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ABSTRACT Multivariate density estimation methods typically work well in low dimensions and their
extension to data analytics in high dimensions domain has proven challenging. For density estimation in
high-dimensional big data domains, the non-parametric Bayesian sequential partitioning (BSP) algorithm
provides an efficient way of partitioning the sample space, based on Bayesian inference. In this paper,
we present a detailed analysis of BSP and provide a computationally efficient copula-transformed data
structure and algorithm for use in density estimation for data analytics in high dimensions. Using the
copula-transformed data structure, we implement the density estimation for marginals in both BSP and kernel
density estimation (KDE)methods. The data structures and algorithm are suitably designed for most efficient
rendering into parallel processing paradigms of open multi-processing (OPENMP R©) and message passing
interface (MPI).

INDEX TERMS Multivariate density estimation, non-parametric, high-dimensional, Bayesian sequential
partitioning, copula transform.

I. INTRODUCTION
A variety of modern real-world big data applications includ-
ing sensing technologies, security, financial trading, epidemi-
ology, networks and scientific experiments, heavily rely on
an adequate analysis of transient data streams [1]. To extract
meaningful information from these big data streams, tech-
niques in data-driven machine learning and analytics provide
promising solutions [2]. A fundamental building block of
many data mining and analysis approaches is density esti-
mation, providing a very natural way of investigating the
properties of datasets [3]. Density estimates can give valuable
indication of such features as skewness and multimodality in
the data when modeling the probabilistic or stochastic struc-
ture of a dataset [4]. It also provides a well-defined estimation
of a continuous data distribution, a fact which makes its adap-
tation to data streams desirable. They can be used as the basis
of a range of statistical analyses and machine learning tech-
niques, including non-parametric discriminant analysis [5],
classification, feature analysis [6], cluster analysis, and bump
hunting [7]. Statistical analysis of big data typically requires
analytics in high-dimensional domain, where the commonly
used techniques, such as kernel density estimation (KDE) [8],
fail to perform [1], [41]. Density estimation is defined as

The associate editor coordinating the review of this manuscript and
approving it for publication was Chee Keong Kwoh.

the process of constructing an estimate of the probability
density function (PDF), from a set of observed data. For a
D-dimensional random vector X = (X1, · · · ,XD), its PDF
fX (x), where the vector x = (x1, x2, · · · , xD), is used to
calculate the probability ofX lying in a certainD-dimensional
domain D = (D1,D2, · · · ,DD), is defined as,

P(X ∈ D) =
∫
D

fX (x)dx (1)

where dx = dx1dx2 · · · dxD.
Typical parametric methods [4], [10], [11] of density

estimation assume that the data is coming from a known
family of distributions, e.g. normal with mean µ and variance
σ 2, and try to estimate the parameters. However, in high-
dimensional big data domain, parametric methods become
largely inefficient, as due to sparsity of data in some areas of
the sample space (a.k.a. curse of dimensionality [10], [12]),
the number of parameters rapidly increases with the sample
size and dimension.

Non-parametric methods are in general more suited for
high-dimensional big datasets, where the data have no char-
acteristic structure. In these methods, the number of param-
eters is not fixed, which makes them more flexible than
parametric methods. Kernel density estimation (KDE) [4],
[10], [11], [13]–[15] is one of the most commonly used
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non-parametric estimation methods. A kernel density estima-
tor for a D-dimensional dataset with N samples is defined
by [4],

f̂ (x) =
1

NhD

N∑
i=1

K
(
x− Xi
h

)
(2)

where K is the KDE function, Xi represents the ith sample
and h is called the bandwidth. More generally, a different
bandwidth can be used for each of the dimensions, with h
replaced with H, a D × D, symmetric, and positive-definite
matrix KDE expressed as,

f̂ (x,H) =
1
N

N∑
i=1

|H|−1/2K (H−1/2(x− Xi)) (3)

A proper choice of bandwidth becomes critical in
high-dimensional problems [16]–[23] and in fact, KDE
method fails to work when the dimension becomes higher
than 4 or 5 [9].

The other non-parametric method is the histogram with
fixed multi-dimensional bin volume. It works based on the
simple idea of dividing the sample space into equal multi-
dimensional bins of volume hD and then counting the number
of data points in each bin as ameasure of its density. However,
with equally spaced bins, it is not possible to adapt to spatially
varying smoothness [24]. Even more significantly, in multi-
variate space, the density function may vary unevenly across
the dimensions.

To deal with this, various histogrammethods with adaptive
choice of the bin volume have been proposed [24], [25]. For
a variable bin volume histogram with fixed bin size projected
along each dimension, the bin volume can be expressed as
h = h1h2 · · · hD. For a more general case of variable bin sizes
along each dimension, a D-dimensional bin volume can be
expressed as hj=(j1,··· ,jD) =

∏D
d=1 hjd , with 1 ≤ jd ≤ jdmax .

In general hjd 6= hkd , or more generally hj 6= hk. For a sample
X = x, located in the D-dimensional bin volume of hj, the
density is estimated as [4],

f (x) =
1
N
×
nj
hj

(4)

where N is the total number of samples, and nj is the data
count in bin volume hj.

Even with variable bin sizes, the direct application of
histogram with regular grid structure becomes impractical
as the number of bins required grows exponentially with
the dimension. As an example, for a 10-dimensional test
case in MATLAB R©, the maximum number of bins that can
be allocated before the system runs out of memory is 810.
This corresponds to only eight bin segments along each
dimension!

To significantly reduce the number of bins, requires parti-
tioning the sample space into irregular partitions of various
sizes. The method of adaptive histogram, in which the irreg-
ular bin volumes are chosen in a data-dependent way, has
been proposed before [24]–[28]. Data-dependent Bayesian

sequential partitioning (BSP) method using sequential
importance sampling (SIS) [29], [30] has been proposed [9]
as an efficient way of partitioning the sample space, based
onBayesian inference [1]. Non-parametric density estimation
methods, like BSP, have an appeal in physical sciences, due
to the fact that they allow embedding of physical prior belief
in the analysis. Further, they provide a straightforward path
to obtain predictive distribution, and more generally, spectral
inference, by means of posterior draws [31].

In this paper, we present a copula-transformed BSP algo-
rithm in details, analyze its computational complexity over
a range of input parameters, and propose an efficient set
of data structures and algorithm for the density estima-
tion in high dimensions that are suitably designed for most
efficient rendering into parallel processing paradigms of
open multi-processing (OPENMP R©) and message passing
interface (MPI)). To evaluate the efficiency of our design,
we have employed a set of synthetic datasets, to measure the
algorithmic accuracy, using the Kullback-Leibler (KL) diver-
gence [24] metric, and evaluate the computational complexity
of the BSP algorithm.

