IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 9, 2022, accepted January 31, 2022, date of publication February 7, 2022, date of current version February 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149296

Towards PageRank Update in a Streaming Graph
by Incremental Random Walk

ZHIPENG SUN “'2, GUOSUN ZENG"'2, (Senior Member, IEEE), AND CHUNLING DING3

!Embedded System and Service Computing Key Laboratory of Ministry of Education, Tongji University, Shanghai 200070, China
2Department of Computer Science and Technology, Tongji University, Shanghai 200070, China
3College of Chemical Science and Engineering, Tongji University, Shanghai 200070, China

Corresponding author: Guosun Zeng (gszeng @tongji.edu.cn)

This work was supported in part by the Subproject of National Seafloor Observatory System of China under Grant 2970000001/001/016.

ABSTRACT As the internet and the Internet of Things (IoT) have been widely applied in many application
fields, a large number of graphs are continuously produced and change over time, which leads to difficulties
in graph analysis and utilization. This paper studies a PageRank update algorithm for a streaming graph using
incremental random walk. We focus on the information about the local changes of nodes and edges in the
current graph, analyze the impact of such local changes on this current graph, and then use the idea behind
wave propagation theory to seek and determine all affected nodes that need to be updated their PageRank
in the new graph. For new nodes, the existing nodes in the current graph that are connected with these new
nodes are aggregated into a supernode, and the PageRank of the new nodes is solved in the new graph
with the supernode. Finally, we conduct a series of experiments on real-world and synthetic graph datasets.
Compared with the state-of-the-art incremental computing algorithm, our algorithm not only ensures the
accuracy of calculating the PageRank in a large streaming graph, but also speeds up the computational
process by avoiding many redundant computations.

INDEX TERMS Streaming graph, PageRank of nodes, wave propagation, incremental computation, random

walk.

I. INTRODUCTION

To evaluate the importance of web pages, the concept of
PageRank in Google was first introduced by Page and
Brin [1]. Because web pages and their hyperlinks can be
treated as nodes and edges in a directed graph respectively,
PageRank is also used in other graphs and in many application
fields. For example, in e-commerce, a PageRank of products
can help to recommend the relevant products to clients
efficiently. In intelligent transportation systems, detecting
the PageRank in an urban traffic network can be used to
optimize the travel path. In social networks, people can find
a user’s friends by using PageRank, and if this user is a
criminal, the policemen can easily determine the criminal’s
associates. In biological networks, geneticists can find some
common oncogenes by using PageRank, which can avoid
congenital diseases effectively. Generally speaking, the above
graphs are very large and dynamically change over time [2].
Moreover, the fixed PageRank in dynamic streaming graphs
cannot always be always valid because their structures

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu

VOLUME 10, 2022

change, especially when the addition and deletion of nodes
or edges occurs. In this situation, PageRank needs to be
updated after dynamic changes [3]. However, it is mostly a
small-scale change at every moment of attention compared
with the whole streaming graph, e.g., the total number of
articles added was less than 4% for English Wikipedia in
2019 [4]. If we compute the PageRank of all nodes in a graph
from scratch every time, this process will continuously pro-
duce rather redundant computation continuously. Computing
PageRank in this way is not only inefficient but also wastes
considerable computing resources. Additionally, even if the
parallelism of this method could be realized in a parallel
distributed environment, the execution time would not be
advisable for real-time applications. However, PageRank in
dynamic streaming graphs needs to be updated in real-time,
which is a nontrivial challenge. Therefore, the incremental
calculation method of a PageRank has emerged in some
current studies [5, 6]. They make good use of the previous
results and compute the PageRank only, which needs to
be updated incrementally every time [6]. However, to the
best of our knowledge, these existing incremental methods
still have some shortcomings in identifying the nodes that

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 15805

https://orcid.org/0000-0003-0999-370X
https://orcid.org/0000-0003-1952-3867
https://orcid.org/0000-0001-8911-727X

IEEE Access

Z. Sun et al.: Towards PageRank Update in Streaming Graph by Incremental Random Walk

need to update their PageRank, which makes it difficult to
regulate a trade-off between improving computing efficiency
and minimizing the calculation error. In this paper, we use
the idea of a random walk and design a novel incremental
computation algorithm for updating PageRank in a dynamic
streaming graph. Our main contributions can be summarized
as follows:

(1) Local changes of nodes and edges in a streaming
graph are particularly concerning, which may cause the
PageRank of some nodes to change. Thus, we apply
wave propagation theory to discover the affected local
area in such graphs at the present moment and develop
a novel algorithm to determine all affected nodes that
can reduce error and the amount of calculation at the
same time.

