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ABSTRACT As the internet and the Internet of Things (IoT) have been widely applied in many application
fields, a large number of graphs are continuously produced and change over time, which leads to difficulties
in graph analysis and utilization. This paper studies a PageRank update algorithm for a streaming graph using
incremental random walk. We focus on the information about the local changes of nodes and edges in the
current graph, analyze the impact of such local changes on this current graph, and then use the idea behind
wave propagation theory to seek and determine all affected nodes that need to be updated their PageRank
in the new graph. For new nodes, the existing nodes in the current graph that are connected with these new
nodes are aggregated into a supernode, and the PageRank of the new nodes is solved in the new graph
with the supernode. Finally, we conduct a series of experiments on real-world and synthetic graph datasets.
Compared with the state-of-the-art incremental computing algorithm, our algorithm not only ensures the
accuracy of calculating the PageRank in a large streaming graph, but also speeds up the computational
process by avoiding many redundant computations.

INDEX TERMS Streaming graph, PageRank of nodes, wave propagation, incremental computation, random
walk.

I. INTRODUCTION
To evaluate the importance of web pages, the concept of
PageRank in Google was first introduced by Page and
Brin [1]. Because web pages and their hyperlinks can be
treated as nodes and edges in a directed graph respectively,
PageRank is also used in other graphs and inmany application
fields. For example, in e-commerce, a PageRank of products
can help to recommend the relevant products to clients
efficiently. In intelligent transportation systems, detecting
the PageRank in an urban traffic network can be used to
optimize the travel path. In social networks, people can find
a user’s friends by using PageRank, and if this user is a
criminal, the policemen can easily determine the criminal’s
associates. In biological networks, geneticists can find some
common oncogenes by using PageRank, which can avoid
congenital diseases effectively. Generally speaking, the above
graphs are very large and dynamically change over time [2].
Moreover, the fixed PageRank in dynamic streaming graphs
cannot always be always valid because their structures
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change, especially when the addition and deletion of nodes
or edges occurs. In this situation, PageRank needs to be
updated after dynamic changes [3]. However, it is mostly a
small-scale change at every moment of attention compared
with the whole streaming graph, e.g., the total number of
articles added was less than 4% for English Wikipedia in
2019 [4]. If we compute the PageRank of all nodes in a graph
from scratch every time, this process will continuously pro-
duce rather redundant computation continuously. Computing
PageRank in this way is not only inefficient but also wastes
considerable computing resources. Additionally, even if the
parallelism of this method could be realized in a parallel
distributed environment, the execution time would not be
advisable for real-time applications. However, PageRank in
dynamic streaming graphs needs to be updated in real-time,
which is a nontrivial challenge. Therefore, the incremental
calculation method of a PageRank has emerged in some
current studies [5, 6]. They make good use of the previous
results and compute the PageRank only, which needs to
be updated incrementally every time [6]. However, to the
best of our knowledge, these existing incremental methods
still have some shortcomings in identifying the nodes that
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need to update their PageRank, which makes it difficult to
regulate a trade-off between improving computing efficiency
and minimizing the calculation error. In this paper, we use
the idea of a random walk and design a novel incremental
computation algorithm for updating PageRank in a dynamic
streaming graph. Our main contributions can be summarized
as follows:
(1) Local changes of nodes and edges in a streaming

graph are particularly concerning, which may cause the
PageRank of some nodes to change. Thus, we apply
wave propagation theory to discover the affected local
area in such graphs at the present moment and develop
a novel algorithm to determine all affected nodes that
can reduce error and the amount of calculation at the
same time.

(2) The PageRank of the affected nodes is calculated in an
incremental manner, which is based on theMonte Carlo
idea. We leverage the information about random walks
and about changes including adding and deleting nodes
or edges in order to identify the number of the changed
random walk paths and calculate the probabilities of
visiting these nodes. Then, an optimized PageRank
update method for the affected nodes is presented
to avoid redundant computation and accelerate the
PageRank update.

(3) For newly added nodes, the existing nodes in the
current graph that are connected with these new nodes
are aggregated into a supernode. These new nodes with
the supernode form a smaller new graph where the
PageRank of newly added nodes is calculated at a very
low computational cost.

The rest of this paper is structured as follows. Section II
investigates the related work. Section III presents the problem
description about updating PageRank in a large dynamic
streaming graph. Section IV proposes a novel approach to
finding all affected nodes and conducts a deep analysis.
Section V elaborates on an incremental computation of
PageRank in a streaming graph. Some experiments are
conducted to show the advantage of our approach over
traditional techniques in Section VI. Section VII concludes
this paper.

II. RELATED WORK
When we review PageRank computation, the traditional
methods can be divided into two categories: power iteration
methods [7] and Monte Carlo methods [8], [9]. The former
converges to the PageRank by iterative operation of the graph
connection matrix, and the latter uses a random walk to
approximate the PageRank. Both methods can be used to
calculate PageRank for static and dynamic graphs, and many
extension methods based on them have been developed.

For static graphs, Desikan et al. [10] used a power
iteration method to calculate all nodes’ PageRank for a static
graph. Kamvar et al. [11] used the quadratic extrapolation
method to remove the nonmain eigenvectors in the current
iteration and accelerate the convergence process of iterative

calculation. Arnal [12] presented a parallel vision of the
power iteration method to reduce the execution time for
PageRank computation. However, according to the Monte
Carlo idea, Nigam [13] designed a method to approximate
PageRank based on the Markov model, and verified its
effectiveness. Fushimi et al. [14] proposed a p-avg approach
to obtain the approximate PageRank scores, which improved
the speed of PageRank computation.

Considering a dynamic graph, the easiest way is that
the methods of calculating PageRank for a static graph
can be used to calculate PageRank for a dynamic graph.
Christian et al. [15] turned a dynamic graph into a series
of snapshots, treated these snapshots as static graphs, and
calculated nodes’ PageRank related to these static graphs
by the Gauß-Seidel method. Gonzalez [16] regarded a
dynamic graph in batches over time as a static graph and
computed nodes’ PageRank. The sliding time window was
introduced by Bahmani et al. [17] to deal with the dynamic
streaming graph for computing PageRank. Essentially, these
methods convert dynamic graphs into many static graphs, and
then calculate all nodes’ PageRank again and again. If the
time window is very short and too many static graphs are
generated, these methods are time-consuming.

