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ABSTRACT Motivated to address the inconsistency between the essential i.i.d. assumption inmachine learn-
ing theory and the data heterogeneity in real-world applications, we propose a novel calibrated ensemble (CE)
algorithm to facilitate learning with diverse data subgroups. Unlike the traditional ensemble framework
in which each learner is trained independently using the entire dataset, our method exploits the strengths
of various machine learning models by training them simultaneously and forming model-ergonomic data
subgroups as part of the training process. Consequently, each learner is calibrated to a unique subset of
data based on their individualized predictive strength. Clinically, we can interpret each model as an expert
specializing in treating patients with particular disease manifestations. We evaluate the CE model in our
motivating domain of identifying lupus patients with severe SLE flares using 1541 clinical encounters in the
Mass General Brigham (MGB) Lupus Cohort. Our experimental results demonstrate the efficacy of our CE
model across seven performance evaluation metrics compared to five individual machine learning models
and regular ensemble approaches. We further utilize ANOVA and Tukey HSD post-hoc statistical analysis
to discover characteristic features of individual model clusters for clinical interpretations.

INDEX TERMS Data heterogeneity, ensemble learning, machine learning, lupus, SLE.

I. INTRODUCTION
Machine learning (ML) has attracted a significant amount
of interest in recent years and has become a rapidly emerg-
ing field in artificial intelligence. Conceptually, ML can be
viewed as discovering the underlying pattern in a large collec-
tion of data (i.e., training examples), guided by various learn-
ing algorithms. The effectiveness of this process relies on the
assumption that the collected data are drawn independently
from the same distribution. For example, logistic regression
(LR) [1], neural networks [2], and many other standard algo-
rithms implicitly make this assumption in their learning pro-
cesses. However, this assumption is often violated in practice.
Practitioners applying machine learning to real-world data
often find themselves in a common predicament: data are col-
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lected from heterogeneous sources and, consequently, have
different underlying distributions. This is particularly true in
the medical domain where patients may belong to distinctive
subgroups with altered disease characteristics, or different
physicians can introduce biases due to subjective interpreta-
tions of the clinical test or lab results [3], [4].

The subgroups of comparable subjects which can be
effectively modeled as coming from the same distribution
are notoriously difficult to identify. Many efforts, such as
multiple-task learning [5], multi-view learning (MVL) [6],
and transfer learning [7], have been made to address the
idiosyncrasies in subsets of training data. Another typical
approach is to group the data using descriptive features
guided by domain knowledge. However, this option could
lead to reduced training data, and the domain knowledge may
not always be available. We provide a brief survey of these
related studies in Section II.
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In our study, we observe that different machine learning
algorithms tend to focus on a different set of features in
their decision-making processes, suggesting that they are tar-
geting patients with different disease manifestations. Based
on our findings, we propose an iterative approach in which
an ensemble of k ML models dynamically partitions the
training data into k subgroups. Model parameters and sub-
groups of patients best suited for fitting by individual learn-
ers are adjusted in each iteration to maximize the models’
performance. Unlike the traditional ensemble framework in
which each learner is trained independently using the entire
dataset, our method exploits the strengths of various machine
learningmodels by training them simultaneously and forming
model-ergonomic data subgroups as part of the training pro-
cess. We term our model calibrated ensemble (CE) because
it is an ensemble of multiple learners and each learner is
calibrated to a unique subset of data.

In addition, instances in each algorithmically induced data
cluster can be interpreted as patients exhibiting certain homo-
geneous traits that are apprehensible to a particular learned
model (i.e., expert) but relatively opaque to others. To further
understand these latent disease subgroups, we utilize the
ANOVA [8], Bartlett’s [9], and Tukey HSD post-hoc [10]
statistical tests to identify individual model clusters’ charac-
teristic features and study their clinical interpretations.

The main contribution of this paper is a novel ensemble
approach to explicitly address multiple underlying data distri-
butions in building predictive models. In the clinical setting,
the resulting models can be interpreted as experts and the
data associated with each model is a patient subgroup in
which the expert (i.e., the model) specializes. Our method
can be extended to any dataset that is a mixture of multiple
distributions, which is typical in real-world applications.

