1)) complementary rows for an input being convolved
by a kernel of size k. The arrangement would be similar if
we were to look an input convolved by a kernel of size 5× 5.
Wewould first calculate all the complementary rows and then
the remaining rows.

From among the 25 types of pixels that exist for an input
being convolved by a kernel of size 3 × 3 there are pixels
that are fixed in number regardless of the size of the input
and there are pixels that grow and are variable with the size
of input. The corner pixels remain fixed - {T0, T3, T15,
T18}, {T1, T4, T16, T19}, {T5, T8, T20, T23}, {T6,
T9, T21, T24}. These are the pixels that have frequency of
reuse N(4),N(2),N(1) in this example. The remaining pixels
can vary with the size of the input and have frequencies of

16850 VOLUME 10, 2022

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

FIGURE 9. Input stream for a kernel of size 3 × 3.

FIGURE 10. Input parsing order for SPP2D convolution.

FIGURE 11. General input stream for a kernel of any size.

N(3),N(6) and N(9). The input pixels have a property of
being fixed or variable. The strategy for parsing the input pix-
els is based on the property of fixed or variable input pixels.
We align the inputs ensuring that the rows 0,N − 2, 1,N − 1
are processed first making sure that the fixed number of pixel
are processed first then the variable number of pixels. Once
we process rows 0,N −2, 1,N −1, we can process rows 2 to
N − 3. The input parsing scheme is illustrated in Figure 9c.
Figure 10 shows the optimized input stream order for an
input of 5 × 5 and kernel of 3 × 3. The order of the new
optimized stream is based on using rows with fixed pixels
first then the rows with variable type of pixels used last. The
parsing scheme is similar for pixels within a row. The fixed
pixels are used first followed by the variable pixels. It takes
9 compute stages to finally arrive at the output. The strategy of
processing a fixed number of pixels followed by the variable

number of pixels in the complementary rows can be adopted
to process an input that is convolved with a kernel of any size.
Consider an input of any size that is convolved with a kernel
of any size (Figure 11a), the rows 0,1,N − 2 and N − 1 are
processed first (Figure 11b) and then the rows 2 to N − 3
(Figure 11c). For these rows, the fixed pixels are processed
first followed by the variable pixels. Therefore, making the
process of organizing input data generalized irrespective of
the size of the input and the kernel with which it is being
convolved.

The Input stream organization works by classifying the
pixels into types of pixels as shown in Figure 5. Given any size
of input, the input stream is organized into 25 categories for a
kernel of size 3× 3. The input is classified into (2k − 1)2 for
a kernel size of k . In Figure 12a, we see an example of a
5×5 input (Figure 12b) classified into the 25 types of pixels.

VOLUME 10, 2022 16851

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

FIGURE 12. Input stream.

The parsing of complementary rows 0 and N − 2 of input of
size 5 × 5 is described in Figure 12a and 12c. In Figure 12d
we see the input of size 6× 6 (Figure 12e) classified into the
25 types of pixels. The parsing of complementary rows 0 and
N − 2 of input of size 6 × 6 is described in Figure 12d and
12f. The input pixels are parsed in a generalized manner. The
pixels stream corresponding to the compute stages defined
in Figure 10 and it can be seen in Figure 12a. There are
9 compute stages for an input of size 5× 5. As the input size

increases, the compute stages will have echoes as types of
pixels that are variable in nature grow. Looking at Figure 12d
we can see that compute stages 1 and 2 are followed by
compute stage 3 and 4. Compute stages 3 and 4 process
complementary pixel set {T2, T17}. There are 2 pairs of
pixels in this complementary set. This repeats for compute
stage 7 and 8. Furthermore, rows 3 and 4 have pixels that have
multiples of a type of pixel T10, T11, T12, T13 and T14.
Therefore we can see the entire row echoing in computation.

16852 VOLUME 10, 2022

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

FIGURE 13. Mux array.

The compute stages 8, 9, a and b are echoed as c, d, e, f .
These stages process complementary pixel sets {T10, T13},
{T11, T14} and pixel T12.