Generally, in some application fields, a dynamic graph
often locally changes on a small scale, and a few nodes or
edges are added into or removed away from the current graph
during a period of attention. For this reason, only a small
number of nodes’ PageRank will be affected. To speed up the
solution, one only needs to recalculate the PageRank of this
part of the affected nodes rather than all of the graph nodes.
Inspired by this idea, some incremental computing frame-
works and platforms have emerged, such as GraphIn [18],
Tornado [19] and DZIG [20]. Moreover, many incremental
update PageRank algorithms have been proposed. Kim [21]
updated the PageRank of the affected nodes by using an
incremental iteration method. Chien et al. [22] proposed a
novel method for discovering the affected nodes, showing
that the influence gradually decreases as it passes through its
reachable nodes. Zhang [23] presented an incremental power
iteration method, I-PageRank, which avoided computing
PageRank from scratch. MaSherry [24] invented a new
power iteration method that can accelerate the convergence
of updated iterations. Bahmani et al. [25] proposed a
proportional probing method, which could determine the
existing nodes with high PageRank changes and take a small
affected portion of the graph to update the PageRank of
these nodes. Yu et al. [26] designed an incremental random
walk algorithm IRWR, which mainly focused on the edges
that were constantly changed and found top-k nodes that
were affected by these edges to update PageRank. Pruning
needless calculation was effective. Prasanna et al. [27] treated
a strongly connected components as an affected area in a
graph and calculated the PageRank of the local affected
nodes at low computational cost. Atish et al. [8] modified
the PageRank of all nodes by adjusting the affected random
walk paths in a streaming manner. Liao et al. [28] addressed
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an incremental PageRank algorithm, IMCPR, based on the
Monte Carlo method, which obtained lower computational
complexity O((m+n/c)/c), where m, n and c are the number
of changed nodes, the number of changed edges and the reset
probability, respectively. In addition, currently distributed
computing systems are widely used to speed up big graph
processing. Mariappan et al. [29] proposed an incremental
BSP processing model to calculate the PageRank in a big
streaming graph.

Although the above methods for a big dynamic graph
can save computational time, their disadvantages include
possibly being inaccurate or unreasonable when finding the
affected node area. Riedy [3] proposed a PageRank updating
method based on iterative refinement. When a dynamic graph
changed, the error of PageRank was compensated in the
process of updating PageRank to ensure that the updating
result was accurate. Zhang et al. [30] presented two dynamic
versions of forward push and reverse push based on the power
iteration method, which are more accurate than those in
Reference [17]. Yoon et al. [31] proposed a fast and accurate
OSP algorithm, which updated PageRank on dynamic graphs
by random walk with a restart and set the restart probability
to balance accuracy and calculation time. Reference [28]
assumed that the randomwalk path did not visit the same node
repeatedly, which was inconsistent with the fact. Therefore,
the calculated PageRank had a large error, and the error
increased continuously with the dynamic change of the graph.
Zhan et al. [9] proposed the revisit probability model to truly
reflect the random walk process. When a dynamic graph
changed, the PageRank was updated based on the original
random walk information.

The above works all attempted to accelerate the calculation
process of PageRank while ensuring high accuracy, but there
was still no a good trade-off between accuracy and efficiency.
Therefore, this work studies an algorithm for PageRank
update in a streaming graph using incremental random walk,
and realizing the parallelism of this algorithm. Our goal is to
achieve high precision and high efficiency at the same time.

III. CONCEPTS AND PROBLEM DESCRIPTION
A. TRADITIONAL METHOD TO CALCULATE PAGERANK
In this paper, we let G = (V ,E) be a directed graph, where
V and E are the sets of nodes and edges, respectively. |V | is
the number of nodes and |E| is the number of edges. For two
nodes u, v ∈ V , if there exists a directed edge (u, v) ∈ E ,Outu
is the set of u’s outgoing neighbors, and v ∈ Outu. we let A
be the adjacency matrix related to G as follows:

A (u, v) =

{
1, if (u, v) ∈ E
0, otherwise.

(1)

We let D be the diagonal matrix of nodes’ out-degrees.
Then, the transition matrix related to G is denoted as
C = ATD−1. When X (0) is an initial vector with |V | entries,
the value of each entry in X (0) is 1/|V |. Then the PageRank
of each node inG can be PR = (pr1, pr2, . . . , pr |V |)

T , which

can be calculated as follows:

ε


X(k+1)

= αCX(k)
+

(1− α)eT

|V|∥∥∥X(k+1)
− X(k)

∥∥∥ < ε

PR = (pr1, pr2, . . . ,pr|V|)
T
= X(k+1),

(2)

where α is the probability that any node’s outgoing neighbors
are visited, e is a |V |-dimensional unit vector, ε is a
threshold satisfying the convergence requirement, and pr i is
the calculated PageRank of node vi.

B. THE MONTE CARLO IDEA TO CALCULATE PAGERANK
The Monte Carlo idea has been reported to approximate the
PageRank of a graph [32]. To clarify the calculation process,
we first introduce some concepts.
Definition 1 (Random Walk, RW): In a graph G = (V ,E),

a random walk is a type of random process, during which
many steps need to be taken as follows: a walker chooses a
node v ∈ V as a starting node and randomly walks along
the out-edge of this node with a probability of α at each step.
In the sameway, if the walker keeps walking, the total number
of steps must not exceed R. Therefore, a walker may stop with
a probability of 1− α after each step, or terminate where the
node has no any out-edge. To approximate the PageRank of
each node more effectively, M - times random walks starting
from each node are performed.
Definition 2 (Random Walk Path, RWP): In a graph

G = (V ,E), a random walk path is a continuous path starting
from any node to a reachable node. It can be denoted as
v1 → v2 → . . . → vk , where vi ∈ V , (vi, vi+1) ∈ E ,
i ∈ [1, k).

For each node vi, we let svi be the total number of times
that all RWPs have visited vi using the random walk method
in Definition 1. Then, we can approximate the PageRank of
vi, denoted by p̃rvi as follows:

p̃rvi = svi/(|V |M ). (3)

Let wvi be the number of all RWPs passing through node
vi. If each RWP visits vi only once, then svi = wvi . However,
there may exist a cycle in G, which means that an RWP may
visit the same node many times. In this case, svi > wvi .
To discuss the relationship between svi and wvi , let’s take an
example is shown in Fig.1, where v1 → v2 → v3 → v1 is a
random walk path that starts from v1.