Another contribution of our work is a new method to
discover latent disease subgroups in clinical data. In con-
trast to the majority of existing approaches where data clus-
ters are typically identified via domain knowledge before
the onset of model training, our algorithm iteratively forms
model-ergonomic subsets in the model training process. Sub-
sequently, the clinical interpretation of these patient groups
can be inferred by performing statistical analysis on each
feature across different model clusters to identify characteris-
tic traits, and thus, leading to potential discoveries of patient
subgroups that are not yet established in the clinical setting.

We demonstrate the efficacy of our CE algorithm in our
motivating domain of identifying disease flares in patients
with systemic lupus erythematosus (SLE), a heterogeneous
disease characterized by a range of clinical manifestations
and laboratory abnormalities. The heterogeneous nature of
the disease lends difficulty to accurately predicting disease
flares, as does the irregular nature of real-world clinical obser-
vational data with varying distributions.

II. RELATED WORK
Addressing data heterogeneity in machine learning is an
active research area because data collected from a complex

real-world environment hardly follows a single underlying
distribution. As alluded in Section I, researchers have resorted
to techniques including domain knowledge integration [4],
[11], multi-view learning (MVL) [6], [12], multi-task learn-
ing (MTL) [5], [13], and transfer learning (TL) [3], [7].

Leveraging experts’ domain knowledge, Zhao et al. intro-
duced a domain induced Dirichlet mixture of Gaussian pro-
cesses (DI-DPMGP) model to address the patient subgroups
and physician subjectivity in predicting the disease course for
multiple sclerosis patients [4]. In their approach, data sub-
groups generated by a k-means algorithms served as hierar-
chical constraints to a non-parametric model. Ross et al. [11]
proposed a novel clustering with constraints method to iden-
tify new and clinically relevant categories of lung disease.
In particular, they introduced a new way of looking at sub-
typing/clustering by recasting it in terms of discovering asso-
ciations between individuals and disease trajectories.

In the MVL domain, Liu et al. explored multi-view learn-
ing [6] in classifying mild cognitive impairment (MCI),
an early stage Alzheimier’s disease. They proposed an
effective method to enhance the feature representation of
multi-modal MRI data by combining multi-view informa-
tion to improve the performance of MCI classification.
Serra et al. [12] proposed a multi-view genomic data integra-
tion methodology, in which the information from different
data layers (views) is integrated at the levels of the results
of each single view clustering iteration.

In the MTL and TL domain, Hu et al. applied transfer
learning to generate individualized patient models, grounded
in the wealth of population data, while also detecting and
adjusting for inter-patient variabilities based on each patient’s
own histologic data [13]. Zhao et al. [3] applied transfer
learning techniques to address human subjectivity in predict-
ing disease course for chronic progressive diseases.

It is worth noting that all of the aforementioned method-
ologies require pre-defined criteria for data groups or sub-
tasks/views. Nevertheless, this information can often be
unavailable. Our proposed method is motivated to address
this limitation by identifying the latent data clusters algo-
rithmically as part of an ensemble model’s training process.
Consequently, the resulting learners are calibrated to special-
ize in distinct subsets of data based on their individualized
predictive strengths.

III. METHODS
This section illustrates our proposed calibrated ensemble
model, which will iteratively partition the patients into sub-
groups during its model training process, leveraging individ-
ual learners’ strengths.

A. CALIBRATED ENSEMBLE MODEL
1) MODEL TRAINING
We denote our training data as

D = {(Ex1, y1), (Ex2, y2), . . . , (Exn, yn)}
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where Exi = (x1i , x
2
i , . . . , x

d
i ) and yi ∈ {0, 1} (i =

0, 1, 2., . . . , n) are the attributes and the corresponding
observed class labels for instance i, respectively.

Our CE algorithm starts with training k baseline models,
denoted as m1,m2, . . . ,mk , using the entire dataset D. The
training process entails all necessary steps to obtain the best
performing model, including 10-fold cross-validation, imbal-
anced data treatment, and nested 10-fold cross-validation for
hyper-parameter selection as described in Section IV-C1.