(2) The PageRank of the affected nodes is calculated in an
incremental manner, which is based on the Monte Carlo
idea. We leverage the information about random walks
and about changes including adding and deleting nodes
or edges in order to identify the number of the changed
random walk paths and calculate the probabilities of
visiting these nodes. Then, an optimized PageRank
update method for the affected nodes is presented
to avoid redundant computation and accelerate the
PageRank update.

(3) For newly added nodes, the existing nodes in the
current graph that are connected with these new nodes
are aggregated into a supernode. These new nodes with
the supernode form a smaller new graph where the
PageRank of newly added nodes is calculated at a very
low computational cost.

The rest of this paper is structured as follows. Section II
investigates the related work. Section III presents the problem
description about updating PageRank in a large dynamic
streaming graph. Section IV proposes a novel approach to
finding all affected nodes and conducts a deep analysis.
Section V elaborates on an incremental computation of
PageRank in a streaming graph. Some experiments are
conducted to show the advantage of our approach over
traditional techniques in Section VI. Section VII concludes
this paper.

Il. RELATED WORK

When we review PageRank computation, the traditional
methods can be divided into two categories: power iteration
methods [7] and Monte Carlo methods [8], [9]. The former
converges to the PageRank by iterative operation of the graph
connection matrix, and the latter uses a random walk to
approximate the PageRank. Both methods can be used to
calculate PageRank for static and dynamic graphs, and many
extension methods based on them have been developed.

For static graphs, Desikan er al. [10] used a power
iteration method to calculate all nodes’ PageRank for a static
graph. Kamvar et al. [11] used the quadratic extrapolation
method to remove the nonmain eigenvectors in the current
iteration and accelerate the convergence process of iterative

15806

calculation. Arnal [12] presented a parallel vision of the
power iteration method to reduce the execution time for
PageRank computation. However, according to the Monte
Carlo idea, Nigam [13] designed a method to approximate
PageRank based on the Markov model, and verified its
effectiveness. Fushimi et al. [14] proposed a p-avg approach
to obtain the approximate PageRank scores, which improved
the speed of PageRank computation.

Considering a dynamic graph, the easiest way is that
the methods of calculating PageRank for a static graph
can be used to calculate PageRank for a dynamic graph.
Christian et al. [15] turned a dynamic graph into a series
of snapshots, treated these snapshots as static graphs, and
calculated nodes’ PageRank related to these static graphs
by the GaufB-Seidel method. Gonzalez [16] regarded a
dynamic graph in batches over time as a static graph and
computed nodes’ PageRank. The sliding time window was
introduced by Bahmani ez al. [17] to deal with the dynamic
streaming graph for computing PageRank. Essentially, these
methods convert dynamic graphs into many static graphs, and
then calculate all nodes’ PageRank again and again. If the
time window is very short and too many static graphs are
generated, these methods are time-consuming.

Generally, in some application fields, a dynamic graph
often locally changes on a small scale, and a few nodes or
edges are added into or removed away from the current graph
during a period of attention. For this reason, only a small
number of nodes’ PageRank will be affected. To speed up the
solution, one only needs to recalculate the PageRank of this
part of the affected nodes rather than all of the graph nodes.
Inspired by this idea, some incremental computing frame-
works and platforms have emerged, such as Graphln [18],
Tornado [19] and DZIG [20]. Moreover, many incremental
update PageRank algorithms have been proposed. Kim [21]
updated the PageRank of the affected nodes by using an
incremental iteration method. Chien et al. [22] proposed a
novel method for discovering the affected nodes, showing
that the influence gradually decreases as it passes through its
reachable nodes. Zhang [23] presented an incremental power
iteration method, I-PageRank, which avoided computing
PageRank from scratch. MaSherry [24] invented a new
power iteration method that can accelerate the convergence
of updated iterations. Bahmani et al. [25] proposed a
proportional probing method, which could determine the
existing nodes with high PageRank changes and take a small
affected portion of the graph to update the PageRank of
these nodes. Yu et al. [26] designed an incremental random
walk algorithm IRWR, which mainly focused on the edges
that were constantly changed and found top-k nodes that
were affected by these edges to update PageRank. Pruning
needless calculation was effective. Prasanna et al. [27] treated
a strongly connected components as an affected area in a
graph and calculated the PageRank of the local affected
nodes at low computational cost. Atish et al. [8] modified
the PageRank of all nodes by adjusting the affected random
walk paths in a streaming manner. Liao et al. [28] addressed