Here, we use the variable rv1v2 to represent the probability
that the path starting from node v1 passes through an out-edge
(v1, v2) and returns to v1, then rv1v2 = α×α×1/2×α×1/3.
In general, if v1 → v2 → . . . → vi → . . . → v1 is an
RWP, rv1v2 = α

L−1∏L
i=1 1/

∣∣Outvi ∣∣ where L is the length of
this path, andOutvi is the set of node vi’s outgoing neighbors.
Therefore, the probability of RWs that start from node v1 and
return to v1 can be calculated as follows:

rv1 =
∑

v2∈Outv1

1− α∣∣Outv1 ∣∣ rv1v2 . (4)
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FIGURE 1. Random walks starting from v1 in a graph.

Thus, we can obtain the relationship among rvi , wvi and svi
as follows:

svi = wvi
(
1+ rvi + r

2
vi + . . .

)
= wvi

1− (rvi )
n

1− rvi

=

⌊
wvi

1− rvi

⌋
. (5)

Proposition 1: In a graph G = (V ,E), for each node
u ∈ V , we let the PageRank of u be pru which is calculated
by Formula 2. If p̃ru is calculated by Formula 3, then p̃ru
approximates to pru.

Proof: Assume that the true PageRank of node u is
denoted asπu, and pru is calculated by using the basicmethod
that is equal to πu. A ‘‘random walk’’ that we define is based
on the Monte Carlo methods. We walk randomly along the
directed edges in the graph, and the probability of passing
through any node u tends to be stable. This probability of node
u, denoted as p̃ru, is treated as the approximate PageRank of
u [33]. Since p̃ru = πu, then p̃ru approximates to pru. �

C. PAGERANK UPDATE PROBLEM
Definition 3 (Streaming Graph, SG): A streaming graph

is a dynamic graph changing over time 1, 2, 3, . . . , t . . .,
denoted as G1,G2,G3, . . . ,Gt , . . ., where G2 evolves from
G1, G3 evolves from G2, Gt evolves from Gt−1, etc.

Formally, Gt = Gt−1 + 1Gt , where 1Gt is a small
graph that contains all the change information about node
or edge insertion or deletion at time t . 1Gt = Gt − Gt−1

can be generated and informed by an online graph computing
system. More concretely, we allow 1Gt =

(
1V t ,1E t

)
=

(1V 0,t
+1V+,t +1V−,t ,1E+,t +1E−,t ), where1V 0,t is

the set of nodes with one or more edges added or deleted in
Gt−1, 1V+,t is the set of all new nodes, 1V−,t is the set
of all deleted nodes at time t , 1E+,t is the set of all new
edges, and 1E−,t is the set of all deleted edges at time t .
An example is shown in Fig. 2. A black-circle represents the
original node, a green rectangle indicates that a new node
has been added, and a green arrow indicates that a new edge
has been added. A dotted green circle indicates the deletion
of a node and the dotted green arrows indicate the deletion
of an edge.

FIGURE 2. Two ways of computing PageRank in a streaming graph.

Using traditional methods to calculate PageRank is time-
consuming. Moreover, a large number of redundant pro-
cessing operations occur when calculating PageRank from
scratch with the continuous expansion of the data scale in
a streaming graph. Therefore, we need to seek some new
methods to improve. According to the actual situation, 1Gt

is much smaller than Gt , and the PageRank in Gt may
be very similar to that in Gt−1. As in Fig. 2(a), a large
number of computational operations are wasted on some
nodes with almost unchanged PageRank, meaning repetitive
and redundant computations. As a result, we will study
an incremental method to calculate PageRank as shown in
Fig. 2(b), where only a few red nodes need to update their
PageRank.

IV. AFFECTED AREA DUE TO GRAPH CHANGES
If a dynamic graph does not change, the PageRank of all
nodes does not need to be recalculated. However, even if a
small number of nodes or edges are added or deleted, the
PageRank of some related local nodes are affected. In this
section, we discuss how to determine the affected area.

A. WAVE PROPAGATION PHENOMENON
Throughout the process of sound propagation, the sound
intensity gradually decreases as sound travels farther. It has
been reported that the relationship between sound intensity
and propagation distance is Px = P0e−βx [34], where P0 is
the sound intensity at the origin, Px is the sound intensity
at location x far from the origin, and β is the attenuation
coefficient. Generally, β = 0.0255. According to this theory,
we can apply it to analyze the dynamic change and local
impact in a streaming graph.
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B. FINDING AFFECTED NODES FOR UPDATING PAGERANK
As stated in Section III-C, 1Gt =

(
1V t ,1E t

)
= (1V 0,t

+

1V+,t + 1V−,t ,1E+,t + 1E−,t ). If 1V 0,t
= ∅, there

is nothing changed in Gt−1 =
(
V t−1,E t−1

)
. This means

that the PageRank of all nodes in Gt−1 remain unchanged.
If 1V 0,t

6= ∅, and because all nodes in 1V 0,t are also in
V t−1, then1Gtmay affect some nodes inGt−1 through nodes
in1V 0,t . Therefore, we treat nodes in1V 0,t

∪1V−,t as the
starting nodes to determine all affected nodes in Gt−1, and
update the PageRank of these affected nodes.

To determine the affected nodes in Gt−1 due to 1Gt ,
we consider two factors: one is the distance dist(u, vi)
between any node viεV t−1 and a starting node u ∈ 1V 0,t

∪

1V−,t and the outdegree at vi, which is |Outvi |. Similar to
wave propagation, we first initialize the impact degree on
u due to 1Gt , which is aff u =1; then, the impact degree
on vi is aff vi = aff ue

−βdist(u,vi). Moreover, the larger vi’s
outdegree is, the more paths it propagates, which means that a
smaller impact degree spreads to its outgoing neighbors [35].
Suppose that node vi+1 is an outgoing neighbor of vi.
Then, aff vi+1 = aff vi/|Outvi |, where |Outvi | 6=0. Because
|Outvi | =0, vi has no any outgoing neighbor, and the impact
stops propagating at vi. Thus, the impact degree on each
reachable node vi+1 from u to vi+1 is as follows:

aff vi+1 =


1, if vi+1 = u
aff vie

−βdist(u,vi+1)

Outvi
, otherwise.

