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ABSTRACT Hardware-based Spiking Neural Networks (SNNs) are regarded as promising candidates for
the cognitive computing system due to its low power consumption and highly parallel operation. In this
paper, we train the SNN in which the firing time carries information using temporal backpropagation. The
temporally encoded SNN with 512 hidden neurons achieved an accuracy of 96.90% for the MNIST test set.
Furthermore, the effect of the device variation on the accuracy in temporally encoded SNN is investigated
and compared with that of the rate-encoded network. In a hardware configuration of our SNN, NOR-type
analog memory having an asymmetric floating gate is used as a synaptic device. In addition, we propose a
neuron circuit including a refractory period generator for temporally encoded SNN. The performance of the
2-layer neural network composed of synapses and proposed neurons is evaluated through circuit simulation
using SPICE based on the BSIM3v3 model with 0.35 µm technology. The network with 128 hidden neurons
achieved an accuracy of 94.9%, a 0.1% reduction compared to that of the system simulation of the MNIST
dataset. Finally, each block’s latency and power consumption constituting the temporal network is analyzed
and compared with those of the rate-encoded network depending on the total time step. Assuming that the
network has 256 total time steps, the temporal network consumes 15.12 times less power than the rate-
encoded network and makes decisions 5.68 times faster.

INDEX TERMS Neuromorphic, spiking neural networks (SNNs), hardware-based neural networks, time-
to-first-spike (TTFS) coding, temporal coding, neuron circuits.

I. INTRODUCTION
Artificial Neural Networks (ANNs) have recently shown
remarkable results surpassing humans in certain tasks
such as pattern recognition, object detection, and natural
language processing [1]–[7]. The success of ANN has been
attributed to the multi-layered structure inspired by the
nervous system and its ability to compute nonlinear complex
transformations [8], [9]. Conventional ANN, however, has
fundamentally different structures from the human brain
in that time has no effect on data propagation and uses
analog-valued neurons [10]. Also, software-based ANNs
are far from real-time and low power processing, making
computing on the edge devices is challenging. In this
perspective, there are many studies on neural networks
based on hardware [11], [12], especially SNNs using analog
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synaptic devices are regarded as an enormously competent
network. In SNN, data propagates in short spikes as in
the biological neural system [13], [14]. Such short pulses
perform a read operation on each synaptic device, and
the total current flowing in the array is integrated into
the analog neuron by Kirchhoff’s rule, allowing high-
performance parallel computation such as Vector-by-Matrix
Multiplication (VMM).

There are several methods to encode the input data of
multiple resolutions into the input pulse train of SNN.
Commonly, the rate of pulses can be proportional to the
intensity of the input data. In the rate-encoded network, the
integrate and fire behavior of the neuron is almost matched
to the ReLU activation function [15]. Therefore, the weights
trained by ANNs can be used directly in SNNs, and these
networks have shown outstanding performance on a complex
benchmark such as CIFAR [16] or ImageNet [15], [17].
However, encoding an analog input value in the form of
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a firing rate requires many spikes to express the intensity
of one input data. The rate-encoding method needs to be
improved for efficient computing on edge devices in power
consumption and latency.

Another candidate for the encoding method is temporal
encoding, where the input data is transformed to the
firing time of the input spikes [18]. There are several
different types of temporal encoding, phase coding, burst
coding, and Time-to-First-Spike (TTFS) coding are the usual
methods. First, phase coding is a method of using spikes’
phase [19], [20]. Generally, the spike train corresponds
to a binary representation of the input value in phase
coding. Meanwhile, burst coding uses weighted spikes, but
the data capacity of each time step can be dynamically
controlled [21]–[23]. Last, in TTFS coding, the arrival time
of the spike of the input neuron is inversely proportional to
the input value [24]–[28]. TTFS encoding uses only a single
spike regardless of the intensity of the input data; hence
it shows the highest efficiency in terms of the number of
spikes. There have been several efforts to train the networks
encoded by the TTFS method. However, many works used
complex synaptic functions, which are difficult to implement
in hardware [24]–[27]. Also, the system of some other works
is not power-efficient due to their long duration of input
pulses, not a spike [28].