This paper is organized as follows. Section II presents
density estimation using BSP algorithm. Section III presents
our use of copula transform technique to reduce the com-
plexity of the BSP algorithm. Section IV presents the pro-
posed data structures for the efficient implementation of
BSP and discusses different implementation-related issues.
The simulation results for some example cases are pre-
sented in Section V. Section VI discusses the analysis of
the copula-transformed BSP computational complexity and
parallelization of the proposed algorithm using the various
features of the algorithm. We will look at some related work
in Section VII. Finally, Section VIII contains the concluding
remarks.

II. HIGH-DIMENSIONAL DENSITY ESTIMATION USING
BAYESIAN SEQUENTIAL PARTITIONING (BSP)
A. BINARY PARTITIONING SCHEME
As an alternative to regular histograms, the sample space
can be partitioned using a binary partitioning (BP) scheme,
in which only binary cuts are allowed, i.e. each subregion
can only be cut into two smaller subdivisions. The most
convenient choice for location of the binary cut would be
cutting in the middle of the subregion, i.e., into two equal
halves [1]. Fig. 1 illustrates the mid-point BP scheme, in
2-dimensional space. Themethod works on the idea of choos-
ing the best partitioning scenario after a certain number of
cuts, based on some chosen criterion. However, it is not
practically feasible to exhaustively generate all the possible
scenarios, because the number of paths grows very rapidly,
even in low dimensions. For a D-dimensional sample space,
at each level j, there are (j− 1)×D possible ways to cut each
of the existing partition subregions. It can be shown that the
total number of possible ways to partition the sample space
into jBP subregions is (j−1)!×D(j−1). For the 2-dimensional
space shown in Fig. 1, generation of 50 BP subregions,
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FIGURE 1. Example of mid-point binary partitioning scheme in 2D sample
space.

requires evaluation of 3.4× 1077 possibilities! Thus, instead
of exhaustively creating and examining all possible sample
partitions, we need to randomly generate a certain number
of sample partitions to maintain a good diversity [1]. In [9],
a posterior probability is proposed for this purpose, as part of
the BSP method that will be described next.

A rather less common choice for the location of the binary
cuts is cutting the subregion at the median point where result-
ing subregions will have the same number of samples [32],
rather than equal volumes. In comparison to the mid-point BP
scheme, this scheme requires an additional step of searching
for the median of the data, to determine the location of the
cut. While the BSP method described in the next subsection
is based on mid-point BP scheme, we will also discuss the
median-based BP scheme in Section III-C.

B. BSP ALGORITHM
Consider a D-dimensional dataset with N sample points,
expressed as an N × D matrix. In BSP, the small-
est D-dimensional sample space containing the dataset is
progressively divided into subregions where the density in

each of the divided subregions is estimated by simply count-
ing the number of data points that it contains. The algorithm
follows a BP scheme, i.e. each cut at a given level j splits one
of the subregions into two equal halves. At j = 1, we start
with the entire sample space. At j = 2, we examine all
possible cuts, i.e. one cut along each dimensions, with a total
of D cuts. Using the subregion densities, one of the dimen-
sions is suitably chosen for the splitting the sample space
using the BP. To improve the quality of density estimation,
M independent paths are tried at each level (M sample parti-
tions). At each level j, path gjm = {cutm2 , cut

m
3 , · · · , cut

m
j−1},

(m = 1, · · · ,M ); the sample space contains (j−1) subregions
(p = 1, · · · , j− 1), with subregion p having a volume of
vp, and containing np data points. There are (j − 1) × D
possibilities for the jth cut. Enumerating the possibilities as
pd = 11, · · · , 1D, · · · , (j − 1)D, a conditional probability
sjpd is calculated for each of these cuts as [9]:

sjpd (cutjpd |gj−1) = Cj−12np
0(n(1)pd )0(n

(2)
pd )

0(np)
(5)

where 0() denotes the Gamma function [33], n(1)pd and n(2)pd are
data points in each of the resulting halves due to the cut in
subregion p along dimension d , and Cj−1 is a normalizing
constant. The sum of all (j− 1)×D conditional probabilities
are normalized to unity to construct a probability mass func-
tion (PMF), which is used to make the random cut at level j in
the chosen subregion p and dimension d , to generate the new
subregion p = j. Subsequent to the cut, the data structures
holding the information (the number of data points, volumes
and coordinates) for the two new subregions, are updated
accordingly. This process is repeated until either the best pos-
sible partition is obtained, or the number of cuts reaches the
maximum value set by the user. Once the optimum partition is
obtained, probability density is estimated for each subregion
1 ≤ p ≤ j (a D-dimensional bin), as np/(Nvp).
The best partition is the one that gives the lowest error

between the actual and estimated densities. However, since
the actual density of the data is unknown for real datasets,
the algorithm needs to be able to determine the best partition
without relying on the knowledge of the actual density.

It has been shown in [9] that the log of the posterior distri-
bution of a sample partition, π (m) is a linear function of the
KL divergence (KLD) between the actual and estimated den-
sities, with a negative slope. Thus, in order to minimize the
KLD, we use the sample partition m with highest log(π (m)).
To do so, for each sample partition m ∈ 1, · · · ,M , with j
levels, a partition score is defined as [9]:

score(m) = log(π (m))

= −βj+ log(
B(n1 + α, · · · , nj + α)

B(α, · · · , α)
)

−

j∑
p=1

np log(|vp|) (6)
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where α ∈ [0, 0.5] and β ∈ [0.5, 1] are two constants. vp and
np are the volume and the number of data points in the subre-
gion p, respectively. B(u1, · · · , uK ) denotes the multivariate
version of Beta-function [34] and is expressed in terms of
0-function as B(u1, · · · , uK ) =

∏K
k=1 0(uk )/0(

∑K
k=1 uk ).

For an update in the value of the maximum partition score
at level j, we stop the BSP algorithm if the score does not
improve within a further fixed number of partitioning lev-
els, 1j. We have used a value of 1j = 10 in this work.
At this point, partition with maximum score, i.e. maximum
a-posterior (), is chosen as the best partition.

1) BSP EXAMPLE
Consider the Gaussian mixture distribution in D-dimensions,

X ∼
R∑
r=1

crNr (µr ,6r ) (7)

where Nr (µr ,6r ) is a normal distribution with the
D-dimensional mean vector µr = (µ1, µ2, . . . , µD)r ; 6r =

Cov[Xi,Xj]r is a D × D covariance matrix with i, j =
1, 2, · · · ,D, and cr are the mixture weights. Fig. 2 presents
the sample data points for N = 20, 000 for the case of R = 3
and D = 2, with the following parameters [1]:

µ1 = [2.25, 5.40], µ2= [2.60, 5.65], µ3= [2.8, 5.15],

61 =

[
0.042 0
0 0.042

]
, 62 =

[
0.072 0
0 0.072

]
,

63 =

[
0.042 0
0 0.042

]
c1 = 0.25, c2 = 0.4, c3 = 0.35

FIGURE 2. Sample data (N = 20, 000) from a trimodal bivariate normal
distribution.