(6)

Let δ be the threshold to terminate impact propagation,
δ ∈ (0, 1). If aff vi+1 < δ, the impact degree on vi+1 can be
ignored. In particular, if vi+1 has no any outgoing neighbor,
the impact will stop spreading at vi+1. Thus, the set of all
affected nodes in Gt−1, denoted as V t

aff , can be obtained as
follows:

V t
aff =

{
v ∈ V t−1

| aff v ≥ δ
}
. (7)

To clearly describe the process of finding the affected
nodes, we design an algorithm, and the corresponding
pseudocode is as follows.
Proposition 2: We suppose the distance between two

adjacent nodes in a graph is 1, the propagation attenuation
coefficient is β, and the threshold to terminate impact
propagation is δ. Gt−1 is affected by 1Gt . Then, the length
of the farthest path where the impact is propagated in Gt−1 is

dmax =
⌊√

1
/
4− lnδ2

/
β − 1

/
2
⌋
.

Proof: Because Gt−1 is affected by 1Gt , we might also
assume that the impact starts to propagate from u, a reachable
node on the propagation path that is denoted as vi, and the
outdegree of vi is |Outvi | ≥ 1. IfOutvi = 1, i = 1, 2, . . .. This
impact only propagates along one path, and the distance is the
farthest. We suppose this path is u→ v1→ v2→ . . .→ vx ,
where vx is the farthest reachable node, then according to

Formula 6,
aff vx
aff vx−1

×
aff vx−1
aff vx−2

×. . .×
aff v2
aff v1
×

aff v1
aff u
=

e−βdist(u,vx )
Outvx−1

×

e−βdist(u,vx−1)
Outvx−1

× . . .× e−βdist(u,v2)
Outv2

×
e−βdist(u,v1)

Outv1
. Since aff u = 1

Algorithm 1 Finding the Affected Nodes Based on Wave
Propagation (FAN_WP)

Input: Gt−1 = (V t−1,E t−1), 1Gt =
(
1V t ,1E t

)
=

(1V 0,t
+1V+,t +1V−,t ,1E+,t +1E−,t ), β, δ;

Output: V t
aff ; // The set of nodes affected by

1Gt .
1: V t

aff ← ∅, BV
t
← ∅;

2: V t−1
← V t−1

− 1V−,t , E t−1 ← E t−1 − 1E−,t ; //
Remove the deleted nodes and edges form Gt−1

3: Gt−1← (V t−1,E t−1);
4: BV t

← 1V 0,t
+1V−,t ; // Treat the nodes in1V 0,t and

1V−,t as the boundary nodes
5: if BV t

= ∅

6: return V t
aff ;

7: else
8: for all v ∈ BV t // Propagate impact from the boundary

nodes
9: aff v ← 1; // Initialize the impact degree on a

boundary node
10: distv← 0;
11: end for
12: V t

aff ← BV t ;
13: Tmp← BV t ;
14: while Tmp! = ∅
15: for ∀vi ∈ Tmp
16: D1 ←descendant(Gt−1, vi); // Get the set of vi’s

subsequent nodes
17: if |D1| 6= 0
18: distvi ← distvi + 1;
19: for all vj ∈ D1
20: aff vj ← aff vie

−βdistvi /|D1|; // The impact
degree on node vj

21: end for
22: if aff vj ≥ δ
23: V t

aff ← V t
aff +{vj}; // Add node vj into the

set V t
aff

24: D2←descendant(Gt−1, vj);
25: Tmp← Tmp+ D2;
26: end if
27: end if
28: Tmp← Tmp− vi; // Remove node vi that have

handled from Tmp
29: end for
30: end while
31: end if
32: return V t

aff ;

and dist (u, vi) = dist (u, vi−1) + 1, we have the following:
aff vx = e−β(dist(u,vx )+dist(u,vx−1)+...+dist(u,v2)+dist(u,v1)) =
e−β(1+2+...+dmax ) = e−βdmax (1+dmax )/2. According to the
assumption of the threshold to terminate propagation, we can
obtain e−βdmax (1+dmax )/2 ≥ δ, where dmax is the length of the
farthest path that the impact is propagated inGt−1. Therefore,

dmax =
⌊√

1
/
4− lnδ2

/
β − 1

/
2
⌋
. �
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V. PAGERANK UPDATE BY AN INCREMENTAL
RANDOM WALK
Since a deleted node in a graph does not need to calculate
the corresponding PageRank, this section only discusses the
update of all affected nodes’ PageRank in the current graph
and the calculation of the newly added nodes’ PageRank.

A. UPDATING THE PAGERANK OF THE AFFECTED NODES
1) AN EDGE INSERTION
Suppose that both nodes u and v are the existing nodes
in the current graph Gt−1, but there is no a directed edge
e = (u, v). This edge e is newly added to Gt−1, meaning
that there is a new directed edge e = (u, v) in the new
graphGt . According to the discussion in section III-B, we can
obtain wt−1u , r t−1u and st−1u in Gt−1. To update the PageRank
of node vi ∈ V t

aff , we need to calculate wtu, the number
of RWPs passing through u, and stu, the total times that
RWPs have visited u. Following the random walk method
in Definition 1, even if the total number of edges in a graph
is changed and the total number of nodes in such the graph is
not changed, the total number of random walk paths will still
not be changed, since wtu = wt−1u . The total times of passing
through node u can be calculated by Formulas 4 and 5, or stu =⌊
wt−1u /(1 − ((1 − α)r t−1uv + Out t−1u r t−1u )/(Out t−1u + 1))

⌋
.

Since a new edge is added at node u, the total times that all the
RWPs have passed through u to subsequent nodes increases.
Let atu be the increased number of RWPs passing through u
due to adding e = (u, v) as follows:

atu =
stu
Out tu

=

⌊
wt−1u

Out t−1u (1− r t−1u )− (1− α)r t−1uv + 1

⌋
.

(8)

Obviously, adding an edge e may change the total number
of times of passing through node vi ∈ V t

aff , which is denoted
as st−1vi . To calculate st−1vi as accurately as possible so as to
reduce the random error, we set a larger value atu, which is the
number of rounds of repeated random walks. Following the
randomwalkmethod inDefinition 1, we perform atu rounds of
repeated random walks from node u. Once these RWPs start
from u and pick v as the next node passes through vi, then
st−1vi +1. If not, then s

t−1
vi −1. After finishing all the specified

random walks, node vi records the updated st−1vi , which is stvi
at time t . Finally, the PageRank of vi ∈ V t

aff can be calculated
by using Formula 3.