In this paper, we configure SNN at the circuit level, where
information is carried as the firing time of a single spike
by adopting the temporal encoding method. First, by using
a temporal backpropagation algorithm [29], we evaluate the
performance of SNN at a system-level on MNIST data
sets and investigate the non-ideal issues that can occur in
a hardware implementation. Afterward, we propose neuron
circuit blocks to generate a refractory period for a single
spike-SNN. By combining proposed neuron circuits with the
synaptic device reported from our previous work, the entire
network is simulated at a circuit level using HSPICE. Finally,
the power consumed by each block and the latency of the
network are analyzed and compared with that of a rate-
encoded network with the same size.

The contributions of our work are as follows:
• The verification of the operation of the entire system

at the circuit level using the results measured from the TFT
device,
• Proposal for an additional circuit block with functions for

the TTFS-SNN system,
• Power consumption measurements for each block in

a simulation, and providing a guideline for improving the
power efficiency of the proposed SNN,
• Simulation results demonstrating how much advantage it

has in power efficiency compared to conventional rate coding.

II. METHODS
A. TRAINING ALGORITHM
Note that the training algorithm of this work is based on the
previous work [29]. Fig. 1 depicts a schematic diagram of

FIGURE 1. Schematic illustration of a multi-layer TTFS-SNNs.

SNN encoded by the TTFSmethod. In this network, the input

t inputi =

⌊
Imax − Ii
Imax

Tmax

⌋
(1)

information of the SNN is encoded using the time-to-first-
spike (TTFS) method as follows:
where Imax is the maximum value of input data, and Ii is
the input value of the ith input neuron. Tmax represent the
total time step. The firing time of input neurons is inversely
proportional to the input value (Ii) of each neuron [29]–[33].
The cumulative input function of the jth neuron is given by:

S lj (t) =

{
1 (if t ≥ t lj )
0 (if t < t lj )

}
(2)

where t lj is the firing time of the jth neuron in the l th layer.
S lj (t) is a parameter indicating whether the neuron is a fired
state at time t . The input pulses and weights are multiplied
and integrated by a non-leaky IF model; thus the membrane
voltage of the neuron is calculated as follows:

V l+1
mem,k (t) = V l+1

mem,k (t − 1)+
N l∑
j

x lj (t)w
l
jk

=

N l∑
j

S lj (t)w
l
jk (3)

where x lj (t) and wljk are the input spikes and the weights
between jth and k th neurons, respectively. When the mem-
brane voltage reaches the neuron threshold (V l

th), the neuron
fires and generates a spike in the next layer. We assumed that
each neuron could generate at most a single spike per image
because of the refractory period.

In TTFS network, the output value of neuron k is expressed
as the firing time (tok ). Accordingly, the error function of
output layer is defined by:

δok = ek =
Ttarget,k − tok

Tmax
, (4)

so that the output neuron can fire as close as possible to the
target firing time of each neuron (Ttarget,k ). The weights are
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TABLE 1. Parameters used in the system-level simulation.

updated as follows:

1wl−1ij =

{
−ηδljS

l−1
i (t lj ) if t lj < tmax

0 otherwise

}
(5)

where η is a learning rate. Additionally, the delta values (δlj )
are calculated as the weighted sum of the delta values of
neurons in the following layer (δl+1k ).
We also set the target firing time of output neurons as

follows:

Ttarget,k =
τ : if k = target label
τ + αpen : if k 6= target label, tok ≤ (Tmax − αpen)
tok : if k 6= target label, tok > (Tmax − αpen)

(6)

where τ is the minimum value of the firing time among the
output neurons, and αpen represents the penalizing term of
wrongly fired neuron. Correct output neuron is encouraged
to fire first among the output neurons at time τ , and output
neurons fired wrongly around τ have a higher risk of
responding incorrectly, so that penalizing as αpen.