Next, we will form k data clusters for the corresponding
models. The cluster membership of each training instance
will be set to the model group with the highest probability
score for the class label. For example, assuming our CE algo-
rithm employs three learners, m1,m2 and m3 and P(m(Exi) =
yi) denotes the probability score for class yi when model m is
applied to instance Exi. If P(m(Exi) = yi) are 0.4, 0.7, 0.6 from
m1,m2, and m3 respectively, then Exi will be assigned to the
m2 group. In the case of a tie, the group membership is set
randomly among the equal performing algorithms.

Once we have formed the initial clusters, we will retrain
each model using its own group data, followed by reassigning
the group membership of each instance according to the
probability scores after applying the retrained models. This
model training and membership assigning process is repeated
until convergence, i.e., when there is no group membership
change for all the data points. To prevent degenerative mod-
els, we ensure a minimum of 15 instances from each class
in each cluster. As a result, a data point will not be moved
to a higher performing group if its reassignment will violate
the minimum instance requirement. The convergence proof
of the CE algorithm is given in Section III-B. We provide the
outline of the algorithm in Figure 1.

It is worth noting that our CE algorithm bears some resem-
blance to a k-means algorithm [14]. However, there are two
fundamental differences between the two algorithms. First,
k-means is an unsupervised clustering algorithm aiming to
discover the underlying structure of the data, whereas CE is a
supervised algorithm that exploits the strength of individual
machine learning algorithms. Second, the k-means algorithm
acts on a set of descriptive attributes of the dataset and the
clusters are formed using similarity measures, whereas the
clusters in CE are formed based on models’ performance.
Indeed, the descriptive characteristics of each cluster can be
inferred afterward by performing statistical analysis on the
obtained subgroups (see Section IV-E for details).

2) MODEL INFERENCE
We perform model inference by applying each learner to the
new data point and select the prediction with the highest prob-
ability. If we consider each model as an expert specializing
in treating a certain patient type, then the highest probability
corresponds to the highest confidence. Assuming that each
expert is reasonably skilled (i.e., better than random guess-
ing), this approach is consistent with the design principle
of the CE algorithm, i.e., for each instance, the best learner
is the one with the highest predicted probability score in

FIGURE 1. Calibrated ensemble algorithm.

the corresponding label class. With this inference method,
our CE model demonstrates significant performance gains
over individual baseline models, as well as regular ensemble
leaners. Detailed performance comparisons are presented in
Section IV.

We also experimented with another intuitive inference
approach, which is trying to place a new data point into the
‘‘right’’ algorithmic group and then apply the correspond-
ing learned model. Nevertheless, assigning the correct group
membership to a new instance can be challenging because the
data clusters are formed algorithmically and there are no spe-
cific descriptions of each group. To this end, we experimented
with both centroid-based and prediction-based methods. The
centroid-basedmethod calculates the cluster centroid for each
algorithmic group by taking the average of all data instances
in the group. A new instance is assigned to the most similar
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group measured by the Euclidean distances between the data
point and the centroids. The prediction-based approach builds
a 3-class classificationmodel based on the class memberships
of the training data. Both methods demonstrated worse out-
comes than the above highest probability approach.

B. PROOF OF CONVERGENCE
We show that our CE algorithm will converge within a finite
number of steps. Following the same notion as in Figure 1,
the cost (C) of the CE algorithm is defined as follows:

C =
k∑
j=1

∑
Ex∈gj

[1− P(mj(Ex) = y)] (1)

where
−k is the total number of ML algorithms employed by
the CE ensemble.
−gj is the data cluster associated with model j.
−y is the ground-truth label of instance Ex.
−P(mj(Ex) = y) is the probability score of class y
when model mj is applied to instance Ex.

Thus, C is the total deficiency in predicted probability scores
of all instances with respect to their ground-truth labels.
We claim that the cost functionC is strictly decreasing in each
iteration of steps 4) to 6) in Figure 1. This can be shown as
follows.