Fig. 3 presents the actual density of the data in Fig. 2, obtained
from (7). Fig. 4 presents the result of applying BSP on the
sample space of Fig. 2, withM = 200 sample partitions, and
j = 182 cuts.
We used the dataset shown in Fig. 2 to do a comparison

with the HistogramTransform (HT)method proposed in [49].
Performances of the two methods are compared using KLD

FIGURE 3. Actual joint density of the data in Fig. 2.

FIGURE 4. BSP cuts on the sample space of Fig. 2, with N = 20, 000 and
M = 200. The number of BSP cuts is 182.

TABLE 1. KL divergence (KLD) and Hellinger distance (HLGR) values for
density estimation on the data shown in Fig. 2, obtained form BSP and HT
methods.

and Hellinger distance (HLGR). The results presented in
Table 1 show that performance of BSP is significantly higher
than the HT method.

III. COMPLEXITY REDUCTION THROUGH
COPULA TRANSFORM
Further the true distribution is from uniform, the BSP requires
more cuts to capture the structure of the data. This effect
results in dramatic increase in the number of cuts and the
deterioration of KLD values for high-dimensional data. The
complexity arises due to the fact that in BSP the marginal
distributions are learned together with the joint one. To reduce
the number of time consuming cuts in the density estimation
in high dimension space, this section presents our work on
using copula transformation [24], [35], [36] as a method to
map a D-dimensional density estimation problem into the
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product ofD one-dimensionalmarginal densities and a copula
density. Each marginal density is estimated separately, and
the results, along with density estimate of the copula, are
used to estimate the joint density of the original dataset. The
advantage of presenting the density in copula-transformed
domain is that data has uniform marginal distributions in the
interval [0, 1] [24], which leads to a significant reduction in
the number of cuts in BSP in high dimensions and much
better KLD [1].

For a random vector X = (X1, · · · ,XD), BSP is
applied to each of the dimensions, separately, to estimate
the marginal PDFs f1(x1), · · · , fD(xD). The estimated PDFs
are then used to build the marginal cumulative distribu-
tion functions (CDFs), F1(x1), · · · ,FD(xD) ∈ [0, 1], where
Fd (xd ) = P(Xd ≤ xd ). The resulting random variables
F1(X1), · · · ,FD(XD) form the new multivariate dataset. As a
result, the joint CDF of the sample dataset FX (x) can be
expressed as a standard copula C [24] as,

FX (x) = C(F1(x1), · · · ,FD(xD)) (8)

In copula domain, instead of using N samples of X =

(X1, · · · ,XD) to perform the BSP, we use N samples of the
generated marginal CDFs as a copula-transformed dataset
(F1(X1), · · · ,FD(X1)) (anN×D dataset). Themethod of BSP
is then applied to this new D-dimensional dataset, to esti-
mate the joint PDF c(F1(x1), · · · ,FD(xD)), where c(u) =

∂D

∂u1...∂uD
C(u). The PDF for the original dataset, f (x), can then

be calculated as [24],

f (x) = c(F1(x1), · · · ,FD(xD))
D∏
d=1

fd (xd ) (9)

Our simulations show that in high dimensions, use of copula
transform reduces the total number of cuts. More impor-
tantly, it reduces the number of computationally complex cuts
required by the BSP algorithm in high dimensional space by
as much as 98%, and substitutes them by computationally
cheaper cuts in the marginal distributions. Table 2 presents
the number of cuts, the execution times as well as KLD and
HLGR values of the direct and copula-transformed BSP for
various dimensions, for a multivariate normal distribution.
The synthetic dataset used in these simulations is a bivariate
trimodal normal distribution for the first two dimensions,
as shown in Figure 3. In 32 and 64-dimensional datasets, the
third dimension is a unimodal normal distribution, and for
dimensions four and higher, a bimodal normal distribution.
This choice of datasets ensures adequate level of diversity in
themarginal distributions. Significant from the data in Table 2
is the vast disparity between the KLD values for the direct and
copula techniques for the high dimensional datasets.

Fig. 5 to Fig. 8 illustrate BSP through the application of
copula transform for the sameN = 20, 000 data samples gen-
erated by (7). Fig. 5 presents the estimatedmarginal PDFs and
CDFs from BSP. Discontinuities in the PDF plots correspond
to cuts from BSP process. Fig. 6 presents two random vari-
ables F1(X1) and F2(X2) in the transformed domain, which

TABLE 2. BSP with direct and copula-transformed cuts on D-dimensional
space for various dimensions, for N = 20, 000, M = 200. Time unit is
seconds. The number of cuts are shown as the sum of total marginal and
copula cuts, as well as a pair in the parenthesis corresponding to each
component.

FIGURE 5. Estimated marginal PDF and CDF, using copula transform, for
N = 20, 000 and M = 200. The number of BSP cuts for the two marginals
X1 and X2 are 49 and 47, respectively.

are in fact marginal CDFs of X1 and X2. Fig. 7 shows the
copula-transformed sample space and the cuts made by BSP
process. For N = 20, 000 and M = 200 the BSP has made
a total of 183 cuts with 49 and 47 cuts for the two marginals
X1 and X2, respectively. The number of cuts for estimating
the copula-transformed density in the 2-dimensional space
is 87, a significant reduction from 182 cuts in the direct
method. However, as expected, and seen in Table 2, for a
low dimensional problem of d = 2 the overhead associated
with the copula transformation far outweighs the reduction in
the number of cuts in 2-dimensional space, which results in a
higher execution time. Further, notice the difference between
the cuts in Fig. 4 with a higher number of cuts in the high den-
sity areas, and Fig. 8, where most cuts are made away from
high density areas. As we will see later, the cuts in the high
density areas involve much higher computational complexity.
The estimated joint density from the BSP algorithm is shown
in Fig. 8. The KLD between the true density in Fig. 4 and the
estimated density in Fig. 8 is only 0.018 [1].

A. COPULA AND SAMPLE PARTITION DIVERSITY
One important effect of copula transformation is that for each
of the marginals, cuts are made in one-dimensional space,
meaning that at each level j, there are only j − 1 possible
ways to make the next cut; alleviating the need for selecting
a typically large value of M to improve density estimation
through increased path diversity. Simulation results for the
2-dimensional example in Fig. 5 for marginals and Fig. 7 for
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FIGURE 6. Distribution of the transformed random variables F1(X1) and
F2(X2), with N = 20, 000.

FIGURE 7. BSP cuts on copula-transformed sample space with
N = 20, 000 and M = 200. The number of BSP cuts is 87.