B. NOR-TYPE SYNAPTIC DEVICE HAVING ASYMMETRIC
FLOATING GATE
On the other hand, various types of emerging memory are
being reported as candidates for artificial synaptic devices,
a key element for configuring SNN in hardware. In our
previous work, a NOR-type flash memory device was
fabricated using a conventional CMOS process [34]. Fig. 2
(a) shows that this TFT type device has a poly channel and
a half-covered poly-Si floating gate (FG) that functions as a
charge storage layer. The thickness of blocking SiO2, FG, and
tunneling SiO2 are 15 nm, 80 nm, and 7 nm, respectively,
and the channel length (the length between source and drain)
and the width are 0.5 µm each. Input pulses are presented to
each gate (WL), and the currents of the synaptic devices are
summed in the common drain line (BL). Hence, the output of
vector-by-matrix multiplication (VMM) can be expressed as
the current of each post-neuron. In addition, since the current
is controlled by three terminals in this FET-type synaptic
device, it is more resistant to sneak path issues [35], [36] or
off-current issues [37], [38] than two-terminal devices such
as RRAM.

FIGURE 2. (a) Cross-sectional view of NOR-type flash memory having an
asymmetric floating gate. (b) Measurement of ID-VG characteristics of
the synaptic device by applying a consecutive erase pulse. The inset
shows the change of conductance in the read condition according to the
applied pulse number.

Fig. 2 (b) provides the measured ID-VG curves of the NOR-
type flash memory device. 50 repeated erase pulses (VWL =
−3 V, VSL = 5 V, duration = 100 µs) are applied, and the
threshold voltage of the device decreases. The inset of Fig. 2
(b) shows the conductance change when the device is under
the read conditions. The behavior of these synaptic devices is
similar to the long-term potentiation (LTP) of the synapse in
the nervous systems.

III. SYSTEM-LEVEL SIMULATIONS AND RESULTS
A. PERFORMANCE OF SNN ON MNIST
The system-level simulation is performed on the MNIST
datasets to evaluate the performance of SNN based on the
NOR-type synaptic devices. All system-level simulations in
this work were performed through the python-based TTFS-
SNN simulator. The edge of the image is removed and resized
to 20 × 20 to reduce the size of the network. As depicted in
Fig. 3 (a), a 2-layer SNN was assumed, and the simulation
was conducted by increasing the number of hidden neurons to
128, 256, and 512. The parameters used in the simulation are
shown in Table 1. The input data is transformed into a TTFS
spike train over 64 time steps, and the αpenalty mentioned in
training algorithm section is set to 1. The training batch size
is 1, and the initial learning rate is set to 0.02, but it gradually
drops as training continues. The threshold of neurons in all

24446 VOLUME 10, 2022



S. Oh et al.: Neuron Circuits for Low-Power Spiking Neural Networks Using Time-To-First-Spike Encoding

FIGURE 3. (a) Conceptual diagram of the 2-layer network with N hidden neurons. (b) Training curves of the TTFS
network as a parameter of the number of neurons in the hidden layer. (c) The accuracy of the TTFS network as a
parameter of the total time steps.

layers is 1.6 V, and the winner neuron of SNN is determined
as the neuron that fires first among neurons in the last readout
layer. However, if any output neuron does not spike until the
last time step, it is evaluated by considering the membrane
voltage of the output neuron at the last time step. Fig. 3(a)
depicts a schematic diagram of a fully connected hardware
neural network (HNN). The entire network is composed
of the synaptic array and neuron circuits. The weights
are initialized using the initialization method proposed by
K. He [39]. The initial weight distribution is given by:

W l
∼ N (Iinit,

2

nlin
) (7)

where nlin represents the number of input nodes in the
lth layer. However, by changing the mean of the normal
distribution to a positive value (Iinit ) rather than 0, many
hidden neurons are fired at the start of training, leading to
participation in data propagation.