First, in step 6), we observe that the group membership
for x changes from cluster g to g′ only if P(m′(Ex) = y) >
P(m(Ex) = y), which means model m′ makes a more accurate
prediction for Ex. This improved performance can either cor-
rect a wrong prediction or result in a higher predicted proba-
bility score towards the ground-truth class. In both cases, the
membership reassignments will decrease the algorithm’s total
cost C .

In step 5), we observe that all models in iteration t (i.e.,
mti ) will be retrained using the adjusted corresponding data
clusters (i.e., gti ) to obtain mt+1i , ∀i ∈ {1, 2, . . . , k}. If the
cost incurred by mt+1i is higher than that of mti for instances
in the cluster gti , we will simply keep the old model by setting
mt+1i = mti . Thus, the cost C is non-increasing in step 5).
Since the C is strictly decreasing throughout the iterations

and is lower-bounded by 0, the CE algorithm converges
within finite steps.

IV. EXPERIMENTAL RESULTS
In this section, we first describe our motivating task of pre-
dicting lupus flares. We then demonstrate the efficacy of
the CE algorithm by comparing its performance to that of
individual baseline models and regular ensemble learners.
Lastly, we illustrate the interpretation of the data clusters
identified by the CE model’s individual learners under the
clinical setting.

A. PREDICTING LUPUS FLARES
Lupus is a chronic autoimmune disease with a prevalence
of at least five million people worldwide [15]. Patients suf-

fer from various symptoms, including pain, extreme fatigue,
hair loss, cognitive issues, and physical impairments that
affect every facet of their lives. Systemic lupus erythemato-
sus (SLE) is the most common form of lupus, affecting
approximately 70% of lupus patients [15]. The clinical course
of SLE is heterogeneous and characterized by disease flares
which can range from mild to life-threatening, affecting var-
ious organ systems [16]–[18]. Such flares can lead to irre-
versible organ damage and lower health-related quality of
life, as well as considerable economic costs.

Identifying severe SLE disease flares in real-world data
could provide unprecedented insight into nuanced patterns
underlying disease activity. The stratification of patients by
risk for SLE flares could lead to improved clinical monitor-
ing and targeted treatment. However, accurate assessment of
lupus flares is critical but problematic in clinical trials [19].
A gold standardmeasure is the SELENA-SLEDAI flare index
(SFI) [20], a cumulative and weighted index used to assess
disease activity across 24 different disease descriptors in
patients with SLE. In practice, a revised SFI (i.e., rSFI) [21],
[22] is preferred, which further incorporates additional infor-
mation as an expert domain driven rule-based algorithm
and classifies SLE patients into mild-flare, moderate-flare,
severe-flare, and no-flare categories.

Our study applies machine learning techniques to identify
patients in the most severe-flare category (class 1) against the
remaining mild/medium/no flare patients (class 0) based on
their rSFI scores, engendering a binary classification task.
This undertaking is valuable because hospitalizations are
needed for the most severe SLE flares, occurring in 7% of
individuals with SLE per year and accounting for most of the
direct costs of SLE care [23], [24].

B. DATA AND PREPROCESSING
Our data comes from the longitudinal EHR-based Mass Gen-
eral Brigham (MGB) Lupus Cohort, including patients with
SLE from two large academic medical centers and multiple
community hospitals. These subjects were identified by a
previously validated SLE phenotype study and have been
followed longitudinally between 2016-2020 [25]. Our dataset
consists of 1,541 clinical encounters over this period. This
study was approved by the Mass General Brigham Institu-
tional Review Board, and informed consent was waived.

We extracted a total of 203 features from patients’
encounter information, lab results, and medication records.
Categorical features were further processed using one-hot
encoding, a technique in which an integer encoded categori-
cal variable is converted to a set of binary variables, each of
which indicates a unique value in the category [26]. One-hot
encoding eliminates the artificial ordering introduced by the
integer values that a machine learning algorithm could exploit
erroneously.

1) IMBALANCED DATA
Our dataset is highly imbalanced with a class 1 (severe-
flare) to class 0 (mild/medium/no flare) ratio of 332 to
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FIGURE 2. Individual model training and evaluation architecture.