VOLUME 10, 2022

Z. Sun et al.: Towards PageRank Update in Streaming Graph by Incremental Random Walk

IEEE Access

an incremental PageRank algorithm, IMCPR, based on the
Monte Carlo method, which obtained lower computational
complexity O((m+n/c)/c), where m, n and c are the number
of changed nodes, the number of changed edges and the reset
probability, respectively. In addition, currently distributed
computing systems are widely used to speed up big graph
processing. Mariappan et al. [29] proposed an incremental
BSP processing model to calculate the PageRank in a big
streaming graph.

Although the above methods for a big dynamic graph
can save computational time, their disadvantages include
possibly being inaccurate or unreasonable when finding the
affected node area. Riedy [3] proposed a PageRank updating
method based on iterative refinement. When a dynamic graph
changed, the error of PageRank was compensated in the
process of updating PageRank to ensure that the updating
result was accurate. Zhang et al. [30] presented two dynamic
versions of forward push and reverse push based on the power
iteration method, which are more accurate than those in
Reference [17]. Yoon et al. [31] proposed a fast and accurate
OSP algorithm, which updated PageRank on dynamic graphs
by random walk with a restart and set the restart probability
to balance accuracy and calculation time. Reference [28]
assumed that the random walk path did not visit the same node
repeatedly, which was inconsistent with the fact. Therefore,
the calculated PageRank had a large error, and the error
increased continuously with the dynamic change of the graph.
Zhan et al. [9] proposed the revisit probability model to truly
reflect the random walk process. When a dynamic graph
changed, the PageRank was updated based on the original
random walk information.

The above works all attempted to accelerate the calculation
process of PageRank while ensuring high accuracy, but there
was still no a good trade-off between accuracy and efficiency.
Therefore, this work studies an algorithm for PageRank
update in a streaming graph using incremental random walk,
and realizing the parallelism of this algorithm. Our goal is to
achieve high precision and high efficiency at the same time.

IIl. CONCEPTS AND PROBLEM DESCRIPTION

A. TRADITIONAL METHOD TO CALCULATE PAGERANK

In this paper, we let G = (V, E) be a directed graph, where
V and E are the sets of nodes and edges, respectively. |V| is
the number of nodes and |E| is the number of edges. For two
nodes u, v € V,if there exists a directed edge (u, v) € E, Out,
is the set of u’s outgoing neighbors, and v € Out,. we let A
be the adjacency matrix related to G as follows:

A(u,v)z{l’ if (u,v) € E 0

0, otherwise.

We let D be the diagonal matrix of nodes’ out-degrees.
Then, the transition matrix related to G is denoted as
C = ATD~!. When X© is an initial vector with |V| entries,
the value of each entry in X© is 1/|V|. Then the PageRank
of each node in G canbe PR = (pry, pr,, ... ,er|)T, which

VOLUME 10, 2022

can be calculated as follows:

T
X+ = gox® 4 (L= e
VI
€ Hx(k+l) _x® H e (@)
PR = (pr;, pry, . .. ,prM)T = X&+D,

where « is the probability that any node’s outgoing neighbors
are visited, e is a |V|-dimensional unit vector, & is a
threshold satisfying the convergence requirement, and pr; is
the calculated PageRank of node v;.

B. THE MONTE CARLO IDEA TO CALCULATE PAGERANK
The Monte Carlo idea has been reported to approximate the
PageRank of a graph [32]. To clarify the calculation process,
we first introduce some concepts.