B. MUX ARRAY
The mux array processes its input only if all the inputs are
present and available. The number of multiplexers in the mux
array is given by k2 where k is the kernel size. In general,
we design the mux array based on the largest kernel size in
the architecture. The mux array as an example of the input
of 5 × 5 being convolved with a kernel of 3 × 3 has nine
9 to 1 muliplexers. The output of the mux array delivers the
input pixels to the multipliers. The inputs to the all the muxes
in the Mux Array are in0 to in8 as seen in Figure 13. The
order in which the inputs to the mux are delivered is described
using the optimized input stream described in Table 4 and also
depicted in Figure 13.

Consider we have the pixels from complementary rows
0 and N − 2 (Figures 9a) available at the output of the input
stream block. These pixels are arranged at the in0 inputs
of all the muxes of the Mux Array (Figure 13). The next
set of complementary rows are arranged at the input in1 of
all the muxes of the Mux Array. The entire arrangement of
the Mux Array is based on the parsing strategy described in
Section V-A. The design is such that we can send a select
signal to the Mux Array which sends all the mux inputs in
the ascending order.

C. MULITIPLIER
The multiplier block shown in Figure 14 is fairly straightfor-
ward. Its function is to accept the input pixels delivered by
the mux array and multiply them by the weights. The partial
products generated are combined in a bus for sorting and sent
to the decoder block. Booth multipliers were used to perform
the multiplication.

D. DECODER AND ACCUMULATOR
The decoder component of the architecture sorts the outputs
generated by the multiplier. Once the partial products are
generated they must be combined with relevant partial prod-
ucts for each output pixels. The sorting process is described
in Figure 7b. The hardware used to sort the output of the

FIGURE 14. Multipliers.

convolution of an input of size 5 × 5 with a kernel of size
3 × 3 is described in Figure 15. It consists of nine 9 to
1 multiplexers that accept all nine partial products (pp[8:0])
generated using the multipliers. The select signal for each of
these muxes are provided by the input stream block. These
mux select codes are known due to the analysis done in
Section III-D. Once the partial products are sorted into z0 to
z8 they can be aggregated to obtain the final outputs o0 to o8.

If the input size increases, the output size will also increase
and thus sorting the partial products becomes more compli-
cated. Consider, an input that generates an output of pixels
higher than 3× 3. In Figure 16, we see that compute stages-
1,2 and 3 which are also described in Figure 10 generate a
pattern of partial product delivery to the designated output
locations. We can see that compute stages 1, 2 lead to partial
products that occupy the output corners. These positions
are fixed for these compute stages. However, compute stage
3 can be variable and the output pixels will slide along the
columns so that it can accommodate pixels generated with
complementary sets {T2, T17} (Figure 16). This is similar
for compute stages 4,5 and 6 (Figure 17). Once we have
dealt with rows 0, 1, N − 1 and N − 2, we process rows
2 to N − 3. Rows 2 to N − 3 engage compute stages 7,
8 and 9 (along with echoes). These rows contain pixels that
can grow in number with the size of the input. For compute
stage 7 and 8 (and their echoes) we populate output pixels
on the edge (Figure 18). Therefore, output pixel for compute
stages 7 and 8 slide row wise. For compute stage 9 (and
its echoes) the partial products are sliding along both rows
and columns. This pattern holds for any size input being
processed by a kernel of any size. Consider an input of any
size and kernel of any size the sort pattern for rows 0 and
N − 2 is given in Figure 19. The hardware accelerator for
input of any size and kernel of any size produces (k2) partial
products given at a time (pp0 to pp(k2−1)). We see that the
fixed pixels generate partial products that will go to a fixed
location and the variable partial products will contribute to
variable locations. The sorting pattern for rows 1 and N−1 is
given in Figure 20. The sorting pattern for rows 2 to N − 3 is
given in Figure 21.

VI. IMPLEMENTATION
We implemented LeNet-5 [49] andVGGNet-16 using SPP2D
architecture on the Xilinx’s Kintex KC705 development

VOLUME 10, 2022 16853

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

TABLE 6. Throughput and performance for LeNet-5 implemented using SPP2D architecture.