Weights trained by the off-chip learning rules described
in training algorithm section are transferred to HNN. Before
being transferred, the weights are normalized and quantized
to the 101 states. The weight for one synapse in the SNN
is represented by the conductance difference between two
synaptic devices as follows:

wlij = Gl(+)ij − G
l(−)
ij (8)

where Glij is one of the measured conductance value of
the asymmetric FG synaptic device (G (1) ,G (2) , ..G(50)).

For all the positive wlij, G
l(−)
ij is set to G (1) (Gmin), and

conversely, for all the negativewlij,G
l(+)
ij is set toG (1) (Gmin).

If the wlij is 0, the conductance of both synaptic devices is
set to G (1) (Gmin) [40]. The quantized target weights of each
synapse can be transferred by applying the corresponding
index number of pulses to devices in the synaptic array [41].

Fig. 3 (b) presents MNIST accuracy as a parameter of the
width of the hidden layer in a 2-layer SNN. The accuracy
for 60,000 training sets and 10,000 test sets not used for
training is indicated by dotted and solid lines, respectively.
As the number of hidden neurons increased, it was observed
that the accuracy increased. The accuracy of the network
(400 - 512 - 10) is 99.21% for the training set and 96.90%
for the test set. The accuracy shows the degradation of
about 1% compared to those of rate-encoded networks of
similar size [42], [43]. Fig. 3 (c) shows the recognition
accuracy with the total number of time steps per image.
The time steps, representing the image’s resolution, can be
reduced to 8 without significant accuracy degradation (0.15%
degradation for 512 hidden neurons).

B. EFFECTS ON ACCURACY BY VARIATION IN HARDWARE
Changes in device characteristics caused by process varia-
tions during manufacturing negatively affect the operation
of synaptic devices and neuronal circuits, which reduces
the recognition accuracy of the SNN. Several types of
variation have been analyzed in previous studies [44]–[49].
We categorize the four major variations as follows:
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1) device-to-device variation in the synaptic array [44], [45],
2) firing threshold variation in the neuron circuits [46],
3) stuck-at-off variation in the synaptic array [47]–[49],

and
4) stuck-at-off variation in the neuron circuits.
Note that our network does not take into account the

pulse-to-pulse variation considered in many previous stud-
ies [33], [50] since the weights obtained through off-chip
learning are transferred once to the synaptic devices in the
array. The recognition accuracy with the variation of device
characteristics is compared with that of conventional rate-
encoded networks of the same size. In the rate-encoded
network, the number of input spikes follows a Poisson
distribution, and the weights are also quantized of the same
resolution in the same manner as in the TTFS network.

We first mathematically model the device-to-device varia-
tion in the synaptic array as follows:

W l
← W l

× N (1, σ 2
weight ), (9)

where W l denotes the overall quantized weights, and
N
(
1, σ 2

weight

)
stands for the normal distribution with mean

1 and standard deviation σweight . Also, weights with a value
of 0 are set to random numbers with normal distribution N(0,
σ 2
weight ). In addition, variation of neuron thresholds is also

modeled by normal distribution as follows:

V l
th← max(V l

th × N (1, σ 2
th), 0). (10)

However, negative neuron thresholds are difficult to
implement in hardware, so they follow a clipped normal
distribution. Lastly, a stuck-at-off fault where one of the
devices is not working is considered. Dead synaptic devices
can cause the current to not flow even when the input pulse is
applied, resulting in a fatal error in the weighted sum. Further,
if the neuron block dies, there may be cases where the current
cannot be integrated into the capacitor, or the spike cannot
be emitted even if the membrane voltage exceeds the neuron
threshold. We defined the stuck-at-off ratio as the number of
dormant synaptic devices (or neurons) relative to the total
number of synapses (or neurons) in the array and named
it Rsynapse(Rneuron). The conductance of the dead synapse is
assumed to 0, and the input by a dead neuron is assumed to
0 regardless of the membrane voltage.