Definition 1 (Random Walk, RW): In a graph G = (V, E),
a random walk is a type of random process, during which
many steps need to be taken as follows: a walker chooses a
node v € V as a starting node and randomly walks along
the out-edge of this node with a probability of « at each step.
In the same way, if the walker keeps walking, the total number
of steps must not exceed R. Therefore, a walker may stop with
a probability of 1 — « after each step, or terminate where the
node has no any out-edge. To approximate the PageRank of
each node more effectively, M- times random walks starting
from each node are performed.

Definition 2 (Random Walk Path, RWP): In a graph
G = (V, E), arandom walk path is a continuous path starting
from any node to a reachable node. It can be denoted as
Vi > v — ... = Vi, wherev; € V, (vi,viy1) € E,
iel[l,k).

For each node v;, we let s,, be the total number of times
that all RWPs have visited v; using the random walk method
in Definition 1. Then, we can approximate the PageRank of
vi, denoted by pr,, as follows:

pry, = sy /(IVIM). 3

Let w,, be the number of all RWPs passing through node
v;. If each RWP visits v; only once, then s,, = w,,. However,
there may exist a cycle in G, which means that an RWP may
visit the same node many times. In this case, s,, > wy,.
To discuss the relationship between s,, and w,,, let’s take an
example is shown in Fig.1, where vi — vy — v3 — vjisa
random walk path that starts from v;.

Here, we use the variable r,,,, to represent the probability
that the path starting from node v| passes through an out-edge
(v1,v2) and returns to vy, then ry,;, = @ X x1/2xa x1/3.
In general, if vi — v — ... > v; —> ... — Vv isan
RWP, 1y, = o~], 1/ |Out,,| where L is the length of
this path, and Out,, is the set of node v;’s outgoing neighbors.
Therefore, the probability of RWs that start from node v; and
return to v can be calculated as follows:

l -«
vy = ZVzGOMtV] |0utv1" Tvivy- “4)

15807

IEEE Access

Z. Sun et al.: Towards PageRank Update in Streaming Graph by Incremental Random Walk

FIGURE 1. Random walks starting from v, in a graph.

Thus, we can obtain the relationship among r,,, w,, and s,,
as follows:

1= ()"

1 —ry,

Wy,
:\;1_"\&}. (5)

Proposition 1: In a graph G = (V, E), for each node
u € V, we let the PageRank of u be pr,, which is calculated
by Formula 2. If pr, is calculated by Formula 3, then pr,
approximates to pr,,.

Proof: Assume that the true PageRank of node u is
denoted as 7, and pr, is calculated by using the basic method
that is equal to 7. A ““random walk” that we define is based
on the Monte Carlo methods. We walk randomly along the
directed edges in the graph, and the probability of passing
through any node u tends to be stable. This probability of node
u, denoted as pr,, is treated as the approximate PageRank of
u [33]. Since pr, = m,, then pr,, approximates to pr,,. O

Sy; =wvi<l+rvl.+r5i+...>=wvi

C. PAGERANK UPDATE PROBLEM

Definition 3 (Streaming Graph, SG): A streaming graph
is a dynamic graph changing over time 1,2,3,...,7...,
denoted as G!, G2, G3, ..., G, ..., where G2 evolves from
G, G? evolves from G2, G' evolves from G' 1, etc.

Formally, G' = G'~! + AG’, where AG' is a small
graph that contains all the change information about node
or edge insertion or deletion at time . AG' = G' — G'~!
can be generated and informed by an online graph computing
system. More concretely, we allow AG' = (AV', AE") =
(AVOL L AVHL L AV AEH + AE™?), where AV is
the set of nodes with one or more edges added or deleted in
G'~1, AV is the set of all new nodes, AV~ is the set
of all deleted nodes at time t, AET is the set of all new
edges, and AE~! is the set of all deleted edges at time ¢.
An example is shown in Fig. 2. A black-circle represents the
original node, a green rectangle indicates that a new node
has been added, and a green arrow indicates that a new edge
has been added. A dotted green circle indicates the deletion
of a node and the dotted green arrows indicate the deletion
of an edge.

