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ABSTRACT The increase in electric power demand pushes the modern power system for more
interconnected networks. It leads to a lack of inertia and creates more critical disturbances in the power
system. When this oscillation isn’t damped out, it results in cascade tripping. Immediate detection of low-
frequency oscillatory modes and their parameters will help the power system operator to act on a particular
event without consuming much time. This research paper proposes novel strategies for identifying low-
frequency modes using deep learning techniques, and the model can predict the LFO modes in different
topologies. This work presents the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)
approach to predict the instantaneous mode oscillatory parameters in the power system. Once the LSTM-
RNNmodel is trained for different power disturbance situations, it can be used for any events associated with
the system. Simulation results are verified using two area Kundur systems at various disturbance conditions.
The simulations are performed using MATLAB software and python tensor flow library. The results are
validated using statistical methods, and it confirms the superior viability and adaptability of the proposed
approach in predicting the instantaneous mode parameters.

INDEX TERMS ANN, inter-area oscillation, low-frequency oscillation, LSTM, Teager Kaiser energy
operator, variational mode decomposition.

LIST OF ABBREVIATIONS
ANN Artificial neural network.
ARMA Autoregressive moving average.
CEEMDAN Complete ensemble empirical mode

decomposition with adaptive noise.
DR Damping ratio.
EMD Empirical mode decomposition.
ERA Eigen realization algorithm.
ESPRIT Estimation of signal parameters via

rotational invariant techniques.
EWT Empirical wavelet transform.
BPNN Back propagation neural network.
GRU Gated recurrent unit.
HHT Hilbert Huang transform.
HT Hilbert transform.
IA Instantaneous amplitude.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Raza .

IF Instantaneous frequency.
LFO Low frequency oscillation.
LSTM Long short term memory.
MAE Mean absolute error.
MAPE Mean absolute percentage error.
MPM Matrix pencil method.
MSE Mean square error.
PDC Phasor data concentrator.
PMU Phasor measurement unit.
RBFNN Radial basis function neural network.
RNN Recurrent neural network.
TKEO Teager Kaiser Energy operator.
VMD Variational mode decomposition.

I. INTRODUCTION
Due to the rapidly changing electrical dynamics, the modern
interconnected power system is inevitably disturbed by var-
ious oscillation events. Electromechanical oscillations may
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occur in different frequencies, and it is not dangerous if they
decay quickly. The stability of the power system will be
wrecked if there is no proper damping [1], [2]. The analysis
of low-frequency oscillatory modes and their characteristics
lead to an adequate understanding of the dynamic perfor-
mance of the power system. It will give productive inputs
to the operator for prevention and control. Due to the issues
impacted by LFO, the capability of monitoring grid opera-
tions in real-time is critical for the safe and reliable operation
of the grid. Underdamped oscillations lead to significant
power swings and tripping of protective relays, resulting in
the disconnection of loads [3].

Advanced wide-area monitoring of power grid systems
associated with phasor measurements units (PMU) can con-
tinuously evaluate the health of the power system. Dynamic
monitoring of the power system for real-time operation and
control has risen in the last two decades. Researchers have
proposed various linear and nonlinear approaches to assess
the dynamic responses and estimate the parameters of domi-
nant low-frequency oscillatory modes. Power system modes
are evaluated using two methods: Modal based approach
and Measurement-based approach. The former works on lin-
earizing the governing equation about an operating point [4],
and the latter purely follow a data-driven analysis on the
system measurement data [5]. IEEE task force on identifying
electromechanical oscillatory modes summarizes different
techniques used in modal and data-driven approaches [6].
The applicability of model-based techniques in a large-scale
power system is constrained, and computation time is too
long. Simultaneously, measurement-based methods are used
widely to identify the low-frequencymodes with synchropha-
sor technology. Themeasurement-based techniques are found
in many works of literature. Some of them are Prony analy-
sis [7], matrix pencil method (MPM) [8], estimation of signal
parameters via rotational invariant techniques (ESPRIT) [9],
auto regressive moving average (ARMA) technique [10], and
eigenvalue realization algorithm (ERA) [11]. The abovemen-
tioned methods are used in ring-down oscillation studies. The
methods used for ambient oscillation studies include transfer
function methods [12], [13] and subspace methods [14], [15].
The subspace approach gives better results in terms of accu-
racy, but transfer function methods are preferred in terms of
computational time [16].