TABLE 7. Throughput and performance for VGGNet-16 implemented using SPP2D Architecture.

FIGURE 15. Sort and accumulator blocks.

FIGURE 16. Sort for compute stages 1, 2 and 3 (Rows 0 and N-2).

board. We implemented the LeNet-5 design without any
parallelism as it a small network. The VGGNet-16 net-
work was implemented both with and without parallelism.

FIGURE 17. Sort for compute stages 4,5,6 (Rows 1 and N-1).

The LeNet-5 architecture consists of: two pairs of convo-
lutional layers, average pooling layers, followed by two
fully-connected layers (Figure 22). The design is imple-
mented at a frequency of 200MHz. The design has 25DSP48s
owing to the size of the kernel (k × k) which is 25. The other
resources used in the design were 1901 LUTs, 3073 FFs, and
8 BRAM blocks.

The VGGNet-16 architecture consists of 13 convolutional
layers and 3 fully connected layers. This is illustrated in
Figure 23. The VGGNet-16 design is implemented at a fre-
quency of 100MHz. We implement the design with a paral-
lelism factor of1 (Figure 24) and 9 (Figure 25). The design
with a parallelism factor of 9 can process 9 kernels of size
3 × 3 simultaneously as it had 9 parallel SPP2D engines
compared to the design with parallelism factor 1.

16854 VOLUME 10, 2022

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

FIGURE 18. Sort for compute stages 7,8,9 (Rows 2 to N-3).

FIGURE 19. Sort for rows 0 and N-2.

FIGURE 20. Sort for rows 1 and N-1.

FIGURE 21. Sort for rows 2 to N-3.

VII. RESULTS
The throughput and performance of LeNet-5 andVGGNet-16
are described in Table 6 and Table 7. In Table 8 and Table 9we
compare the results for LeNet-5 and VGGNet-16 with other
contemporary designs. In Table 6, we report the following -

FIGURE 22. LeNet-5 CNN architecture.

FIGURE 23. VGGNet-16 network structure.

FIGURE 24. VGGNet-16 architecture with parallelism factor of 1.

TABLE 8. Comparison of the SPP2D basedLeNet-5 architecture with
others.

parameters required for each layers, multiply accumulate
operations (MACs) operation for each layer and combina-
tions, execution time for each layer and combination, per-
formance (which is the reciprocal of execution time), GOP/s
for each layer and combination. Finally, we report GOP/s/W
for the entire system and GOP/s/W for the SPP2D IP. If a
machine has an execution time of 1 sec, the performance
metric indicates how much faster our design is compared
to it. Table 6 breaks the results down to individual layers
and as well as the following combinations - both convolution

VOLUME 10, 2022 16855

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

TABLE 9. Comparison of the SPP2D based VGGNet-16 architectures with others.

FIGURE 25. VGGNet-16 architecture with parallelism factor of 9.

layers (Conv1, Conv2), both fully connected layers (F1,F2)
and all the layers (Conv1, Conv2, F1, F2). The design gives
a throughput of 14.8 GOP/s/W (given onchip power) or
42.7 GOP/s/W if we consider the power consumption of the
SPP2D IP without the peripherals for the both convolution
layers. We considered the throughput for the convolution
layers since the SPP2D architecture applies to the convo-
lutional layers. The power consumption of the system is
0.337W and that of the SPP2D IP is 0.117 W. The SPP2D
implementation of the LeNet-5 architecture is compared with
two designs described in [47], [48] in Table 8. The design
in [48] is based on reducing the parameters in the CNN
design which decreases the footprint of the design while also
increasing the throughput. The design in [47] is implemented
at 150MHz and has a throughput of approximately 14.8
GOP/s. We observed that in our design we used a lower
number of DSPs than [47] with a comparable workload
and throughput (GOP/s). Compared to [48] we observed a
better GOP/DSP. We definitely use more DSP48s than [48]
but it is a small concession to make given the availability
and abundance of the DSP48 blocks. The on-chip power
consumed by the SPP2D architecture is 0.337 W which is
very competitive with current designs.