FIGURE 8. Estimated joint density, using copula transform with
N = 20, 000 and M = 200.

copula-transformed partitions are shown in Fig. 9 (a) and (b),
respectively. As seen from Fig. 9 (a) after a relatively small
number of cuts, the partition scores for all M = 200 sample
partitions merge towards a single value, indicating that all
M independent paths eventually lead to the same or similar
partitions. Plots in Fig. 9 (a) also show that for two choices

FIGURE 9. Partition scores with N = 20, 000 and M = 200 sample
partitions for examples for (a) marginals in Fig. 5, (b) copula in Fig. 7.
In addition to 200 plots for all M = 200 sample partitions, the figures also
show the results for two choices of M = 1, (1 for MAP, and � for random
cut from PMF) at each level j .

of M = 1, (1 for MAP, and � for random cut from PMF),
the scores are very close to, (and for most cuts even better
than), the best score obtained with M = 200. Thus, for
all marginals, we can apply the BSP with only one sample
partition,M = 1 with for all j cuts [1].

For the case of BSP in copula-transformed multidimen-
sional space, in Fig. 9 (b) despite the fact that most of the
sample partitions tend to converge at relatively small number
of cuts j, the algorithm needs to process a large number of
sample partitions to maintain a good diversity. The scores for
two cases of M = 1 are very close to the best score obtained
withM = 200, but generally less than the best score obtained
with M = 200.

To further investigate the effect ofM on the density estima-
tion, we performed a set of simulations with dimensions and
distributions identical to Table 2, with two different dataset
sizes. Simulation results are shown in Table 3, for a range of
dimensions, from 2 to 256.

In the basic setup (Option 1) M is 200 for all marginals
and the copula-transformed density estimations. A variation
of the basic set up is Option 2, where for all marginals we
only maintain one sample partition from beginning to the end
of BSP.We setM = 1 withMAP to choose the location of the
cut for every value of j. Finally, inOption 3, we setM = 1 for
all marginals as well as the copula-transformed estimation.
For the marginals we employ the MAP technique to pick up
the best cut. For copula-transformed estimation, the location
of the next subregion cut is decided based on a random draw
from the generated PMF. However, similar to the marginals,
it is also possible to employ the MAP technique for the
copula-transformed estimation.

As can be seen in Table 3, for small dimension of D = 2
the variations in the accuracy (KLD) is small across the three
options, even when the dataset is relatively small. Therefore,
we can set M = 1 for both marginals and the copula
to gain one to two orders of magnitude reduction in the
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TABLE 3. BSP with copula-transformed cuts on D-dimensional space, for three different options: Option 1: M = 200 for marginals, M = 200 for copula,
Option 2: M = 1 with MAP for marginals, M = 200 for copula, Option 3: M = 1 with MAP for marginals, M = 1 for copula; and two datasets with
N = 20, 000 and N = 100, 000. The values reported in this table are mean values obtained from multiple runs of the code: 32 runs for D = 2, 16 runs for
D = 32, 8 runs for D = 64, and 4 runs for higher dimensions. The number of cuts are shown as the sum of marginal and copula cuts, with individual
components presented as the pair in the parenthesis. The standard deviation corresponding to each KLD value is reported below it, in parenthesis.

computational complexity. For larger dimensions (32 and 64),
with N = 20, 000, the degradation in KLD is significant
and use of options 2 and 3 become less attractive. However,
for large dataset of N = 100, 000, with no appreciable
increase in KLD, an order of magnitude reduction in com-
putation complexity can be obtained by setting M = 1 for
the marginals. A further one order magnitude reduction in
computation time can be achieved, by settingM = 1 for both
marginals and copula BSP, if an increase in KLD tomore than
1.0 can be accepted.

The trend remains the same as we increase the dimensions
to 128 and 256. It can be seen that even for high-dimensional
cases, the BSP method (with Option 1 or 2) is still able to
provide good results, as long as the sample size is increased
accordingly. In the following subsections, we will present
an extended version of the simulation results for a wider
range of values of N , for the case of D = 64, to show how
the estimation error is decreased by increasing the sample
size.

As far as the number of cuts are concerned, we have inves-
tigated the marginal and copula cuts separately. First consid-
ering the marginal cuts, with Option 1, for each marginal 200
different sample partitions (with potentially different cut
patterns) are generated in parallel. However, with Option 2,
for each dimension only one sample partition (the one with
the highest score) is retained. This means that with Option 1
there is a good chance that some of those sample partitions
proceed to a higher number of cuts (compared to only one
sample partition inOption 2). Thus, as can be seen in Table 3,
the number of marginal cuts in Option 1 is higher than
Option 2. Although the difference is not large.

The quality of the partitions in the marginal part influences
the number of cuts in the copula part. Both Options 1 and 2
in Table 3 have same number of copula sample partitions
(M = 200). However, Option 2 has (slightly) higher number
of copula cuts, thanOption 1, due to the fact that its marginals
were produced with only one sample partition, whichmay not
have been the best possible partition for the marginal. This
results in the situation where for the copula (joint density
estimation) part, the partitioning algorithm will likely have
to create more number of cuts before it converges. Regard-
ing computation time, it is observed that the time increases
almost linearly with increasing dimensions. We will further

discuss the computational complexity of the algorithm in
Sections V and VI.

B. MARGINALS DENSITY ESTIMATION
WITH THE KDE METHOD
With the separation of high dimensional density estimation
into one-dimensional and copula parts we are able to per-
form the density estimation for the marginals using the KDE
method in (2). However, unlike the method of BSP, the choice
the bandwidth h and kernel function in (2) becomes critical
in the accurate estimation of the density. We use the Gaussian
kernel function and rule of thumb bandwidth estimator of
h = 1.06σn−

1
5 [13] in this work. Table 4 compares the

density estimation results, using the BSP and KDE for the
same 64-dimensional dataset used before. Three observations
can be made from the data in the table. First, for the BSP,
the KLD improves by a factor of up to 18.20 (Option 2)
and the execution time increases by up to 22 (Option 1) when
the size of dataset increases by a factor of 20, from 20k to
400k . For the KDE, the improvement in KLD is no more
than 1.61 (nGrid= 1000), while the increase in the execution
time goes by a factor of up to 64 (nGrid = 250). The second
observation is that the BSP is a more flexible technique. The
execution times and the KLD values for the BSP change by
up to two orders magnitude for the three BSP options. This is
not the case, however, for the KDE where the changes in both
execution times and theKLDvalues aremuch less significant.
The third observation is the fact that for small data size of
N = 20k , similar KLD and execution times can be obtained
for the BSP and KDE techniques. However, KDE loses to
BSP in the execution time by two orders magnitude for a
similar KLD performance. For example, BSP Option 1 is 136
times faster than KDE with nGrid of 500 for the similar KLD
values [1].