15808

AG! AG2Q AGt
077 — O— }l —
G1&PR! G2&PR? G'&PR*

(a) Repeat computation from scratch

AG!

o 7? — >c . (ﬂ —_

éﬁ%@?%%

G'&PR! G?&PR? Gt&PRt

(b) Incremental computation

FIGURE 2. Two ways of computing PageRank in a streaming graph.

Using traditional methods to calculate PageRank is time-
consuming. Moreover, a large number of redundant pro-
cessing operations occur when calculating PageRank from
scratch with the continuous expansion of the data scale in
a streaming graph. Therefore, we need to seek some new
methods to improve. According to the actual situation, AG’
is much smaller than G’, and the PageRank in G' may
be very similar to that in G'~!. As in Fig. 2(a), a large
number of computational operations are wasted on some
nodes with almost unchanged PageRank, meaning repetitive
and redundant computations. As a result, we will study
an incremental method to calculate PageRank as shown in
Fig. 2(b), where only a few red nodes need to update their
PageRank.

IV. AFFECTED AREA DUE TO GRAPH CHANGES

If a dynamic graph does not change, the PageRank of all
nodes does not need to be recalculated. However, even if a
small number of nodes or edges are added or deleted, the
PageRank of some related local nodes are affected. In this
section, we discuss how to determine the affected area.

A. WAVE PROPAGATION PHENOMENON

Throughout the process of sound propagation, the sound
intensity gradually decreases as sound travels farther. It has
been reported that the relationship between sound intensity
and propagation distance is P, = Pge #* [34], where Py is
the sound intensity at the origin, Py is the sound intensity
at location x far from the origin, and B is the attenuation
coefficient. Generally, § = 0.0255. According to this theory,
we can apply it to analyze the dynamic change and local
impact in a streaming graph.

VOLUME 10, 2022

Z. Sun et al.: Towards PageRank Update in Streaming Graph by Incremental Random Walk

IEEE Access

B. FINDING AFFECTED NODES FOR UPDATING PAGERANK
As stated in Section III-C, AG' = (AV', AE") = (AV?! +
AVHL 4 AV AEDT 4+ AETY). If AVOY = {3, there
is nothing changed in G'~! = (V’~!, E’~!). This means
that the PageRank of all nodes in G'~! remain unchanged.
If AVO" £ ¢, and because all nodes in AV®! are also in
V=1 then AG'may affect some nodes in G'~! through nodes
in AV9!. Therefore, we treat nodes in AV9! U AV as the
starting nodes to determine all affected nodes in G'~!, and
update the PageRank of these affected nodes.

To determine the affected nodes in G'~! due to AG',
we consider two factors: one is the distance dist(u, v;)
between any node v;eV/~! and a starting node u € AV®' U
AV~ and the outdegree at v;, which is |Out,,|. Similar to
wave propagation, we first initialize the impact degree on
u due to AG', which is aff, =1; then, the impact degree
on v; is aff, = aff ,eBstv) Moreover, the larger v;’s
outdegree is, the more paths it propagates, which means that a
smaller impact degree spreads to its outgoing neighbors [35].
Suppose that node v;y; is an outgoing neighbor of v;.
Then, aff,, , = aff,,/|Outy|, where |Out,;,| #0. Because
|Out,,| =0, v; has no any outgoing neighbor, and the impact
stops propagating at v;. Thus, the impact degree on each
reachable node v;4 | from u to viy1 is as follows:

1, ifvipi=u

aﬁcwe—ﬂdist (u,vig1) . (6)
Out , otherwise.
vi

Let § be the threshold to terminate impact propagation,
§ € (0,). If aff,,,, < é, the impact degree on v;4; can be
ignored. In particular, if v;y| has no any outgoing neighbor,
the impact will stop spreading at v;1. Thus, the set of all
affected nodes in G'~!, denoted as Va’ﬁ, can be obtained as
follows:

aﬁc"iﬂ =

Va’ﬁ-z{vth_l|aﬁV28]. %)

To clearly describe the process of finding the affected
nodes, we design an algorithm, and the corresponding
pseudocode is as follows.

Proposition 2: We suppose the distance between two
adjacent nodes in a graph is 1, the propagation attenuation
coefficient is B, and the threshold to terminate impact
propagation is 8. G'~! is affected by AG’. Then, the length
of the farthest path where the impact is propagated in G'~! is
dnax = | /1/4 =52 /B = 1/2.