Since a new edge e = (u, v) is added, the PageRank
of the affected node vi ∈ V t

aff is changed. To update the
PageRank of these affected nodes, we design an algorithm
and its pseudocode is as follows.
Proposition 3: For Gt−1 = (V t−1,E t−1), if a new edge

e = (u, v) /∈ E t−1 is added, the set of all nodes
in Gt−1 affected by adding edge e is V t

aff . To update
the PageRank of the nodes in V t

aff , it is stipulated that
atu-times random walks starting from node u are performed.
Compared with the random walk algorithm [9], the min-
imum computational complexity saved by Algorithm 2 is

Algorithm 2 Updating PageRank After Adding an Edge
(UPR_AE)

Input: Gt−1 = (V t−1,E t−1), e = (u, v), V t
aff , α, M ;

Output: The set of the affected nodes’ PageRank PRtaff ;
// r t−1u is the probability of random walks which start from
node u and get back to u
1: PRtaff ← ∅, r

t−1
u ←0, Tmp← ∅;

2: for all vi ∈ V t−1

3: for z = 1 to M // Perform a random walk from any
node vi

4: pathz ←doRandomWalk(Gt−1, vi); // Pass
through the specified node u

5: if coverSelectedNode(pathz, u) =true // Update the
number of RWPs passing through u

6: wt−1u = wt−1u + 1;
7: end if
8: end for
9: end for
10: D1 ←descendant(Gt−1, u); // Get the set of u’s

subsequent nodes
11: for all vi ∈ D1
12: rvi ← α/|D1|;
13: Tmp← Tmp+ {vi};
14: while Tmp! = ∅
15: vj←randomChoose(Tmp); // Get a node randomly
16: D2←descendant(Gt−1, vj);
17: rvi ← rvi ∗ α/|D2|;
18: k ←randomChoice(D2);
19: if k 6= u
20: Tmp← Tmp+ {k};
21: Tmp← Tmp− {vi};
22: else
23: Tmp← Tmp− {vi};
24: end if
25: r t−1u ← r t−1u + (1− α)r t−1vi ;
26: end while
27: end for
28: st−1u ←

⌊
wt−1u /(1− r t−1u )

⌋
; // The total times that have

visited node u
29: E t−1← E t−1 + {(u, v)};
30: atu←

⌊
(wt−1u /(|D1| (1− r t−1u )

+ 1− (1− α) r t−1v )
⌋
; // The increased number of RWPs

passing through u
31: for z = 1 to atu // Perform atu rounds of repeated random

walks from node u
32: pathz←doRandomWalk(Gt−1, u);
33: for all vi ∈ V t

aff
34: if coverNewEdge(pathz, vi) =true // Pass through

the new edge (u, v)
35: st−1vi ← st−1vi + 1;
36: stvi ← st−1vi ;
37: else
38: st−1vi ← st−1vi − 1;
39: stvi ← st−1vi ;
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40: end if
41: end for
42: end for
43: for all v ∈ V t

aff
44: pr tv← stv/|V

t−1
|M ; // Update the PageRank of each

affected node
45: PRtaff ← PRtaff + {pr

t
v};

46: end for
47: return PRtaff ;

(
∣∣V t−1

∣∣M − ∣∣∣V t
aff

∣∣∣ atu)/(1 − α), where α and M are two
parameters set in Definition 1.

Proof: According to the random walk algorithm [9],
the computational complexity of the overall random walk
method is

∣∣∣V t
aff

∣∣∣ atu/(1 − α). In Algorithm 2, if e = (u, v) /∈

E t−1 is added in Gt−1, we perform atu rounds of repeated
random walks starting from node u after adding edge e to
adjust the PageRank of nodes in V t

aff where atu < M .
According to Algorithm 2, the computational complexity is∣∣∣V t

aff

∣∣∣ atu/(1− α). Since V t
aff ⊆ V t−1,

∣∣∣V t
aff

∣∣∣ ≤ |V t−1
|. Thus,

the minimal computational complexity of Algorithm 2 can be
reduced by (

∣∣V t−1
∣∣M − ∣∣∣V t

aff

∣∣∣ atu)/(1−α). �

2) AN EDGE DELETION
We assume both nodes u and v are the existing node
in the current graph Gt−1, and there is a directed edge
e = (u, v). If this edge e is deleted in the graph, that is,
e = (u, v) will no longer exist in the new graph Gt . As stated
in section III-B, we can obtain wt−1u , r t−1u and st−1u in Gt−1.
To update the PageRank of node vi ∈ V t

aff , we need to
calculate wtu, the number of RWPs passing through u, and stu,
the total number of times that RWPs have visited u. Similar
to the discussion in section VI-A, wtu = wt−1u and stu =⌊
wt−1u /(1 − (Out t−1u r t−1u − (1 − α)r t−1uv )/(Out t−1u − 1))

⌋
.

Because an edge e is deleted at node u, the total number of
times that all the RWPs have passed through u deceases.
We let ctu be the number of times passing from u to its
subsequent nodes due to casting away this edge e = (u, v)
as follows:

ctu =
stu
Out tu

=

⌊
wt−1u

Out t−1u (1− r t−1u )+ (1− α)r t−1uv − 1

⌋
.

(9)

Obviously, deleting an edge emay change the total number
of times an edge passes through node vi ∈ V t

aff , which
is denoted as st−1vi . Following the random walk method in
Definition 1, we perform ctu rounds of random walks starting
from the outgoing neighbors of node u or node v. Once the
RWP of the former passes through vi ∈ V t

aff , then s
t−1
vi + 1.

Once the RWP of the latter passes through vi, then st−1vi − 1.
After finishing all the specified random walks, node vi
records the updated st−1vi , which is stvi at time t . Finally, the
PageRank of vi ∈ V t

aff is calculated by using Formula 3.

FIGURE 3. Structure of a graph G
′t with a super node.

Since an edge e = (u, v) is deleted, the PageRank of the
affected node vi ∈ V t

aff is changed. To update the PageRank
of these affected nodes, we design an algorithm and its
pseudocode is as follows.

Algorithm 3 Updating PageRank After Casting Away an
Edge (UPR_CE)

Input: Gt−1 = (V t−1,E t−1), e = (u, v), V t
aff , α, M ;

Output: The set of the affected nodes’ PageRank PRtaff ;
// Similar to Algorithm 2, we omit the details here.