To further evaluate the relative performance of BSP and
KDE, we experimented with a 64-dimensional dataset with a
skewed distribution. We maintained the same distribution for
the first three marginals. Dimensions 4 to 64, however, come
from the following mixture of Beta distribution [34]:

X ∼ 0.6× B(2, 8)+ 0.4× B(120, 14)

It is a bimodal distribution, with the B(2, 8) having rather
a wide PDF with a positive skew, and the B(120, 14) mode
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TABLE 4. Comparison of density estimations using the methods of BSP, KDE and median-based cuts for the marginals (D = 64). For KDE, M = 200 has
been set for the copula part. Results are average of 10 runs. (5 runs for N = 400k cases.)

having a much sharper and almost symmetric PDF. Table 5
presents the results. Comparing the results with those in
Table 4, the execution times have gone up for the KDE case
due to higher number of cuts in copula distribution. For BSP,
being a more adaptable method, the changes in the number
of cuts have been by much smaller margins. However, while
the KLD values for the BSP have remained unchanged, they
have deteriorated for the KDE by an order of magnitude [1].

C. MARGINALS DENSITY ESTIMATION WITH
MEDIAN-BASED CUTS
In an attempt to make the sequential cuts a better fit to
the data density pattern, we have tried the idea of replacing
the previously described mid-point binary cuts with median-
based cuts. As explained in Section II-B, in the original
BSP method, sequential cuts are made in the sample space
using the mid-point BP scheme, i.e., at each level, one of the
existing subregions is cut into two equal halves. So, the cut
location is always at the center point of the selected subregion,
regardless of distribution of data in that subregion. In median-
based approach, on the other hand, the location of the cut is
at the median point of the data samples in that subregion. The
decision on which subregion to cut at level j is made using a
conditional probability, similar to Eq. 5, with the difference
that with median-based cuts, the volumes of the subregions,
vp, v

(1)
pd and v(2)pd also appear in the equation [1]:

sjpd (cutjpd |gj−1) = Cj−1
(0(n(1)pd )0(n(2)pd )

0(np)

)( vp

v(1)pd v
(2)
pd

)np
(10)

Also, the partition score calculation will be slightly different
from Eq. 6.

We have tried this idea with the 64-dimensional data
described before. As the results presented in Tables 4 and 5

show, for all 3 options, and for all different values of N
covered in this simulation, using the median-based method
for estimating the marginals reduces the number of marginal
cuts, compared to the original method of mid-point binary
cuts. This is because firstly, the median-based approach tries
to use the information about the distribution of data in the
subregions to decide which subregion to cut; and secondly,
once the subregion to cut is picked, it makes the cut in a
more data-adaptive fashion. ForOption 1, where the marginal
cuts are the dominant part of the computation time, using the
median-based cuts method for marginals leads into saving
the overall computation time. Regarding estimation accu-
racy, both methods have similar performance in almost all
cases presented in the tables. While the number of cuts for
the method of the median is always smaller than the mid-
point method, and both methods exhibit similar measures of
accuracy, the computational complexity, except for Option 1,
is not better. That is because searching for the median points
incurs significant computational overhead [1]. Therefore, for
the rest of this paper, we continue to use the mid-point binary
cutsmethod for further discussions, simulations and analyses.

We have also tried the idea of combining diffusion-based
KDE for marginals and copula transform approach for the
joint density in [37].

IV. ALGORITHM AND DATA STRUCTURES FOR THE
BAYESIAN SEQUENTIAL PARTITIONING (BSP)
A. ALGORITHM
When dealing with large, high-dimensional datasets, BSP
method of density estimation results in high computational
complexity. Fig. 10 illustrates our efficient implementation of
the BSP through repeated evaluation of (5) and (6) in a loop.
Similarly, the flowchart in Fig. 11 illustrates the process of
BSP using copula transformation through evaluation of (8)
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TABLE 5. Comparison of density estimations using the methods of BSP, KDE and median-based cuts, for the marginals for a bimodal skewed Beta
distribution (D = 64). For KDE, M = 200 has been set for the copula part. Dimensions 4 to 64 each have a bimodal Beta distribution.

and (9). In the flowchart for BSP, parameter j represents the
partitioning level, similar to the notation used in Fig. 1. The
outer loop in this flowchart is over j, starting with j = 1 (i.e.,
the original non-partitioned space), and continues until the
algorithm converges, or it hits jmax without converging. Note
that jmax is only used to impose an upper limit on the running
time of the algorithm, beyond which it can be assumed that
the algorithm does not converge. The value of jmax is set
arbitrarily as to not affect the accuracy of the algorithm. This
value is typically in the order of 2-3 times larger than the
rough estimate for the required number of cuts.

B. SUBREGION EVALUATION REDUCTION
To improve the speed of the algorithm in the flowchart of
Fig. 10, we make an important observation. With reference
to (5) at each level j, there is no need to calculate sjpd for all
possible pd cuts. This is because the sjpd values corresponding
to all cuts, except the 2D potential cuts in the two recently
modified subregions, are already calculated and stored in
sjLog structure in the previous level, j − 1. This reduces
the number of sjpd evaluations from (j − 1)D to only 2D;
which is a huge reduction in computation time, when level
j becomes large, in high-dimensional problems. This simpli-
fication eliminates the loop over p in the flowchart of Fig. 10.
Fig. 12 illustrates this computational simplification in 2D
sample space. At each level j > 1 there are only two possible
cuts (marked in blue and red dashed lines) for each subregion,
with a total of 2(j − 1) possible cuts. The red dashed line
identifies the location earmarked for the actual cut at level
j. The resulting two subregions separated by a solid black
line, due to a cut at level j are marked in beige. At each level
j ≥ 3, we only need to calculate four new values of sjpd that
belong to these two new subregions. All remaining possible

sjpd values for cuts in subregions marked white are carried
over from level j−1. In Fig. 12, the left column shows all the
possible cuts, with red lines marking the actual cut. This leads
to the new partition shown in the right column. For example,
at level j = 5, there are (5 − 1) × 2 = 8 possible ways to
make the next cut. But the probabilities associated with the
possible cuts in subregions 1 and 3 (cut numbers 1, 2,5, and
6) are already available from the previous level j = 4. So we
only need to evaluate the sjpd values for cut numbers 3, 4, 7,
and 8 [1].

C. DATA STRUCTURES
Main data structures for implementing the described BSP
algorithm are listed in Table 6. The data structures are
designed for efficient memory access and minimum data
movement. They are also designed for the ease of mapping
into an efficient parallel processing paradigms of OPENMP R©

and MPI [1]. All data structures are organized for opti-
mal column-major memory access, the method of choice in
MATLAB R©. Some of the data structures listed in Table 6 are
for the purpose of estimation of one-dimensional marginal
densities, while some others are exclusively designed for
copula density estimation, and some structures are common
for both estimations.

At each level j, subsequent to a cut in one of the existing
subregions, the data points in each of the two new subregions
need to be identified and their total number counted and
stored in the structure np. This is the most time consum-
ing part of BSP algorithm for large and high-dimensional
datasets. To reduce the computational complexity associated
with this operation, we augmented the N × D input dataset
structure, data, with an additional column p to store the
corresponding subregion number for each of the data points.
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FIGURE 10. Flowchart for Bayesian sequential partitioning.