We compare our VGGNet-16 implementation with many
contemporary designs. The results of this implementation
are described in Table 7 and Table 9 respectively. Table 7,
describes the throughput and performance of each layer of
the VGGNet-16 network as well as the complete network.
The total latency of the network is 91.3 ms. The number of
operations per frame the network has to perform is 15.5 GOP.

These metrics remain the same for the network with a par-
allelism factor 1 and 9. The parallelism helps simultane-
ously process multiple kernels with an input. The number of
operations per second (GOP/s) for parallelism of 1 is 0.448
GOP/s with an execution time of 34.6secs. The number of
operations per second for a parallelism factor of 9 is 3.96
GOP/s with an execution time of 3.93 secs. Finally, we com-
pare the performance of the SPP2D based implementation
with other relevant designs [11]–[13], [15], [16], [18], [19] in
Table 9. SPP2D based VGGNet-16 design has a low latency
of 91.3 ms which is 79%, 97%, 17% and 95% less than
that of conventional designs [11], [15], [16], [18] while the
power consumption is 291 mW and 298 mW for parallelism
of 1and 9 respectively. The power consumption is low and
comparable to or better than that of other designs. Our design
has a lower overall operation per frame of 15.5 GOP since our
design aims to reduce re-fetching of data and also limiting the
number or calculations. Thus the throughput of our network
is lower compared to other designs (0.448 GOP/s, 0.0289
frames/s for parallelism of 1 and 3.96 GOPs/s, 0.225 frames/s
for parallelism of 9). The total processing time of our design
with a parallelism factor of 9 is 3.93 secs and it is 70% less
than [16] and 24% less than [15]. The advantage of our design
is that we avoid the re-reading of input pixels, thus reducing
power consumption due to huge memory traffic. However,
as a result, we need to wait for all the partial products to
be calculated for the output to be available. This puts a
lower limit on the latency of our design for each input size.
In addition to this, we need a buffer space which is the size
of the output feature map size, which depends on the biggest
output feature map size. This can cause a strain on the SRAM
budget of a design. SPP2D based architectures are suitable for
an input and kernel of any size and we have demonstrated it
for a stride of 1. We plan to update the SPP2D architecture
to incorporate variable strides in a future iteration of the
architecture. In summary, we demonstrated that an SPP2D
based hardware accelerator can deliver low latency with low
power and can be a competitive choice to implement any deep
neural network.

16856 VOLUME 10, 2022

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

VIII. CONCLUSION AND FUTURE WORK
We have presented the SPP2D convolution algorithm which
is a fast and efficient method of computing 2-D con-
volutions. We have demonstrated that it can process the
input and kernel of any size. SPP2D based architectures
have delivered a more generalized design to implement any
2-D convolution. SPP2D based architectures have provided
tremendous savings in re-fetching input pixels for computing
partial products compared to the reuse calculation described
in [11], [15], [16], [18], [47]. as well as a low latency and
high throughput solution for calculating convolutions. The
SPP2D based LeNet-5 and VGGNet-16 validate the con-
cept introduced in [46] and presented in detail in this paper.
Furthermore, we plan to extend this research to other net-
works such asMobileNet and ResNet-50 thus proving that the
SPP2D architecture is truly network agnostic and adaptable
to any design.

ACKNOWLEDGMENT
Xilinx’s University Support Program donated the board
Xilinx Kintex 7 KC705 Evaluation Kit that was used in this
research.

REFERENCES
[1] O. Matan, H. S. Baird, J. Bromley, C. J. C. Burges, J. S. Denker,

L. D. Jackel, Y. L. Cun, E. P. D. Pednault, W. D. Satterfield, C. E. Stenard,
and T. J. Thompson, ‘‘Reading handwritten digits: A ZIP code recognition
system,’’ Computer, vol. 25, no. 7, pp. 59–63, Jul. 1992.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[3] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, ‘‘CuDNN: Efficient primitives for deep learning,’’ 2014,
arXiv:1410.0759.

[4] V. Vanhoucke, A. Senior, and M. Z. Mao, ‘‘Improving the speed of neural
networks on CPUs,’’ in Proc. Deep Learn. Unsupervised Feature Learn.
NIPS Workshop, vol. 1, 2011, p. 4.