Fig. 4 shows how the accuracy for the MNIST data
set changes as the device variation increases. Simulations
were performed on a 2-layer network with 128, 256, and
512 hidden neurons. The simulation was repeated 10 times
with the modeled variation and the results are indicated by
error bars. Compared to the rate-encoded network, the TTFS
network is vulnerable to variation since a single neuron can
contribute only one spike in the inference process. In the
TTFS network, even if only one spike disappears (or even one
false spike occurs), it makes a significant error in the overall
weighted sum. In particular, it is observed that the network
with a small number of hidden neurons shows severe accuracy
degradation due to each neuron’s importance. Therefore,

synaptic arrays of TTFS networks should be finely controlled
so that the variation to be minimized. For example, device-to-
device variation can be reduced by precision tuning using the
read-write-verify scheme in the weight transfer process [51].

IV. CIRCUIT-LEVEL SIMULATIONS AND RESULTS
A. SNN ARCHITECTURE
In this section, we propose the neuron blocks suitable for
TTFS encoded SNN, and simulate fully connected HNN at
circuit-level using SPICE. BSIM3v3model based on 0.35µm
technology was used in circuit-level simulation. The NOR-
type synaptic device is modeled with a Voltage-Controlled
Current Source (VCCS) behavioral model with 3 terminals
(gate, drain, source) as shown in Fig. 5 (a) [52], [53]. The
current between the drain and the source is determined by the
voltage difference between the gate and the source. As shown
in Fig. 5 (b), the behaviormodeling of the synaptic device was
based on the results measured by increasing the gate voltage
from 0 V to 3 V in 60 mV steps.In addition, neuron circuits
consist of a current mirror, an I&F block, and a refractory
period generator. Fig. 5 (c) depicts a modeled synaptic array
and a current mirror designed for summing and subtracting
currents. A single wordline (WL) corresponds to an input,
and the weighted sum of 400 inputs is expressed as the sum of
current flowing through the bitline (BL). Currents flowing in
the positive and negative synaptic arrays are copied through
the respective current mirrors to integrate the net charge in the
membrane capacitor. Before the input pulse is presented,
Vmem of all neurons are initialized to VDD2 by Vinit . If the
initial membrane voltage of the neuron is notVDD2 (e.g., 0 V),
the negative charge created by the inputs in the early stage
of the time domain cannot be integrated into the capacitor,
so the final result of the weighted sum can be distorted. Since
SNN encoded by the TTFS method assumes that one neuron
spikes at most once, the neurons already fired should enter
the refractory period so that no more spikes are generated.
To implement this, the output neuron that has already fired
keeps Vrefrac in a high state until the corresponding input
ends. This causes M7 and M8 to turn off so that no more
current flows through the synaptic array. Fig. 5 (d) shows the
circuit of the refractory period generator (RPG). The block
for generating Vrefrac is based on the structure of the latch.
Before the input pulse is presented, M12 is turned on by Vinit ,
so the output node of RPG is initialized to the ground state.
Then, as soon as the I&F block fires, M10 and M11 turn
on and Vrefrac goes to high state, which is maintained until
a new input data is presented. Fig. 5 (e) represents the I&F
block constituting the neuron [54]. If the membrane voltage
exceeds the Vth of M14 by the integrated charge, node 1 in
the high state changes to the low state. This brings node 2 to
the high state. After the delay time by Cpulse, the voltage at
node 2 turns M21 on and puts node 1 back in high state, and
returns node 2 to original state. The W/L ratio of M16 acting
as a resistor and the value of Cpulse determine the width of a
spike generated in the output node. In addition, the W/L ratio
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FIGURE 4. Evaluation of the TTFS (1st column) and rate-encoded (2nd column) network as a parameter of (a)
device-to-device variation in the synaptic array, (b) firing threshold variation in the neuron circuits, (c) the stuck-at-off
ratio in the synaptic array and (d) neuron circuits.
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FIGURE 5. (a) Voltage-Controlled Current Source (VCCS) based synapse model in SPICE. (b) Comparison of
IDS-VGS curves between synaptic device measurement data and VCCS model. Circuit diagram of the (c) synaptic
array, current mirror, (d) refractory period generator, (e) integrate and fire block that makes up the neuron circuit.