Then the whole structure is rearranged (partially sorted)
such that all the points with the same subregion identity are
stored in a contiguous block. The implemented scheme is

FIGURE 11. Flowchart for density estimation using copula transform.

shown in Fig. 13. A pointer structure, dataDistLimits,
stores the indices for the first (marked green) and the last
element (marked red) in each subregion. The efficiency of
the proposed structure comes from the fact that when at
level j, subregion t is cut, we only need to sort the sub-
set of the data structure marked as t . This partitioning
scheme of dataset structure, data works well for small
dimensions less than 5. However, for larger dimensions, even
the limited subregion sorting process requires movement of
a large amount of multi-dimensional data. To reduce the
data movement for dimensions larger than five, we adopted
the structure shown in Fig. 14 (a) where an intermediate
data structure dataDist stores the indices to data. This
way, the subregion sorting process involves a much simpler
2-column structure, instead of a D-column structure. In the
optimized implementation of BSP using copula transform, for
each of the marginals, a simpler structure of in Fig. 14 (b) is
used. Before processing each marginal d its corresponding
column is copied from data to dataMarginal. After
processing, dataMarginal will contain the CDF for that
marginal, which is copied back to the corresponding col-
umn of data for copula processing, using the structure
in Fig. 14 (a).
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TABLE 6. Main data structures for high-dimensional density estimation using BSP algorithm.

V. DENSITY ESTIMATION SIMULATION RESULTS
This section presents the results obtained from MATLAB R©

simulation runs [1] on a single Intel R© Core i7-3820,
3.60 GHz, with 32 GBRAM, for the performance evaluations
of the algorithm.

Density estimation is performed for the range of sample
data sizes from N = 10, 000 up to N = 1, 000, 000, and
range of dimensions, from D = 2 up to D = 64. The sim-
ulations aim at examining the impact of different parameters
on computational efficiency, measured in execution time, and
estimation accuracy measured as KLD. Fig. 15 presents the
execution time and KLD for a 64-dimensional dataset versus
the sample sizes N , with the number of sample partitions
M as a parameter. Clearly, a larger sample dataset improves
accuracy, at the cost of increased execution time. It can be
seen that the execution time grows almost linearly with the
sample size N . The KLD between the actual density and
the estimated density, on the other hand, decreases expo-
nentially with sample size. Increasing the sample size over
N = 300, 000 has little impact in improving the estimation
accuracy.While the execution time increases linearly withM ,
the KLD exhibits small sensitivity to M . It is also seen that
the choice of M = 1 for the marginals and M = 200 for the
copula transformation results in no appreciable increase in
KLD, with a six-fold reduction in computational complexity,
when compared with the next closest case of M = 50 for
both marginals and copula. A further 12-fold improvement

in the execution time can be seen for the choice of M = 1
for both marginals and the copula transformation. However,
KLD on average remains higher than the case of M = 1 for
the marginals and M = 200 for the copula transformation,
by about a little more than 1.0. It also can be seen that for this
case, due to the lack of diversity in the selection of the sample
partitions, the KLD is relatively unstable across the range of
N values.
We have performed all our simulations on synthetic data to

show the effectiveness of the algorithm in density estimation
for multivariate data. For real data, where the true density
values are not available, the estimation accuracy can not be
evaluated using theKLD analysis with the true density values.
As the results in the Tables 3 to 5 and in Figure 15 show,
the KLD value converges after a sufficiently large number
of data points are processed. We have used this fact to find a
way to have an estimate of the density estimation accuracy for
real data, in [38] on online density estimation. The estimated
densities obtained from a sufficiently large dataset are used
as a close approximation of the true densities, to evaluate the
density estimation accuracy for various sample sizes.

VI. COMPLEXITY ANALYSIS AND PARALLELIZATION
A. COMPLEXITY ANALYSIS
The flowcharts in Figures 10 and 11 and the results presented
in Figure 15, suggest that the complexity changes almost
linearly with number of samples N , the number of sample
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FIGURE 12. Calculating four new cut probabilities at each level, in 2D
space.

partitions M , and sample dimension D. However a closer
examination of different steps of the flowcharts reveals that
the computational complexity of the algorithms is actually
O(MDNlog(N )). This can be justified based on the 3 loops
over N ,M and D, in Figure 10. The outer loop (steps 5 to 14)
is over M sample partitions (O(M ) complexity). The other
loop consisting of steps 6 and 7 goes through all D dimen-
sions (O(D) complexity). For complexity with respect to N ,
we need to look at steps 6-14. In step 6, evaluation of potential
cuts requires a search over sample points to get the count of
points in each side of the potential cut (Nlog(N ) complexity).

FIGURE 13. Data structure extended, to store distribution of the data
points in subregions.

FIGURE 14. Optimized data structure for storing distribution of data
points in subregions for (a) copula where intermediate data structure
dataDist stores the indices to data, and (b) for each of the marginals,
where the intermediate step is not required.

In step 7, calculating the conditional probability of each
potential cut using Gamma function has a complexity of N .
Finally, steps 10-14 correspond to a constant computation
time (O(1) complexity). As a result, the overall algorithm has
an asymptotic computational complexity of O(MDNlog(N )).
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FIGURE 15. Execution time and KLD versus sample size (N) for different
values of M for a 64-dimensional dataset. In the figure, _Mp_Mq refers to
the case where M = p is used for marginal densities and M = q is used
for the copula part. MAP refers to when maximum a-posteriori probability
is used.

The profiling of the algorithm presented in the flowcharts
of Fig. 10 and Fig. 11 for Option 1, (M = 200 for marginals,
M = 200 for copula), with N = 100, 000 and D = 64
in Table 3 reveals that only 5% of the execution time is
spent on the copula part. One reason is that only 2% of 5277
cuts are attributed to the copula. However, since a copula
cut goes over all the 64 dimensions we should expect it to
have a much higher complexity (close to 64 times higher)
compared to the complexity of a marginal cut that goes over
a single dimension. But the profiling results reveal that the
average computational complexity for a copula cut is only
about 2 times larger than that of the marginal cuts! There
are two reasons for this ratio to be low. First, referring to
the flowchart in Fig. 10, we note that steps 10 to 14 in the
flowchart are outside the loop for d , and therefore, executed
only once for each iteration of m irrespective of the value
of d . The profiling results further reveal that over 81% of the
overall execution time is spent on the execution of these steps,
with step 12 being the overwhelming contributor (over 78%).
From the number of cuts in Table 3, it can be observed that
on average every round of execution of steps 10 to 14 for a
copula cut, there are 40 execution rounds of the same steps
for a marginal cut. However, the overall complexity of one
round of execution of these steps (in most part due to step 12)
is more than three times less for a copula cut compared to a
marginal cut. This is because in the copula case the fractions
of cuts in the high density regions requiring time consuming
count and sort operations across a large number of data points,
and update of data structures in Fig. 13 and 14 is far less
than that for the marginals. This can be observed from Fig. 7,
where large blocks of high density areas in blue have no cuts.
Further, for by the same token, the complexity of one round
of execution of steps in the d loop, step 6 (involving the count
of data points in each newly created subregion) to 9 is much
less for a copula cut than for a marginal cut [1].