Proof: Because G'~! is affected by AG’, we might also
assume that the impact starts to propagate from u, a reachable
node on the propagation path that is denoted as v;, and the
outdegree of v; is |OQut,,| > 1.1f Out,, = 1,i =1, 2, This
impact only propagates along one path, and the distance is the
farthest. We suppose this pathisu — vi — vy — ... = vy,
where vy is the farthest reachable node, then according to

aff, aﬂv ajfv aﬁ“v —Bdist (u,vyx)
Formula 6, - x — ==L x| x —2 IR dbilaia
5 aﬁvx—l aﬂ"}r—Z aﬂvl aff , Outy |
e—ﬁdist (“*Vx—l) e—ﬁdixl(u.vz) e—ﬂdi.vt(u‘vl)

Outvkl OMtV2 x 014tv1 - Since aﬁu =1

VOLUME 10, 2022

Algorithm 1 Finding the Affected Nodes Based on Wave
Propagation (FAN_WP)
Input: G'~! = (V7L E'™), AG'" = (AV',AE") =
(AVO! AVHL L AV AET 4 AE™), B, §;
Output: Véﬁc; /I The set of nodes affected by
AG'. .

1: V‘iﬂ <~ 0, BV! <« @;

Vieh — vl AV ET — BT AET
Remove the deleted nodes and edges form G’ -1
3 G (vt ET;

»

4 BV' « AVO! 4+ AV =1,/ Treat the nodes in AV®! and
AV~ as the boundary nodes

5: if BV = 0f

6: return Véﬂ;

7: else

8: forallv € BV' // Propagate impact from the boundary
nodes

9: aff , < 1; // Initialize the impact degree on a
boundary node

10: dist, < 0;

11: end for

12: Véﬁ <~ BV!;
13: Tmp < BV,
14: while Tmp! = ¢

15: for Vv; € Tmp

16: D, «descendant(G' !, v;); /1 Get the set of v;’s
subsequent nodes

17: if |[D{| #0

18: dist,, < dist,, + 1;

19: for all v; € Dy

20: aﬁ‘vj <« aﬁfvl.e’ﬂd"“w /|D1]; // The impact
degree on node v;

21: end for

22: if aff y =0

23: Véﬂ <« Véﬁ, +{v;}; // Add node v; into the
set Véﬁr

24: D, <descendant(G'~!, Vi)

25: Tmp <— Tmp + D»;

26: end if

27: end if

28: Tmp < Tmp — v;; [/ Remove node v; that have
handled from Tmp

29: end for

30: end while

31: end if

. .
32: return Vaﬁ,

and dist (u, v;) = dist (u,vi—_1) + 1, we have the following:
aﬁc — e*ﬂ(disl(u,vx)erist(u,va])+‘..+dist(u,v2)+dist(u,v1)) —
V.

efﬂ(l+2+m+dmax) = efﬂdmax(l+dmax)/2. According to the

assumption of the threshold to terminate propagation, we can
obtain e~ #dmar(1+dmax)/2 > §, where dj, is the length of the
farthest path that the impact is propagated in G'~!. Therefore,

dnax = | 1/4 =828~ 1/2. O

15809

IEEE Access

Z. Sun et al.: Towards PageRank Update in Streaming Graph by Incremental Random Walk

V. PAGERANK UPDATE BY AN INCREMENTAL

RANDOM WALK

Since a deleted node in a graph does not need to calculate
the corresponding PageRank, this section only discusses the
update of all affected nodes’ PageRank in the current graph
and the calculation of the newly added nodes’ PageRank.