B. CALCULATING THE PAGERANK OF NEW NODES IN 1Gt

Generally, 1Gt is a small subgraph. 1Gt = (1V 0,t
+

1V+,t + 1V−,t ,1E+,t + 1E−,t ). Using the information
about adding or deleting nodes or edges contained in 1Gt ,
Gt−1 can evolve and generate Gt . For these nodes affected
by 1Gt , the PageRank of the nodes can be updated by
using Algorithms 1 and 2. For the newly added nodes kept
in 1V+,t , next, we discuss the method for calculating the
corresponding PageRank. The main idea is to aggregate all
the nodes in1V 0,t into a supernode, denoted as sn, treat each
edge between the node in1V+,t and the node in1V 0,t as the
edge between the node in 1V+,t and sn, and then construct
a new, much smaller graph, denoted as G′t . Following the
random walk method in Definition 1, we can calculate the
total number of times that all RWPs have visited node
vi ∈ 1V+,t , which is, stvi , and then obtain the PageRank of vi
by using Formula 3.

As shown in Fig. 3, after Gt−1 is affected by 1Gt ,
a new graph G′t is constructed. ¬ represents adding a new
edge between two nodes in Gt−1, which is processed by
Algorithm 2. ­ represents deleting a node from Gt−1, which
is processed by Algorithm 3. ® represents adding some new
nodes and edges in Gt−1. For these new nodes, we allow the
nodes in the dashed blue circle to aggregate into a solid-gray
circle, which is regarded as a supernode.

Inspired by Reference [35], we design an algorithm to
calculate the PageRank of new nodes, and its pseudocode is
described as follows.
Proposition 4: We suppose Gt−1 evolves into Gt =(
V t ,E t

)
by adding a nonisolated node v. By using Formula

3, or the overall random walk method, we can obtain
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Algorithm 4 Calculating PageRank in a Small Graph With a
Super Node (CPR_GSN)

Input: 1Gt =
(
1V t ,1E t

)
= (1V 0,t

+ 1V+,t +
1V−,t ,1E+,t +1E−,t ), M ;
Output: The set of new nodes’ PageRank
PRt

1V+ ;

1: for all u ∈ 1V+,t

2: for all v ∈ 1V 0,t

3: if ∃e = (u, v)
4: tmp←sn; // a constant sn as the super node
5: 1E+← 1E+ − {(u, v)};
6: 1E+ ← 1E+ + {(u, tmp)}; // Link a new

node to the super node
7: end if
8: end for
9: end for
10: for all (u, v) ∈ 1E+,t

11: if u ∈ 1V 0,t
∧ v ∈ 1V 0,t

12: 1E+,t ← 1E+,t − {(u, v)}; // Remove the edge
between two nodes in 1V 0,t

13: end if
14: end for
15: E

′t
← 1E+,t ;

16: V
′t
← 1V+,t + {sv};

17: G′t ← (V
′t ,E

′t ); // Get the new graph
18: stv← 0, v ∈ V

′t ;
19: for all u ∈ V

′t

20: for z = 1toM
21: pathz ←doRandomWalk(G′t , u); // Perform a

random walk from node u
22: for all v ∈ 1V+,t

23: if coverSelectedNode(pathz, v) =true // Pass
through node v

24: stv← stv + 1;
25: end if
26: end for
27: end for
28: end for
29: for all v ∈ 1V+,t

30: pr tv ← stv/|V
′t
|M ; // Calculate the PageRank of any

new node v
31: PRt

1V+ ← PRt
1V++{pr

t
v;

32: end for
33: return PRt

1V+ ;

the PageRank pr tv corresponding node v. Algorithm 4
is used to construct a new graph G′t = (V

′t ,E
′t )

and calculate the PageRank p̃r tv corresponding node
v. Then, the relative error is calculated as follows:
RE =

∣∣p̃r tv − pr tv∣∣ /pr tv ≤ ∣∣∣∣∣V t
∣∣ / ∣∣∣V ′t ∣∣∣− 1

∣∣∣.
Proof: By using Formula 3, we can obtain pr tv =

sv/(|V t
|M ) = wv/(1 − ru)|V t

|M , and p̃r tv = w′v/(1 −
r ′v)|V

′t
|M can be obtained by Algorithm 4; Then, the relative

error is calculated as follows: RE =
∣∣p̃r tv − pr tv∣∣ /pr tv =

|w′v/(1−r ′v)|V
′t
|M−wv/(1−ru)|V t

|M |/wv/(1−ru)|V t
|M .

According to Algorithm 4, the edges connected to v are not
changed during the process of aggregating a supernode. IfM
is large enough, the probabilities of revisiting v in Gt and G′t

are equal, namely, rv = r ′v. Moreover, the number of random
walk paths passing through v is w′v ≤ wv. Thus, we obtain
RE ≤

∣∣∣∣∣V t
∣∣ / ∣∣∣V ′t ∣∣∣− 1

∣∣∣. �

C. COMPREHENSIVE ALGORITHM FOR ALL NODES
Considering a dynamic streaming graph SG, if the local
changes occur, the PageRank of all nodes need to updated
in time. Because Gt evolves from Gt−1 by using 1Gt , it is
reasonable to suppose that the PageRank of all nodes in Gt−1

has been obtained in advance.Moreover,1Gt is a small graph
including adding or deleting nodes or edges. We consider
all the information about 1Gt and present a comprehensive
algorithm, namely an incremental algorithm, to calculate the
PageRank of all nodes in Gt by using the random walk
method. The main process is as follows.
Step 1: When 1Gt arrives, the set V t

aff that includes the
all affected nodes in Gt−1 = (V t−1,E t−1) can be obtained
by using Algorithm 1. If there is indeed one or more affected
nodes, that is V t

aff 6= ∅, then wemove on to Step 2; otherwise,
we move on to Step 3.
Step 2: According to 1Gt = (1V 0,t

+ 1V+,t +
1V−,t ,1E+,t + 1E−,t ), we can determine whether the
change is adding or deleting information. If there is an
addition case, then we move on to Step 2.1; if there is a
deletion case, then we move on to Step 2.2.
Step 2.1: After traversing the set 1E+,t , there are three

possible cases: (1) When a new edge e is added between
two nodes in Gt−1, the PageRank of nodes in V t

aff can be
updated by using Algorithm 2. (2) When a new edge e is
added between a node in1V+,t and a node in1V 0,t , then the
total number of nodes in Gt is |V t−1

| + 1 and the PageRank
of nodes in V t

aff can be calculated by continuously calling
Algorithm 2. (3) In general, if there are many added edges
or nodes in 1Gt , then we traverse 1Gt . Step 2 is repeated
until the end, and then Step 3 is executed.
Step 2.2:After traversing the set1E+,t , there are also three

possible cases: (1) When an edge e is deleted between two
nodes in Gt−1, the PageRank of nodes in V t

aff can be updated
by using Algorithm 3. (2) When an edge e is deleted due
to a deleted node, then the total number of nodes in Gt is
|V t−1

| − 1, and the PageRank of nodes in V t
aff can be

calculated by continuously calling Algorithm 3. (3) In
general, if there are many deleted edges or nodes in 1Gt ,
then we traverse 1Gt . Step 2 is repeated until the end, and
then Step 3 is executed.
Step 3: For all new nodes, we traverse 1V+,t , call

Algorithm 4 to construct a new small graph that includes
a supernode, and calculate the PageRank of all new
nodes.
Step 4: The PageRank of all nodes in Gt has been updated,

and all calculation operations are completed.
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TABLE 1. The experimental data.