[5] Z. Li, J. Eichel, A. Mishra, A. Achkar, and K. Naik, ‘‘A CPU-based
algorithm for traffic optimization based on sparse convolutional neural
networks,’’ in Proc. IEEE 30th Can. Conf. Electr. Comput. Eng. (CCECE),
Apr. 2017, pp. 1–5.

[6] F. Abuzaid, ‘‘Optimizing CPU performance for convolutional neu-
ral networks,’’ Stanford Univ., Stanford, CA, USA, Tech. Rep.,
2015. [Online]. Available: http://cs231n.stanford.edu/reports/2015/pdfs/
fabuzaidfinalreport.pdf

[7] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, ‘‘A dynam-
ically configurable coprocessor for convolutional neural networks,’’
ACM SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 247–257,
2010.

[8] S. Han et al., ‘‘EIE: Efficient inference engine on compressed deep neural
network,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), 2016, pp. 243–254, doi: 10.1109/ISCA.2016.30.

[9] M. Alwani, H. Chen, M. Ferdman, and P. Milder, ‘‘Fused-layer CNN
accelerators,’’ inProc. 49th Annu. IEEE/ACM Int. Symp.Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[10] Y. Shen, M. Ferdman, and P. Milder, ‘‘Maximizing CNN accelerator
efficiency through resource partitioning,’’ in Proc. 44th Annu. Int. Symp.
Comput. Archit., Jun. 2017, pp. 535–547.

[11] P. Gao, Z. Huang, H. Ye, and G. Chen, ‘‘IDLA: An instruction-based
adaptive CNN accelerator,’’ in Proc. IEEE 15th Int. Conf. Solid-State
Integr. Circuit Technol. (ICSICT), Nov. 2020, pp. 1–3.

[12] H. Zeng, C. Zhang, and V. Prasanna, ‘‘Fast generation of high
throughput customized deep learning accelerators on FPGAs,’’ in Proc.
Int. Conf. ReConFigurable Comput. FPGAs (ReConFig), Dec. 2017,
pp. 1–8.

[13] T. Tian, X. Jin, L. Zhao, X. Wang, J. Wang, and W. Wu, ‘‘Exploration
of memory access optimization for FPGA-based 3D CNN accelerator,’’
in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2020,
pp. 1650–1655.

[14] V. Panchbhaiyye and T. Ogunfunmi, ‘‘A FIFO based accelerator for convo-
lutional neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2020, pp. 1758–1762.

[15] V. Panchbhaiyye and T. Ogunfunmi, ‘‘An efficient FIFO based accelerator
for convolutional neural networks,’’ J. Signal Process. Syst., vol. 93, no. 10,
pp. 1117–1129, Oct. 2021.

[16] A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, ‘‘An architecture
to accelerate convolution in deep neural networks,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 65, no. 4, pp. 1349–1362, Apr. 2018.

[17] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2015,
pp. 161–170.

[18] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2016.

[19] K.-T. Lin, C.-T. Chiu, J.-Y. Chang, and S.-C. Hsiao, ‘‘High utilization
energy-aware real-time inference deep convolutional neural network accel-
erator,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021,
pp. 1–5.

[20] G. Lacey, G. W. Taylor, and S. Areibi, ‘‘Deep learning on FPGAs: Past,
present, and future,’’ 2016, arXiv:1602.04283.

[21] J. Fowers, G. Brown, P. Cooke, and G. Stitt, ‘‘A performance and energy
comparison of FPGAs, GPUs, and multicores for sliding-window appli-
cations,’’ in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays
(FPGA), 2012, pp. 47–56.

[22] A. Ansari, K. Gunnam, and T. Ogunfunmi, ‘‘An efficient reconfigurable
hardware accelerator for convolutional neural networks,’’ in Proc. 51st
Asilomar Conf. Signals, Syst., Comput., Oct. 2017, pp. 1337–1341.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ 2016, arXiv:1608.08710.

[24] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘‘Quantized convolutional
neural networks for mobile devices,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4820–4828.

[25] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor process-
ing unit,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit., 2017, pp. 1–12.