1209. Applying standard machine learning algorithms to
an imbalanced dataset leads to insufficient performance
on the minority class, which is often the more interest-
ing and important class under investigation. Indeed, the
primary interest of our classification task is to accurately
predict patients with severe SLE flares. To address the
class imbalance issue, we employed the cost-sensitive learn-
ing [27] technique in our model training process. Specifi-
cally, a higher cost (i.e., weight) is assigned to all minority
instances to facilitate a larger penalty when they are mis-
classified. For each algorithm, the best weight was selected
as a hyper-parameter using a nested 10-fold cross-validation
detailed in Section IV-C1.

2) MISSING VALUE IMPUTATION
There are 30 features with missing values (MVs) in our
dataset, with the missing percentage ranging from 0.13%
to 97%. We removed 14 features missing in over 40% of
patients. For the remaining features, we imputed the missing
values using the mean or mode for the numeric and categorial
features, respectively. Finally, we applied z-score normaliza-
tion to standardize the data.

C. EXPERIMENTAL FRAMEWORK
1) BASELINE MODELS
We employ five baselinemachine learningmethods:Decision
Tree (DT), Random Forest (RF), Logistic Regression (LR),
Naive Bayes (NB), and XGBoost. Figure 2 illustrates our
framework for training and evaluating each baseline model.
Specifically, all experiments are conducted using an outer
10-fold (black box) cross-validation. Therein, we divide the
training data into ten disjoint partitions (i.e., folds), and
train/evaluate each classifier ten times with different training
and test data. At each iteration t, (t = 1, 2, . . . 10), fold i will
be designated as the test data, and the remaining nine folds
will be designated as the training data. We report the average
performance of the ten test folds.

FIGURE 3. Total cost over iterations in CE model training.

Optimal hyper-parameters are selected using a grid
search [28] and an inner 10-fold cross-validation (red box
in Figure 2), aiming at the highest validation area under the
receiver operator curve (AUC) [29]. The optimal parameter
combination is then used to perform a final training on the
complete 9-fold of data. The model performance measures
are computed from the ground-truth and predicted classmem-
berships based on the predictive probabilities. The perfor-
mance is evaluated using seven metrics: overall accuracy,
recall, specificity, PPV, NPV, F1, and AUC.

2) LEARNERS FOR THE CALIBRATED ENSEMBLE MODEL
We selected RF, LR, and NB to be the learners for our
CE model based on a study of baseline models’ principal
predictors. Specifically, in our experiments, we observed that
three (i.e., RF, LR, NB) out of these five algorithms exhibit
notably different principal predictors, while DT and XGboost
have a significant number of common predictors as the RF
algorithm. Thus, we conjectured that RF, LR, and NB focus
on different disease characteristics and target different patient
subgroups. To capitalize on our findings, we chose RF, LR,
and NB for our CE algorithm.

D. MODEL PERFORMANCE EVALUATION
Our CE model converged after eight iterations with 135, 634,
and 622 instances in the RF, NB, and LR clusters, respec-
tively. The total cost function, as defined in Equation (1),
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TABLE 1. Model performance comparison.

monotonically decreased from 171.02 to 24.38 across the
iterations (Figure 3). Table 1 presents the main results of our
study. Each model’s performance is evaluated using seven
metrics shown in columns 2-7.

From the row labeled ‘‘Average 1’’, we observe that the
five individual models achieved an average overall perfor-
mance of 67% test accuracy with 77% and 64% in Recall and
Specificity, respectively. The average PPV and NPV scores
are 0.38 and 0.91; their large discrepancy can be explained
by the highly imbalanced data in our study. The average F1
score and AUC are 0.50 and 0.71, respectively.

Compared to the individual model, our CE methods
demonstrated significant advantage across all seven eval-
uation metrics as shown in the row labeled ‘‘Gain (%)
over Average 1’’ in the CE category. Specifically, the
improvement in overall accuracy is 10% with 12% and
11% in class 1 and class 0, respectively. The gains in PPV,
NPV, F1 scoare, and AUC are 45%, 2%, 35%, and 11%,
respectively.