VI. EXPERIMENTAL EVALUATIONS
A. EXPERIMENTAL ENVIRONMENT
To evaluate the effectiveness of our proposed algorithm,
we conduct a series of experiments. The hardware envi-
ronment is a server cluster, including 4 computing nodes
connected by high-speed Ethernet. Each computing node
has 64-bit Intel(R) Xeon(TM) CPU, 32G RAM and 4T
HD. The server cluster runs the Linux operating system
Ubuntu 20.04 and the graph processing system GraphX [36].
GraphX is used to store and manage big graphs and to
implement parallel and distributed computing. The experi-
mental data we used are: wiki-Vote [37], amazon0302 [38],
Slashdot0811 [39], and 2 synthetic datasets. The first three
are real-world graphs in application fields, while the last two
are synthetic graphs generated by the tool P-MAT [40]. This
experimental data is shown in Table 1.

The above graph data is essentially historical static data.
However, our research object is the dynamic streaming graph.
Therefore, we need to use the above graph data to simulate
and generate a dynamic streaming graph. Specifically, 80%
of nodes and edges in each graph data are randomly selected
for the initial graph. At each time interval t , a small scale
of nodes is randomly selected as the added or deleted nodes,
and a small scale of edges is randomly selected as the added
or deleted edges.

B. EXPERIMENTS AND ANALYSIS
We use four different algorithms to conduct our compar-
ative experiments. The first is the power iteration method
(PRC_PI) [41], which is a widely used traditional algo-
rithm to calculate PageRank. This algorithm calculates the
PageRank of all nodes in a streaming graph starting from the
first node, and the result can be treated as the real or true
PageRank. The second is an overall random walk algorithm
(PRC_RW). The third is UPR_DZIG, which is the state-of-
the-art incremental update PageRank algorithm implemented
in [20]. The fourth is our algorithm, which is an incremental
random walk algorithm (UPR_IRW).

1) ACCURACY
Experiment 1:The comparison between the overall random

walk algorithm PRC_RW and the traditional power iteration
algorithm PRC_PI

FIGURE 4. MRE of PRC_RW and PRC_PI.

FIGURE 5. SD of PRC_RW and PRC_PI.

To evaluate the accuracy of PRC_RW, we set different
numbers of rounds in random walks, M = 2, 4, 6, 8, 10, 15,
20, 25, 30, 35, and execute these two algorithms over 5 graph
datasets. The results of PRC_RW are compared with the
results of PRC_PI, which is regarded as the real PageRank.
The mean relative error MRE and the standard deviation
SD are calculated. The experimental results are shown in
Figs. 4 and 5. As we can see, the MRE over wiki-Vote
becomes small and stable when M is larger than 4 and the
SD tends to be stable whenM = 10. Likewise, the MRE over
amazon0302 becomes small and stable whenM is larger than
15, and the SD tends to be small and stable whenM = 6. Both
MRE and SD over Slashdot0811 become small and stable
when M is larger than 20. For RMAT-dg1 and RMAT-dg2,
their MREs become small and stable whenM is larger than 6,
and their SDs tend to be stable when M = 20. Therefore,
as long as we are setting a reasonable M , we can obtain
smaller and relatively stable MRE and SD, meaning that
the calculated PageRank is more accurate. Moreover, as M
increases, MRE decreases and converges to a smaller error
range. This is consistent with the conclusion of Proposition
1 in Section III-B.
Experiment 2: The comparison between our incremental

random walk algorithm UPR_IRW and the traditional power
iteration algorithm PRC_PI

First, we set the threshold to terminate impact propagation
with different values, δ = 0.1, 0.2, . . . , 0.9. Experiments
are carried out separately. We observe the proportion
of the affected nodes to all nodes, and compare the
mean relative error MRE between UPR_IRW and PRC_PI.
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FIGURE 6. δ tuning over 5 different graphs.

The experimental results are shown in Fig. 6(a) and (b).
In general, the larger δ is, the smaller the affected area is.
As we can see in Fig. 6(b), almost all curves show an upward
trend. This means that the affected nodes in the graph cannot
be completely found as δ increases, and thus, the MRE
becomes larger. According to the above experimental results,
δ = 0.5 is a reasonable choice.
To analyze the impact of adding or deleting different sizes

of nodes on updating PageRank, we randomly add or delete
nodes with different proportions from each graph dataset in
Table 1, ρ = 0.1%, 0.5%, 1.0%, 2.0%, 4.0%, 6.0%, 8.0%,
10.0%, 15.0% and 20.0%. We use UPR_IRW and PRC_PI to
calculate the PageRank of all nodes in the graph, and further
calculate the mean relative error MRE. The experimental
results are shown in Fig. 7(a) and (b). With the increasing
proportion of adding or deleting nodes, the corresponding
MRE increases to a certain extent. This is because the graph
data may have a mutation, which leads to a decrease in the
accuracy of our algorithm UPR_IRW.
Experiment 3: The comparison between incremental

random walk algorithm UPR_IRW and the overall random
walk algorithm PRC_RW

We set the sizes of new nodes to 1.0%, 2.0%, 3.0%,
4.0% and 5.0% relative to the maximum size of each graph
dataset, and the threshold to terminate impact propagation is
δ = 0.5. We use PRC_ RW and our algorithm UPR_IRW
to calculate the PageRank of new nodes, and then obtain the
corresponding average relative error MRE. The experimental

FIGURE 7. The impact of adding and deleting nodes on our algorithm
UPR_IRW.

FIGURE 8. MRE of UPR_IRW and PRC_RW.

results are shown in Fig. 8. As we can see, MRE is small and
less than 0.01. If the proportion of new nodes is small, the
MRE is close to 0. Therefore, the effect of the incremental
random walk algorithm UPR_IRW is very similar to that of
the overall random walk algorithm PRC_RW.