A. UPDATING THE PAGERANK OF THE AFFECTED NODES
1) AN EDGE INSERTION

Suppose that both nodes u and v are the existing nodes
in the current graph G'~!, but there is no a directed edge
e = (u,v). This edge e is newly added to G, meaning
that there is a new directed edge ¢ = (u,Vv) in the new
graph G'. According to the discussion in section III-B, we can
obtain w/,~!, r/~1 and s'~! in G'~!. To update the PageRank

u u
of node v; € V!., we need to calculate w!, the number

aff>
of RWPs passingﬁthrough u, and s!, the total times that
RWPs have visited u. Following the random walk method
in Definition 1, even if the total number of edges in a graph
is changed and the total number of nodes in such the graph is
not changed, the total number of random walk paths will still
not be changed, since w!, = w!~!. The total times of passing
through node u can be calculated by Formulas 4 and 5, or s/, =
Wi/ = (1 = ot + Out Y f(OuT 4 1)) |
Since a new edge is added at node u, the total times that all the
RWPs have passed through u to subsequent nodes increases.
Let @', be the increased number of RWPs passing through u
due to adding e = (u, v) as follows:

t
' Su

_ S _ !
= out, T | 0wt T — A Y — (I~ 1|
u u u uv
®

Obviously, adding an edge e may change the total number
of times of passing through node v; € Viﬁ, which is denoted
as s’vl,’]. To calculate s’vl,’1 as accurately as possible so as to
reduce the random error, we set a larger value aL, which is the
number of rounds of repeated random walks. Following the
random walk method in Definition 1, we perform &/, rounds of
repeated random walks from node u. Once these RWPs start
from u and pick v as the next node passes through v;, then
st1 4+ 1. If not, then s, — 1. After finishing all the specified
random walks, node v; records the updated s’vi_l, which is s,
at time ¢. Finally, the PageRank of v; € Véﬁc can be calculated
by using Formula 3.

Since a new edge e = (u,v) is added, the PageRank
of the affected node v; € Véﬁf is changed. To update the
PageRank of these affected nodes, we design an algorithm
and its pseudocode is as follows.

Proposition 3: For G'~! = (V=1 E'~1), if a new edge
e = (uv) ¢ E'"! is added, the set of all nodes
in G'~! affected by adding edge e is Véﬁ. To update
the PageRank of the nodes in V;ﬁ[, it is stipulated that
a' -times random walks starting from node u are performed.
Compared with the random walk algorithm [9], the min-
imum computational complexity saved by Algorithm 2 is

15810

Algorithm 2 Updating PageRank After Adding an Edge
(UPR_AE)

Input: G~ = (V"L E'™Y, e = (u,), VI, a, M
Output: The set of the affected nodes’ PageRank PR;ﬂ;

I rffl is the probability of random walks which start from
node u and get back to u

1: PR;ﬁ <~ 0, r;_l <0, Tmp <~ @,
2: for all v; € VI~
3: for z = 1 to M // Perform a random walk from any

node v;

4: path, <doRandomWalk(G* -1 vi); I/ Pass
through the specified node u

5: if coverSelectedNode(path,, u) =true // Update the

number of RWPs passing through u

6: wiml=wi=t 41,

7: end if

8: end for

9: end for

10: Dy <—descendant(G”1,u); // Get the set of u’s

subsequent nodes
11: for all v; € D
122 1y < af|Dl;
132 Tmp < Tmp + {vi};
14: while Tmp! = 0
15: vj <—randomChoose(Tmp); // Get a node randomly
16: Dy <descendant(G' 1, Vi)

17: ry,, < ny, ka/|Dsl;

18: k <—randomChoice(D,);
190 ifk#u

20: Tmp < Tmp + {k};
21: Tmp < Tmp — {v;};
22: else

23: Tmp < Tmp — {v;};
24: end if

25: R A) Ve
26: end while

27: end for

28: 571 « | w1 /(1 — ri71) |5 // The total times that have
visited node u

29: E-V — E'V o {(u, v));

30: d, « W7D A = rh
+1 -1 -0 r£_1)J ; // The increased number of RWPs
passing through u

31: for z = 1 10 d!, // Perform d!, rounds of repeated random
walks from node u

32: path, <doRandomWalk(G' -1),

33: forallv; € Va’ﬁ

34: if coverNewEdge(path,, v;) =true // Pass through
the new edge (u, v)
. t—1 t—1 .
35: N T o
. t r—1.
36: Sy < Sy
37: else
. r—1 1—1 .
38: Sy <8, — 1;
. ! r—1.
39; Sy < Sy

VOLUME 10, 2022

Z. Sun et al.: Towards PageRank Update in Streaming Graph by Incremental Random Walk

IEEE Access

40: end if
41: end for
42: end for

43: for allv e V(;ﬁc

44: pri < st /|VI=1|M; // Update the PageRank of each
affected node

45: PRfaﬁ. <« PR;ﬁ- + {pr'};

46: end for

47: return PRZﬁ‘;

(|V"1|M — Va’ﬂ.‘afu)/(l — «), where o and M are two
parameters set in Definition 1.