In addition to individual models, we further compared our
CE model’s performance to a traditional ensemble of the
five baseline learners. To this end, we employed two types
of inference for the regular ensemble model. The ‘‘hard’’
inference performs a majority vote from the base learners’
final classification decisions (i.e., class 1 or 0), while the
‘‘soft’’ inference calculates the average predicted probability
scores from five base learners and thresholds it at 0.5 to make
the decision.We observe from Table 1, row ‘‘Average 2’’, that
the regular ensemble learner made a noticeable improvement
over the average of individual models in predicting class 1
(i.e., Recall, 8%), but the gain in class 0 is limited (Specificity,

2%). Other improvements are in NPV (3%), AUC (5%), and
F1 score (2%). There is a 3% drop in NPV.

Last, we compare our CE model’s performance to that of
the ensemble approach. From row ‘‘Gain (%) over Average
2’’, We observe that the CE method outperformed the tradi-
tional ensemble approach with a 7% improvement in overall
accuracy, 4% and 9% in class 1 and class 0, respectively.
Most noticeably, the CE model offered a 49% gain in PPV
with a marginal 2% trade-off in NPV, resulting in a 32%
improvement in F1 score. The AUC improvement over the
average ensemble approach is 6%.

E. CHARACTERISTIC FEATURE ANALYSIS
In this section, we present our study of the characteristics
of patient subgroups formed by the CE model. We first
aimed to identify features whose cluster means were statis-
tically different among the model-specific groups. To this
end, for each feature, we applied a one-way Analysis of Vari-
ance (ANOVA) test [8], which is an extension of the Student
t-test for more than two groups. Specifically, ANOVA com-
pares the means among the groups and determines whether
any of those means are statistically significantly different
from each other. Formally, for our application, it tests the null
hypothesis:

H0 : µ
i
RF = µ

i
NB = µ

i
LR

where µiRF , µ
i
NB, and µ

i
LR denote the average value of fea-

ture xi over instances in the RF, NB, and LR subgroups,
respectively. We further applied Bartlett’s test [9] to ensure
the homogeneity of variances assumption in the ANOVA
analysis.

VOLUME 10, 2022 18725



Y. Zhao et al.: Calibrated Ensemble Algorithm to Address Data Heterogeneity in Machine Learning

TABLE 2. Characteristics features of patient subgroups.

A statistically significant result (i.e., rejecting hypothesis
H0) from an ANOVA analysis indicates at least one group
differs from the other groups. However, the omnibus test does
not inform where the significance lies. To further analyze the
pattern of difference betweenmeans, we performed the Tukey
HSD (‘‘Honestly Significant Difference’’) post-hoc test [10]
for those statistically significant features. The Tukey HSD
test is similar to a pairwise t-test, but more reliable for data
with more than two independent groups.

Table 2 presents the statistically significant features (Col-
umn 2) of each model-specific subgroup (Column 1) with a
95% confidence interval for all three tests. The cluster means
and p-values for each feature are displayed in Columns 3-5
and Columns 6-10, respectively. In particular, the last three
columns in Table 2 present the pairwise p-values of the three
clusters, from which we inferred the features unique to each
algorithmic cluster. For example, we observe that the pairwise

p-values for the feature ‘‘Initial - pleuritis’’ are 0.001, 0.001,
and 0.9 for RF vs. NB, RF vs. LR, and NB vs. LR, respec-
tively. Thus, this feature is statistically insignificant between
the NB and LR clusters (p-value= 0.9) but significant for RF
vs. NB (p-value = 0.001) and RF vs. LR (p-value = 0.001),
suggesting it is a characteristic feature for the RF subgroup.
As illustrated in Table 2, there is a total of 10, 7, and 12 fea-
tures unique to the RF, NB, and LR subgroups, respectively.
Lastly, two features (i.e., ‘‘arthralgias only’’ in arthritis details
and current symptom of inflammatory arthralgias/arthritis,
are used in all three clusters.