In addition, we treat these 5 graph datasets as the
initial graph and randomly add 10 new nodes. We use
UPR_IRW and PRC_ RW to calculate the PageRank of these
10 new nodes respectively, and then obtain the relative error
corresponding to each node. The experimental results are
shown in Fig. 9. As we can see, the relative error of each
new node is less than the maximum relative error, which is
consistent with the conclusion of Proposition 4.
Experiment 4: The comparison between the incremental

random walk algorithm UPR_IRW and the state-of-the-art
incremental computing algorithm UPR_DZIG.
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FIGURE 9. A comparison between the relative error and the maximum
relative error.

FIGURE 10. MRE of UPR_IRW and UPR_DZIG compared with PRC_PI.

We set the sizes of new nodes to 1.0%, 2.0%, 3.0%,
4.0% and 5.0% relative to the maximum size of each graph
dataset, and the threshold to terminate impact propagation is
δ = 0.5. We use UPR_DZIG and our algorithm UPR_IRW to
calculate the PageRank of new nodes, and then compare the
results with the real PageRank to obtain the corresponding
average relative errors, respectively. The experimental results
are shown in Fig. 10. As we can see, MRE is small and less
than 0.01. For the graph dataset amazon0302, the MREs of
UPR_DZIG are slightly smaller than theMREs of UPR_IRW.
However, UPR_IRW performs better than UPR_DZIG on
these graph datasets.

2) EFFICIENCY
Experiment 5: The speedup comparison between the

incremental random walk algorithm UPR_IRW and the
traditional power iteration algorithm PRC_PI

We set the sizes of new nodes to 0.1%, 0.2%, 0.5%,
1.0%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0% and 8.0% relative to
the maximum size of each graph dataset, and the threshold

FIGURE 11. Speedup of UPR_IRW to PRC_PI.

to terminate impact propagation is δ = 0.5. We use
UPR_IRW and PRC_PI to calculate the PageRank of all the
nodes in each graph. Suppose that the execution times of
UPR_IRW and PRC_PI are T(UPR_IRW) and T(PRC_PI)
respectively, and the speedup of UPR_IRW to PRC_ PI
is Speedup=T(PRC_PI)/T(UPR_IRW). The experimental
results are shown in Fig. 11. Compared with PRC_ PI, our
algorithm UPR_IRW accelerates the speed of computing
PageRank tremendously, especially in graph dataset RMAT-
dg2, and the speedup can be as high as 99.50. As the size
of new nodes increases. The speedup decreases gradually.
Anyway, the speedup is much greater than 1, which indicates
that the incremental random walk algorithm UPR_IRW is
faster than the traditional power iteration algorithm PRC_PI.
Experiment 6: The speedup comparison between the

incremental random walk algorithm UPR_IRW and the
overall random walk algorithm PRC_RW

We use the same experimental environment and parameters
stated in Experiment 5, and repeatedly execute UPR_IRW
and PRC_RW to calculate the PageRank of all nodes in the
graph. In addition, the speedup of UPR_IRW to PRC_RW
is Speedup=T(PRC_RW)/T(UPR_IRW). The experimental
results are shown in Fig. 12. Compared with PRC_RW,
our algorithm UPR_IRW greatly accelerates the speed of
calculating PageRank, especially on the graph dataset RMAT-
dg1, and the speedup can be as high as 82.62. As the size of
new nodes increases, the speedup decreases gradually. The
speedup is much greater than 1, which indicates that the
incremental random walk algorithm UPR_IRW is faster than
the overall random walk algorithm PRC_RW.
Experiment 7: The speedup comparison between the

incremental random walk algorithm UPR_IRW and the state-
of-the-art incremental computing algorithm UPR_DZIG

We use the same experimental environment and parameters
stated in Experiment 5, and repeatedly execute UPR_IRW
and UPR_DZIG to calculate the PageRank of all nodes
in the graph. In addition, the speedup of UPR_IRW to
UPR_DZIG is Speedup=T(UPR_DZIG)/T(UPR_IRW). The
experimental results are shown in Fig. 13. If the size of
new nodes is smaller than 1.0% on these two graph datasets
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FIGURE 12. Speedup of UPR_IRW to PRC_RW.

FIGURE 13. Speedup of UPR_IRW to UPR_DZIG.

amazon0302 and Slashdot0811, the speedup may be smaller
than 1. In this case, it means that UPR_DZIG has certain
advantages when calculating the PageRank speed. However,
if the size of new nodes is greater than 1.0% on each graph
dataset, the speedup is greater than 1, especially on graph
dataset RMAT-dg1, and the speedup can be as high as 3.76.
Therefore, if the size of new nodes is added in a dynamic
streaming graph is small, UPR_DZIG performs better than
our algorithm. If more nodes are added to such a graph,
the performance of our algorithm UPR_IRW is superior to
that of the state-of-the-art incremental computing algorithm
UPR_DZIG.

VII. CONCLUSION
PageRank update for a big dynamic streaming graph is a
very important task. This paper focuses on all the local
change information about node or edge insertion or deletion
in a streaming graph, and designs an algorithm based on
the idea behind wave propagation theory to find the all
nodes affected by such local changes. For the unaffected
nodes, their PageRank does not need to be updated, which
greatly reduces the computational overhead. For the affected
nodes, we use the random walk method to calculate the
change in the total number of walks, and update the
PageRank corresponding to these nodes. This process not
only reduces the error of calculating the PageRank of the
affected nodes as much as possible, but also avoids redundant
computation. For the newly added nodes, an algorithm based

on the aggregation idea is designed, which can accurately
calculate the PageRank of these new nodes. In summary,
a comprehensive algorithm based on incremental random
walks for updating the PageRank in a streaming graph is
proposed, and a deep analysis is given. Finally, we use the
proposed algorithm, the traditional power iteration algorithm
and the overall random walk algorithm to conduct a series
of comparative experiments on 3 real-world graphs and
2 synthetic graphs. The experimental results show that
our algorithm has better capability in terms of the speed,
while maintaining the accuracy. In future work, we will
prove the consistency of calculating PageRank between our
incremental computationmethod and the overall computation
method through theoretical derivation. Moreover, we will
transplant the proposed algorithm to some open-source big
graph computing systems and evaluate its effectiveness over
more real-world graph datasets.
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