From the preceding discussion, due to the fact that copula
cuts form only a small fraction of the overall time, attempts
to parallelize this part of the algorithm yields no benefit.

TABLE 7. Impact of correlation on computation time and estimation
accuracy (N = 100, 000).

Therefore, we only focus our efforts on parallelization over
the marginals.

B. EFFECT OF COVARIANCE MATRIX
ON PERFORMANCE OF BSP
For illustration simplicity in Section II, for the Gaussian
mixture distribution in (7), we assumed6r [i, j] = 0 for i 6= j.
This is equivalent to Rr [i, j] = 0 for i = j and Rr [i, i] = 1,
where Rr = (6r )−

1
2 6r (6r )−

1
2 is the correlation matrix.

The results in Table 7 present the KLD and execution time
performance of BSP for a range of correlation coefficients
between 0 and 1. From the data in the table, the KLD values
remain small for correlation coefficients as high as 0.95. This
shows that the performance of the algorithm is not negatively
affected by increased correlation between the dimensions.
The contribution of copula to the total computation time
increases linearly from about 6% to about 20% for the change
in the correlation coefficient from 0 to 0.95. The increase in
the number of cuts follows the same trend [1].

However, R = 1.0 is a special case, not typically observed
with real data. As an example, in a 2-dimensional space, the
joint density is reduced to a straight line. As can be seen in
Table 7, the number of cuts and computation time for the
marginals are not changing significantly, from R = 0.95 to
R = 1.0. The sudden rise in the computation time is due to the
big jump in the number of copula cuts (from 671 for R = 0.95
to 4177 for R = 1.0).

It should be noted that in the multivariate analysis, where
there is high correlation between the marginals we can use the
method of principal component analysis (PCA) [39] to trans-
form the dataset into a new set of variables in smaller number
of dimensions (principal components) that are uncorrelated.
The method of BSP can then be applied to the transformed
dataset [1].

In another experiment, we investigated the performance
of the algorithm in density estimation for a 12-dimensional
correlated data, similar to the data employed in [40]. It is a
4-component Gaussian mixture, with the mean and variance
values shown below. µ1,µ2,µ3,µ4,61,62,V1,V2,V3,

and V4, as shown at the bottom of the next page.
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The fractions of data assigned to components 1 to 4 is: 5%,
75%, 5% and 15%, respectively. That is:

X ∼ 0.05N (µ1,V1)+ 0.75N (µ2,V2)

+0.05N (µ3,V3)+ 0.15N (µ4,V4)

The results of the density estimation are reported in Table 8.
In both marginal and copula parts of the algorithm,M = 200
is used. As the results show, the algorithm is able to pro-
vide good estimation accuracy for this complex multimodal
dataset. Similar to the previous experiments, the computation
time is changing linearly with the sample size N . Also, as the
sample size is increased, the estimation error KLD decreases,
until it almost reaches a saturation level. Unlike the results
previously shown in Tables 3 to 5, the number of cuts made
in the copula domain is more than the overall marginal cuts.
This is because in this new dataset, most of the dimensions
are correlated, and the dataset is a mixture of 4 Gaussian
components, which creates a complex multidimensional and
multimodal structure in the 12-dimensional copula trans-
formed sample space. Thus, a lot of cuts will be required in
the multidimensional copula domain.

C. PARALLELIZATION
The proposed algorithm in the flowcharts of Fig. 10, and 11,
and the data structures in Table 6, Fig. 13 and Fig. 14, have
been designed suitably for the ease of parallelization around
BSP parameters; datatset elements 1 ≤ n ≤ N , sample
partitions 1 ≤ m ≤ M , dimensions 1 ≤ d ≤ D and
subregions 1 ≤ p ≤ j − 1 [1]. In this section, we limit
the discussion on the coarse-grain parallelization around m
and d . Fine-grain parallelization over data sample n is best
achieved through massively parallel architectures of graphi-
cal processing unit (GPU) and is limited to the counting and

sorting of data samples for the purpose of density estima-
tion in the subregions. Due to significant overhead of data
transfer between the host CPU and the device GPU, and the
non-coalesced memory access pattern of the data structures
in Fig. 14, it is not possible to take full advantage of the GPU
computing fabric to efficiently accelerate the counting and
sorting operations on the GPU. Following the discussion in
Section IV and with reference to Fig. 12, parallelization over
p is no more needed due to elimination of the loop over p
due to simplification presented in Section IV-B. Therefore,
we have focused our efforts on the coarse-grain paralleliza-
tion over d and m, where we expect to obtain the maximum
speedup gains. The chosen platform for parallelization is a
four-core CPU (Intel i7-3820, 3.60 GHz, with 32 GB RAM).

1) PARALLELIZATION OVER d
For the BSP over the marginals, since the dimensions
are decoupled from each other, we expect to gain the
maximum benefit in parallelization over d . We have
used OPENMP R© [41] programming model (‘‘parfor’’
in MATLAB R©) for parallelization over d . The reason for
this choice is that iteration over the marginals are com-
pletely independent of each other and there is no exchange
of data between the parallel execution threads. With a
4-core CPU, we can achieve a four-way paralellization for
a 64-dimensional problem, with each worker core being
allocated the workload for 16 marginals. Unfortunately, due
to uneven workload across the marginals, the overhead of
setting up the parallel streams, and non-parallelized execution
portion for copula cuts, the maximum achievable speedup,
as seen form Table 9, is no more than 3.3 for Option 1
(M = 200 for marginals, M = 200 for copula) and Option
3 (for marginals, M = 1 for copula), with N = 100, 000

µ1 = [1.41, 0.81, 0.49, 0.80, 1.07, 0.30, 2.11, 1.21, 0.73, 1.20, 1.61, 0.45]

µ2 = [−14.07,−8.09,−4.86,−7.97,−10.74,−2.98, 14.07, 8.09, 4.86, 7.97, 10.74, 2.98]

µ3 = [14.07, 8.09, 4.86, 7.97, 10.74, 2.98, 7.04, 4.05, 2.43, 3.99, 5.37, 1.49]

µ4 = [5.63, 3.24, 1.95, 3.19, 4.30, 1.19,−21.11,−12.14,−7.30,−11.96,−16.11,−4.48]

61 =


0.885 −0.0023 0.0077 0.0041 −0.0229 −0.0025
−0.0023 0.55 0.0015 0.0028 0.0013 0.0001
0.0077 0.0015 0.31 0.0018 −0.0011 −0.0002
0.0041 0.0028 0.0018 0.29 0.0004 −0.0012
−0.0229 0.0013 −0.0011 0.0004 0.169 0.0004
−0.0025 0.0001 −0.0002 −0.0012 0.0004 0.24