ofM14 andM21 determines the voltage of node 1, so it affects
the threshold of the neuron. After I&F block fires,Vrefrac turns
M13 on to keep Vmem as the ground state.

B. PERFORMANCE IN CIRCUIT-LEVEL SIMULATION
Among the networks simulated in the system-level simulation
section, a relatively light network, the 400-128-10 sized
network is simulated using a circuit simulator (HSPICE) with
predictive technology model (PTMs). In order to reduce the
simulation time, the total time step is assumed to be 8, which
hardly degrades the network performance. A circuit-level
simulation was performed with 0.35 µm CMOS technology,
and the parameters of the components in circuits are shown
in Table 2. Fig. 6 provides the waveforms of some nodes in
the process of inferencing MNIST data sets. Before the input
pulses are presented, Vinit is first presented to initialize the
membrane capacitors in I&F block and RPG block. After
that, as shown in Fig. 6 (a), all inputs are transformed into

TABLE 2. Parameters of components used in the circuit-level simulation.

time-to-first spike pulses with a duration of 0.5µs over 8 time
steps. The interval between each time step of the input pulse is
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FIGURE 6. (a) Pulses fed into the input neuron shown in the time domain. (b) (Top) Evolution of the membrane voltage of
hidden neurons. (Middle) Generated output pulse and (Bottom) refractory period by the neurons in the hidden layer.
(c) Evolution of the membrane voltage of output neurons. The answer predicted by the network is the class of output neuron
1. All results are simulated at the circuit-level.

also set to 0.5 µs. The rising and falling times of input pulses
are each set to 0.1µs. Fig. 6 (b) shows transient waveforms of
some nodes in hidden neurons. The currents flowing through
the synaptic array by the input pulses are integrated into the
capacitor of the hidden neurons, and when Vmem exceeds
the neuron threshold, the corresponding neuron fires and
presents a spike with a width of 0.5 µs to the post-layer.
At the very moment the neuron fires, Vrefrac generated by
each RPG prevents further integration of charge into the fired
neuron. Finally, Fig. 6 (c) represents the membrane voltage
of neurons in the output layer. As in the system simulation,
the earliest fired output neuron class is the result predicted by
SNN. However, in rare cases when no output neuron fires, the
neuron with the highest membrane voltage is considered the
winner neuron.

Fig. 7 compares the results of system-level and circuit-
level simulations. The network size is 400 - 128 - 10,
and the number of time steps for each image is set to 8.
Fig. 7 (a)-(c) shows the firing times of input, hidden, and
output layers in the system-level simulation of one image. The
x-axis of the three raster plots represents the time, and the
y-axis stands for the index number of neurons in each layer.
Fig. 7 (e) and (f) depict a raster plot of spike timing in
hidden neurons and Vmem of output neurons in the circuit-
level simulation for the same image. By comparing the
firing times of hidden neurons and output neurons shown
in (b), (e) and (c), (f), it is observed that the results of

both simulations are similar. In addition, we also simulated
the circuits for 1000 randomly selected MNIST data sets.
Fig. 7(d) shows the result of comparing the firing time
of the winner neuron obtained by simulations at system-
level (x-axis) and circuit-level (y-axis). Since the system-
level simulation was performed during 8 discrete time steps,
the firing time in the system-level is a discrete value. The
firing times of the two simulations are not perfectly matched,
but they show almost the same tendency, which means the
proposed SNN shown at the circuit level works pretty much
like that at the system level. Indeed, the proposed SNN has
reached 94.9% accuracy for networks having 128 hidden
neurons at the circuit-level. This accuracy is only 0.1% lower
than the 95.0% accuracy in a system-level simulation. The
reason for the slight decrease in accuracy is that the off current
in the synaptic array is not considered at the system-level.
Also, calculating the weighted sum through discrete time
steps in system-level simulation can cause a difference from
actual circuit operation.