[26] S. Han, ‘‘Efficient methods and hardware for deep learning,’’ Ph.D. disser-
tation, Stanford Univ., Stanford, CA, USA, 2017.

[27] A. Ansari and T. Ogunfunmi, ‘‘Empirical analysis of fixed point precision
quantization of CNNs,’’ in Proc. IEEE 62nd Int. Midwest Symp. Circuits
Syst. (MWSCAS), Aug. 2019, pp. 243–246.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2012,
pp. 1097–1105.

[29] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[30] A. Parashar et al., ‘‘SCNN: An accelerator for compressed-sparse con-
volutional neural networks,’’ in Proc. ACM/IEEE 44th Annu. Int. Symp.
Comput. Archit. (ISCA), 2017, pp. 27–40, doi: 10.1145/3079856.3080254.

[31] X. Liu, J. Pool, S. Han, and W. J. Dally, ‘‘Efficient sparse-winograd
convolutional neural networks,’’ 2018, arXiv:1802.06367.

[32] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally, ‘‘Explor-
ing the regularity of sparse structure in convolutional neural networks,’’
2017, arXiv:1705.08922.

[33] S. Han, J. Pool, S. Narang, H.Mao, S. Tang, E. Elsen, B. Catanzaro, J. Tran,
and W. J. Dally, ‘‘DSD: Regularizing deep neural networks with dense-
sparse-dense training flow,’’ 2016, arXiv:1607.04381.

[34] L. Jiang, M. Kim, W. Wen, and D. Wang, ‘‘XNOR-POP: A processing-
in-memory architecture for binary convolutional neural networks in wide-
IO2DRAMs,’’ inProc. IEEE/ACM Int. Symp. Low Power Electron. Design
(ISLPED), Jul. 2017, pp. 1–6.

[35] T. Tang, L. Xia, B. Li, Y.Wang, and H. Yang, ‘‘Binary convolutional neural
network on RRAM,’’ in Proc. 22nd Asia South Pacific Design Automat.
Conf. (ASP-DAC), Jan. 2017, pp. 782–787.

[36] D. Lin, S. Talathi, and S. Annapureddy, ‘‘Fixed point quantization of deep
convolutional networks,’’ in Proc. 33rd Int. Conf. Mach. Learn., New
York, NY, USA, vol. 48, Jun. 2016, pp. 2849–2858. [Online]. Available:
https://proceedings.mlr.press/v48/linb16.html

VOLUME 10, 2022 16857

http://dx.doi.org/10.1109/ISCA.2016.30
http://dx.doi.org/10.1145/3079856.3080254

A. Ansari, T. Ogunfunmi: Hardware Acceleration of Generalized Fast 2-D Convolution Method for Deep Neural Networks

[37] N. Doi, T. Horiyama, M. Nakanishi, and S. Kimura, ‘‘Minimization of
fractional wordlength on fixed-point conversion for high-level synthesis,’’
in Proc. Asia South Pacific Design Automat. Conf. (ASP-DAC), Jan. 2004,
pp. 80–85.

[38] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, ‘‘Deep
learning with limited numerical precision,’’ in Proc. 32nd Int. Conf. Int.
Conf. Mach. Learn., vol. 37, 2015, pp. 1737–1746.

[39] S. Lee and A. Gerstlauer, ‘‘Fine grain word length optimization for
dynamic precision scaling in DSP systems,’’ in Proc. IFIP/IEEE 21st Int.
Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2013, pp. 266–271.

[40] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, ‘‘Ristretto: A frame-
work for empirical study of resource-efficient inference in convolutional
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5784–5789, Nov. 2018, doi: 10.1109/TNNLS.2018.2808319.

[41] K. Kum and W. Sung, ‘‘Word-length optimization for high-level synthesis
of digital signal processing systems,’’ in Proc. IEEE Workshop Signal
Process. Syst. (SIPS), Design Implement., Oct. 1998, pp. 569–578.

[42] S. Winograd, Arithmetic Complexity of Computations, vol. 33.
Philadelphia, PA, USA: SIAM, 1980.