 ,

62 =


0.1365 −0.0009 0.0063 0.0075 −0.0119 −0.0101
−0.0009 0.82 0.0021 0.0048 0.0045 −0.0049
0.0063 0.0021 0.20 0.0018 0.0011 −0.0018
0.0075 0.0048 0.0018 0.137 0.0042 −0.0078
−0.0119 0.0045 0.0011 0.0042 0.153 −0.0051
−0.0101 −0.0049 −0.0018 −0.0078 −0.0051 0.96


V1 =

[
61 0
0 61

]
, V2 =

[
61 0
0 62

]
, V3 =

[
62 0
0 61

]
, V4 =

[
62 0
0 62

]
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TABLE 8. Density estimation results for a 12-dimensional Gaussian mixture. Results are the average of 5 runs. The number of cuts are shown as the sum
of total marginal and copula cuts, as well as a pair in the parenthesis corresponding to each component. For KL divergence (KLD) and Hellinger distance
(HLGR), the standard deviation is also shown inside parenthesis.

TABLE 9. Speedup rates for parallelization over d and m, on a 4-core
machine (N = 100, 000, D = 64).

and D = 64. Table 9 also presents the speedup for Option 2
(for marginals,M = 200 for copula). The low speedup factor
of 1.4 for Option 2 is in keeping with the fact that with
M = 1, the execution time for the marginals has reduced by a
large factor and is of the similar order to the non-parallelized
copula.

2) PARALLELIZATION OVER m
In parallelization over m, in each level j, evaluations of
M sample partitions are only partially independent of each
other. The decision diamond in the flowchart of Fig. 10,
where max(score[]) is evaluated outside the parallel
loop, forms the synchronization barrier for the computing
worker cores. We have used MPI [42] programming model
for parallelization over m. The reason for this choice is that
iterations of m are only partially independent of each other
and there is a need for the exchange of data between the
parallel execution threads through the MPI message pass-
ing constructs (‘‘spmd’’ in MATLAB R©). Considering that
step 15 in the flowchart forms about 10% of the execution
time, and the significant overhead of synchronization in the
diamond decision box, overhead of distribution of data among
the workers in step 15, and initial overhead of distribution of
large data structures across the workers, plus the overhead of
non-prallellized copula cuts, the maximum speedup for four
workers on a 4-core machine is no more than 2.2 as seen
form Table 9.

VII. RELATED WORK
Sequential adaptive partitioning of the sample space has been
used in other studies for non-parametric multivariate density
estimation. In this section we briefly review some of those
studies.

In [43], a partition-based technique similar to BSP is
used for density estimation. The algorithm starts with
a d-dimensional hyper-rectangle and makes sequential
binary partitions, to learn a piecewise constant density
function at the end. In each step, in order to decide
which one of the existing sub-rectangles should be cut
next, the algorithm examines how uniformly the data
points in each sub-rectangle are distributed. They use star
discrepancy [44] to measure the uniformity of points in each
sub-rectangle.

Thework presented in [45] is also based on the same idea of
adaptive binary partitions, done in a sequential way, to obtain
piecewise constant density functions. However, the decision
on which sub-rectangle to cut next is made via a maximum
likelihood estimator.

Star discrepancy is also used in [46] as ameasure for testing
the uniformity of sample points, along each dimension in
all D-dimensional sub-cubes. However, in this study, once a
non-uniform sub-cube is selected for further splitting, each
dimension of the chosen sub-cube is temporarily divided into
m equal bins. Then, the (m−1)D possible cuts are examined,
so that the one leading into maximum non-uniformity is
selected for splitting the sub-cube.

In a more recent work [47], another partitioning-based
non-parametric density estimation method is presented. This
method is also based on adaptive sequential partitioning of
a hyper-rectangular domain. However, they use Wasserstein
distance [48] for testing the uniformity of data distribution in
each partition element.

In [49] a nonparametric density estimator based on multi-
variate histograms is presented. Their aim was to smooth out
the discontinuities caused by histograms bins, via applying
some affine transformation on the data. This transformation
shifts the multidimensional histogram bins and changes their
shape and size. Following that, in order to deal with the dis-
continuities, they simply do an averaging over the piece-wise
constant estimated densities.

The related studies reviewed in this section are mostly lim-
ited to low dimensional cases of two, to six. The work in [43]
presents the results for a 10-dimensional case. The reason
for inability of these sequential adaptive partitioning methods
is the difficulty of learning joint and marginal distributions
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together– the difficulty that we overcome through the use of
Copula transform.

The other issue with these works is that their computa-
tional complexities grow rapidly with dimension. The com-
putational complexity in [43] is bound by O(N logD−1N ).
For the method in [45], the worst computational complexity
is O(N logDN ). The work in [49] presents the simulation
results for dimensions less than six, where the computational
complexity grows in a quadratic way with the number of
dimensions (O(D2NH )).
In this paper, we have provided simulation results for a

range of dimensions from 2 to 256, where the computational
complexity grows linearly with dimension: O(MDNlog(N )).
As an example for a case of N = 400k , D = 256 and M =
200, the computational complexity of themethod presented in
this work is lower than the technique presented in [45] by 185
orders of magnitude!

VIII. CONCLUSION AND FUTURE WORKS
In this paper, we presented the computational details of BSP
algorithm.We also presented our method of copula transform
to reduce the complexity of BSP. Further, we designed a set
of efficient data structures for deploying BSP method for
accelerated density estimation in high dimensions. All the
data structures have been suitably designed for efficient
implementation on parallel computing paradigms. Use of
copula transform has been shown to be effective in saving
significant amount of computation time, in high dimensions.
It reduces the number of required cuts in the high dimensional
sample space, by mapping the random variables to a copula
domain, in which the data have uniform marginal distribu-
tions. The performance of the BSP algorithm, in terms of
the estimation error and computation time, was investigated
for a wide range of sample sizes N , and a number of sample
partitionsM .
From the simulation results, computation time changes in

a linear manner with N and M . Careful choice of M results
in a great deal of saving in computation time. With the use of
copula transform, increasing the number of sample partitions
beyond M = 1 in estimating the marginal densities does not
result in appreciable decrease in estimation error.

With separation of marginal and joint density estimation
using copula transform, we tried the idea of using KDE
method or median-based cuts for computing the marginal
densities. Neither of these methods showed a consistent
advantage over the regular BSP method.

Further, it was demonstrated we can take the advantage of
independent nature density estimation across the marginals to
fully parallelize the computation across the marginals.

Possible directions for future works include exploration
of other possible options to replace the current binary parti-
tioning method with a more effective data-driven partition-
ing scheme, to improve the performance of the algorithm
with more complex high-dimensional data structures with
high correlation, specially when the number of available data
points is small.
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