C. POWER MEASUREMENTS
In this section, we estimate the power consumed by the TTFS
network at the circuit-level and compare the results with that
of the rate-encoded network. The most significant advantage
of the TTFS encoding method is that it requires much
fewer pulses compared to the conventional rate encoding
method, which results in lower power consumption. TTFS
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FIGURE 7. Raster plots of the spike timing of the (a) input, (b) hidden, and (c) output neuron in the 2-layer (400-128-10) SNN for randomly
selected test data ‘7’. The x-axis represents the time in the system simulation, and the y-axis represents the index of each neuron.
(d) Comparison of the firing time of the winner neuron in the system-level (x-axis) and circuit-level (y-axis) simulation. (e) Raster plots of the
hidden neuron when simulated in the circuit-level for the same network size and data as (b). (f) Evolution of the membrane voltage of output
neurons in the circuit-level simulation.

FIGURE 8. Pie chart of power consumption in (a) TTFS and (b)
rate-encoded networks.

and rate-encoded networks, each with the same number (128)
of hidden neurons are simulated for 100 randomly picked
MNIST data sets, and the total time steps for each image are
set to 8.

Fig. 8 shows the amount of power consumed by each block
in the proposed SNN. The entire network consists of synapse
array (SA) and neuron circuits, and specifically, the neuron
is composed of a current mirror (CM), a circuit for integrate
and fire (IF), and a refractory period generator (RPG).

Fig. 8 (a) depicts the power consumed in the inference
process of the TTFS network. The entire network consumes
353.6 µW, and it is observed that most (∼90%) of the power
is consumed by the components in the 1st layer. In particular,
I&F block accounts for a remarkable proportion of power
consumption. This is because not only power is consumed
to generate the pulse, but also subthreshold leakage current
flows due to the membrane voltage of the neuron below V l

th.
In the I&F block depicted in Fig. 5 (f), even if Vmem does
not exceed Vth, M14 can be finely turned on if Vmem is a
positive value. This creates a leakage path through M14 and
M15, allowing current to flow even the neuron is not fired.
Since the number of spikes in the TTFS network is small, this
standby power occupies a relatively large portion as much as
the power required to generate spikes. Improving the structure
of I&F circuits to deal with this issue can be a topic for
further study. Fig. 8 (b) represents the power consumed in the
rate-encoded networks. In the circuit-level simulation, each
input spike of the rate-encoded network is filled from the last
time steps [55]. Compared to the TTFS encoding method, the
rate-encoding method requires more pulses to represent an
image, so the currents in the synapse array and current mirror
are enormous. Likewise, the higher the number of spikes
generating in each layer, the greater the power consumed
by I&F block. Unlike the TTFS network, the rate-encoded
network does not require a refractory period generator, but the
power that can be saved is very small (∼2%). It is obtained
that the entire network consumes 1240 µW of power, which
is 3.5 times more than that of the TTFS network.