[43] T. S. Kim, J. Bae, and M. H. Sunwoo, ‘‘Fast convolution algorithm for
convolutional neural networks,’’ in Proc. IEEE Int. Conf. Artif. Intell.
Circuits Syst. (AICAS), 2019, pp. 258–261.

[44] C. Cheng and K. K. Parhi, ‘‘Fast 2D convolution algorithms for convolu-
tional neural networks,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. 5, pp. 1678–1691, May 2020.

[45] A. Ansari and T. Ogunfunmi, ‘‘Selective data transfer from DRAMS
for CNNs,’’ in Proc. IEEE Int. Workshop Signal Process. Syst. (SiPS),
Oct. 2018, pp. 1–6.

[46] A. Ansari and T. Ogunfunmi, ‘‘A fast 2-D convolution technique for
deep neural networks,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Oct. 2020, pp. 1–5.

[47] Y. Zhou and J. Jiang, ‘‘An FPGA-based accelerator implementation for
deep convolutional neural networks,’’ in Proc. 4th Int. Conf. Comput. Sci.
Netw. Technol. (ICCSNT), vol. 1, 2015, pp. 829–832.

[48] M. Hailesellasie, S. R. Hasan, F. Khalid, F. A. Wad, and M. Shafique,
‘‘FPGA-based convolutional neural network architecture with reduced
parameter requirements,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1–5.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

ANAAM ANSARI (Graduate Student Member,
IEEE) received the bachelor’s degree in electronics
engineering from the University of Mumbai. She
is currently pursuing the Ph.D. degree with the
Electrical Engineering Department, Santa Clara
University. Her work involves researching new
and efficient hardware architectures for convolu-
tional neural networks. Immediately followed by
her undergraduate career, she enrolled at San José
State University (SJSU) into a graduate program

in electrical engineering. She spent her graduate career focusing on wireless

communications theory. She has participated in several projects ranging from
robotics to wireless communication using software-defined radios. Before
becoming a full-time Ph.D. student, she also worked at LSI Corporation as a
Systems Engineer with the SerDes Architecture Team. She has also interned
at autonomous driving companies, such as Velodyne and Waymo. Her cur-
rent research interest includes new architecture paradigms for performing
convolutional neural networks.

TOKUNBO OGUNFUNMI (Senior Member,
IEEE) received the B.S. degree (Hons.) from
Obafemi Awolowo University (formerly the Uni-
versity of Ife), Ile-Ife, Nigeria, and the M.S.
and Ph.D. degrees from Stanford University,
Stanford, CA, all in electrical engineering.
From 2010 to 2014, he served as the Associate
Dean for Research and Faculty Development for
the SCU School of Engineering. He is currently a
Professor of electrical and computer engineering

and the Director of the Signal Processing Research Laboratory, Santa Clara
University (SCU), Santa Clara, CA, USA. At SCU, he teaches a variety
of courses in circuits, systems, signal processing, and related areas. His
current research interests include machine learning, deep learning, speech
and multimedia (audio and video) compression, digital and adaptive signal
processing and applications, and nonlinear signal processing. He has pub-
lished over 200 refereed journal and conference papers in these areas. He has
been involved with several IEEE conference committees as a member of the
organizing and technical committees. He served as the General Chair for
the 2018 IEEEWorkshop on Signal Processing Systems (SiPS 2018) and the
Technical Program Co-Chair for the 2019 IEEE International Symposium
on Circuits and Systems (ISCAS 2019). He served the IEEE as a Distin-
guished Lecturer, from 2013 to 2014, for the Circuits and Systems Society.
He currently serves on the Editorial Board for the IEEE TRANSACTIONS ON

SIGNAL PROCESSING and the Circuits, Systems, and Signal Processing (CSSP)
journal. He also served as a Lead Guest Editor for CSSP Special Issue
on ‘‘Algorithms and Architectures for Machine Learning Based Speech
Processing’’ published in August 2019 and the Journal of Signal Processing
Systems (JSPS) Special Issue on 2018 IEEE Workshop on SiPS.

16858 VOLUME 10, 2022

http://dx.doi.org/10.1109/TNNLS.2018.2808319