F. CLINICAL INTERPRETATIONS OF DATA SUBGROUPS
We observe in Table 2 that the patients in the NB clus-
ter have nearly twice higher initial manifestation of nephri-
tis (RF:0.10, NB:0.18, LR:0.09) than the other clusters
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FIGURE 4. Characteristic features of individual patient subgroups identified by CE learners.

and a significant higher level of B2-glycoproten 1 ab
in the initial lab test (RF:0.02, NB:0.12, LR:0.04). They
have lower manifestations of raynauds (RF:0.21, NB:0.11,
LR:0.18) and a low chance of having MCTD (i.e., mixed
connective tissue disease); RF: 0.08; NB: 0.02, LR:0.07).
This group also has a considerably higher usage of
blood thinning medication warfrain (RF:0.03, NB:0.08,
LR:0.02). A comparison of these features is presented in
Figure 4(a).

The patients in the RF cluster are characterized by their
unique initial and historical symptoms, and current medi-
cations. They have a high manifestation of gastrointestinal
symptoms, both initially (RF:0.07, NB:<0.005, LR:0.01) and

historically (RF:0.08, NB:0.02, LR:0.01). Compared to other
clusters, a significantly higher percentage of patients in the
RF cluster exhibit initial lupus headache (RF:0.08, NB:0.02,
LR:0.03) and pleuritis (RF:0.27, NB:0.12, LR:0.12). Patients
in the RF cluster demonstrate 4-5 times lower chance
of historic manifestation of leukopenia. It is also worth
noting that these patients have a significant current usage of
medications, including sulfasalazine (RF:0.18, NB:<0.005,
LR:<0.005) and methotrexate (RF:0.18, NB:0.07, LR:0.09).
Lastly, these patients have noticeably higher polyartic-
ular inflammatory arthritis (RF:0.42, NB:0.12, LR:0.15).
A visual comparison of these features is presented in
Figure 4(b).
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For the LR subgroup, patients demonstrate approximately
twice higher level of photosensitivity both initially (RF:0.09,
NB:0.10, RF:0.20) and historically (RF:0.08, NB:0.10,
RF:0.18) when compared to other clusters. These patients
have a high level of SSA (RF:0.24, NB:0.26, LR:0.37), SSB
(RF:0.12, NB:0.13, LR:0.24) and dsDNA (RF:0.58, NB:0.59,
LR:0.74) in their initial blood lab tests. Additionally, they
have a low historic manifestation of antiphospholipid syn-
drome (RF:0.17, NB:0.14, LR:0.04) and a high chance of
inflammatory arthralgias/arthritis.

V. CONCLUSION
In this work, we proposed a new calibrated ensemble (CE)
approach to address the heterogeneity in real-world data,
which often violates the fundamental i.i.d. assumption in
machine learning theory. Unlike the traditional ensemble
framework in which each learner is trained independently
with the entire dataset, our method exploits various MLmod-
els’ strengths by training them simultaneously and instituting
model-specific data subgroups as part of the training process.
As a result, each learner is calibrated to a unique subset of
data based on their individualized proficiencies. Clinically,
we can interpret each model as a specialist for patients with
a particular set of disease manifestations.

We evaluated the CE model in our motivating domain of
identifying lupus patients with severe SLE flares in 1,541
clinical encounters. Our experimental results demonstrated
consistent efficacy of our CE model across seven evalua-
tion metrics when compared to five individual ML models
and regular ensemble methods. We further conducted sta-
tistical analysis to identify characteristic features of each
model-specific patient subgroup and examined their clinical
interpretations.

Two factors could have contributed to the success of our CE
algorithm. The first is the enforcement of the i.i.d. assumption
for each ML algorithm. In particular, by restricting data to a
high-performing subset for each learner, the i.i.d. assumption
is enhanced for each algorithm, thereby allowing greater
potential for success. The second factor is that different
ML algorithms can be most effective for different disease
manifestations due to their intrinsic designs. For example,
the discriminative (e.g., RF, LR) and generative approaches
(e.g., NB) are fundamentally different in model structure and
learning principle. The CE algorithm exploits each learner’s
strength and dynamically selecting an ergonomic subset for
each model as part of its training process. Our method can be
extended to other applications where the collected data may
come from multiple underlying distributions.
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