Proof: According to the random walk algorithm [9],
the computational complexity of the overall random walk
method s (v;ﬂ‘ a /(1 — &). In Algorithm 2, if ¢ = (i, v) ¢
E'~!is added in G'~!, we perform &, rounds of repeated
random walks starting from node u after adding edge e to
adjust the PageRank of nodes in Véﬁ where a/, < M.
According to Algorithm 2, the computational complexity is
(v;ﬁ. a,/(1 -). Since V! € VI, ’v;ﬁ. < [V'=!|. Thus,
the minimal computational complexity of Algorithm 2 can be
reduced by (|V'~!|M —)Vgﬁ‘ a)/(1—a). 0

2) AN EDGE DELETION

We assume both nodes u and v are the existing node
in the current graph G'~', and there is a directed edge
e = (u,v). If this edge e is deleted in the graph, that is,
e = (u, v) will no longer exist in the new graph G'. As stated
in section I1I-B, we can obtain w,"!, r/~! and s~ in G'~1.
To update the PageRank of node v; € Vatﬂ-, we need to
calculate w’u, the number of RWPs passing through u, and SL,
the total number of times that RWPs have visited u. Similar
to the discussion in section VI-A, w!, = w!~! and s! =
Wit/ = Out 7Tt — (1 —)l /(OurlT = 1) |
Because an edge e is deleted at node u, the total number of
times that all the RWPs have passed through u deceases.
We let ¢/, be the number of times passing from u to its
subsequent nodes due to casting away this edge e = (u, v)

as follows:

o = SL _ Wf,t_l
T outt T =1y _ 1—1 _ —1_ 4|
ut, Out, ' (1 —r,)+ —a)ry 1
)

Obviously, deleting an edge e may change the total number
of times an edge passes through node v; € Vat/f’ which
is denoted as sf,l__l. Following the random walk method in
Definition 1, we perform ¢!, rounds of random walks starting
from the outgoing neighbors of node u or node v. Once the
RWP of the former passes through v; € V‘ﬁﬁ, then s’vl,_1 + 1.
Once the RWP of the latter passes through v;, then sii’l — 1.
After finishing all the specified random walks, node v;
records the updated SC,-_I’ which is s} at time 7. Finally, the
PageRank of v; € Véff is calculated by using Formula 3.

VOLUME 10, 2022

sn

Gt-1 AGE G'"

FIGURE 3. Structure of a graph G't with a super node.

Since an edge e = (u, v) is deleted, the PageRank of the
affected node v; € Véﬂ is changed. To update the PageRank
of these affected nodes, we design an algorithm and its
pseudocode is as follows.

Algorithm 3 Updating PageRank After Casting Away an
Edge (UPR_CE)
Input: G~ = (V"L E'" Y e = (u,v), VI, o, M;
Output: The set of the affected nodes’ PageRank PRflﬁ,;

// Similar to Algorithm 2, we omit the details here.

B. CALCULATING THE PAGERANK OF NEW NODES IN AG!
Generally, AG’ is a small subgraph. AG' = (AV?! +
AVT!L + AV AET! + AE™!). Using the information
about adding or deleting nodes or edges contained in AG’,
G'~! can evolve and generate G'. For these nodes affected
by AG', the PageRank of the nodes can be updated by
using Algorithms 1 and 2. For the newly added nodes kept
in AV, next, we discuss the method for calculating the
corresponding PageRank. The main idea is to aggregate all
the nodes in AV%! into a supernode, denoted as sn, treat each
edge between the node in AV and the node in AV%7 as the
edge between the node in AV ™! and sn, and then construct
a new, much smaller graph, denoted as G''. Following the
random walk method in Definition 1, we can calculate the
total number of times that all RWPs have visited node
vi € AVT! whichis, sf,l_, and then obtain the PageRank of v;
by using Formula 3.

As shown in Fig. 3, after G'~! is