The power consumption ratio of the two networks
increases as the total time steps per image increases.
Fig. 9 shows the required number of spikes and consumed
energy as a function of time step. The solid line represents
the average value of the spike numbers required to compute
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FIGURE 9. Comparison between TTFS and rate-encoded network in terms
of spike number (system-level) and consumed energy per image
(circuit-level). Consumed energy was measured at various time steps on
100 randomly selected MNIST test sets. The simulation was conducted at
various time steps.

an image at the system-level. The required spike number is the
sum of spikes generated in all layers. The number of pulses
in the TTFS network is only counted until the winner neuron
of the output layer fires, and the number in the rate-encoded
network is counted until the final time step. When the input
is converted to a spike rate, the number of spikes required to
express the same values increases as the time step increases.
On average, if the total time steps are 4, only 495 spikes
are required, whereas 30793 spikes are needed when the
time step reaches 256. On the other hand, the number of
spikes in the TTFS encoding method is nearly constant at
about 162 regardless of the total time steps. Therefore, as the
resolution of input data increases, the difference between the
required spike numbers of the two networks increases.

Meanwhile, the dashed lines represent the average energy
required to compute an image as a result of circuit-level
simulation. Since the time required to compute the image
depends on the time step, the energy is compared between two
networks. On average, the rate-encoded network consumes
5.65 nJ of energy per image at a time step number of
4 and 372 nJ at 256. On the other hand, the TTFS network
consumes 2.16 nJ at a time step number of 4 and 24.6 nJ
at a time step number of 256 to compute one image.
As the total time step of the TTFS network grows, the
number of spikes is not changed, but the consumed energy
is increased. This is because the amount of energy consumed
by the leakage path in I&F block is proportional to the
time for processing an image. Rate-encoded networks are
also affected by this leakage, but the relative proportion of
the leakage in total energy consumption is less than that
in the TTFS network due to a large number of spikes. Hence,
the consumed energy of the rate encoded network is almost
proportional to the required spike number. Meanwhile, the
TTFS network uses a small number of spikes, tends to
increase the consumed energy even if the required spike
number is constant. Nevertheless, the superiority of the TTFS
network in terms of power-efficiency is increased as the time
step increases compared to the rate encoded network. Finally,

the ratio of power efficiency of the TTFS networks to rate-
encoded networks reaches 15.75 at a time step number of 256.

The TTFS network also has an advantage in terms of the
latency, the time it takes to infer the answer. The latency of
the TTFS network was calculated as the average value of the
time until the emission of the first spike at the output layer.
It is observed that the TTFS network with 128 hidden neurons
can make a decision about 5 times faster than rate-encoded
network of the same size.

V. CONCLUSION
In this study, we have evaluated the performance of the SNN
consisting of NOR-type asymmetric FG synaptic devices and
neuron circuits at the system-level and circuit-level. Input
data was encoded as the time of the input spikes (time-to-
first spike: TTFS), and the network was trained by temporal
backpropagation, a learning method suitable for networks
applying the TTFS encoding method. The neural network
with 512 hidden neurons showed a competitive accuracy
of 96.90 % for the cropped MNIST data sets. We also
investigated the impact of the non-ideal characteristics of
the synaptic array and neuron circuits on accuracy. These
results can be a guideline that informs which level of
variation is allowed in the TTFS network. In addition,
we proposed a neuron circuit for inferencing temporal data
and modeled the synapse device to demonstrate the operation
of the entire network. Simulating an SNN with 128 hidden
neurons in SPICE gives 94.9% accuracy for 1000 MNIST
data sets, almost no degradation compared to the system-
level simulation. We also analyzed the power consumed in
the inference process by each block in SNN. When using
8 time steps in a 400-128-10 size network, the TTFS network
showed approximately 3.5 times higher power efficiency
compared to the rate-encoded network. At the same network
size, the TTFS networks showed significantly lower energy
consumption and shorter latency than rate-encoded networks.
The difference in energy consumption between the two
networks increases as the number of time steps increases.

As a further study, more realistic circuit-level simulation
can be conducted. In fact, as the crossbar array becomes
large and the unit cell scales down, the effect of parasitic
resistance and parasitic capacitance on network performance
may increase. A more effective training algorithm that can
overcome the performance decrease considering hardware
the non-ideality can also be studied further.
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