The majority of power oscillation analysis follows a
stationary nature. However, nonstationary analysis is pre-
ferred for power oscillation studies and parameter estima-
tion. Hilbert Huang transform (HHT) is very popular in this
class, and it comprises of two techniques, Empirical mode
decomposition (EMD) and Hilbert transform (HT) [17], [18].
EMD is a well-known signal decomposition technique and
HT is used for instantaneous parameter estimation. EMD
is modified into ensemble EMD and complete ensemble
EMD with adaptive noise (CEEMDAN) [19] based on their
denoising power. The drawbacks of EMD are overcome in
Variational Mode Decomposition (VMD), a signal decom-
position technique with non-recursive nature suggested by

Dragomiretskiy et al. for modal parameter estimation [21].
It exhibits better denoising properties and has a credible
theoretical foundation. An adaptive Wiener filter bank is
employed to efficiently decompose the center frequency test
signal into a restricted bandwidth. The work presented in
this paper uses VMD with Teager Kaiser Energy Opera-
tor (TKEO) to estimate instantaneous parameters [22]–[24].
TKEO is an estimation method that is highly robust than
the HT method [25]. This approach is used in a supervised
manner for the deep learning techniques adopted in this paper.

Recent trends show that Artificial Neural Network (ANN)
methods are more powerful and reliable and provide bet-
ter results in real-time applications. Besides, the proposed
method should track LFOs in real-time and thus entail wide-
area PMU data. Therefore measurement-based estimation
techniques combined with ANN-based methods extract use-
ful information from the power system. ANN-based power
oscillation damping control is suggested in a few pieces
of literature [26], [27]. Because of massive data from syn-
chrophasors, initial data is appropriately subjected to pre-
processing stage and dimensionality reduction. It results in
a marginalized reduction in input data and network size,
and hence computation time for the offline training can
be reduced. In recent years deep learning techniques have
become one of themost efficient tools inmany research areas.
It is successfully implemented in power systems, particularly
short-term load forecasting problems and disturbance classi-
fication [28]. Other works include the deep learning approach
of cost loss function for transient stability assessment pro-
posed by Zhou et al. [29] and prediction of load demand
in the smart grid using the LSTM network presented by
Cheng et al. [30].

This paper presents a deep learning method using LSTM
-RNN to estimate low frequency mode parameters. This
method is compared with the results obtained using con-
ventional back propagation neural network (BPNN), radial
basis function neural network (RBFNN), and gated recurrent
unit (GRU) architecture. The results of the Kundur two-area
system is verified using MATLAB and python tensor flow
library. Here the analysis pattern follows a feature imperative
strategy method that enhances the determination of dominant
modes in the power system oscillation. Hence an operator can
quickly determine the critical modes in the power system.
Also, Deep learning methodologies enhance the data visual-
ization possibilities of the dominant mode situation.

The significant contributions of this study are as follows
(1) The identification of oscillatory modes in power systems
using deep learning techniques are discussed

(2) The LSTM-RNN model is trained using the advanced
signal processing methods of VMD and TKEO method.

(3) The proposed method of LSTM-RNN offers lesser
computation time andmemory storage than the existing learn-
ing methods.

The rest of the paper is organized as follows. Section II
describes the methodology of synchrophasor technology,
VMD approach, TKEO technique, and LSTM architecture.
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Section III describes results and discussion, and finally, the
concluding remarks are given in Section IV.

II. METHODOLOGY
This section introduces the standard synchrophasor data
acquisition procedure, signal decomposition using VMD,
estimation of instantaneous parameters using TKEO and
LSTM architecture. It also states the importance of LSTM
over other learning approaches.

A. SYNCHROPHASOR DATA ACQUISITION
The PMUs can measure time-stamped measurements of
positive-sequence voltages and currents of all buses and feed-
ers where it is installed in addition to frequency and rotor
angle. The system voltage is collected using PMU connected
to the buses. Fig.1. represents the process of data acquisition
using PMUs. The measured data sets are stored in a phasor
data concentrator (PDC) which rejects the bad data and stores
all the information for further analysis. Another advantage
of synchrophasor is that it can correlate data measured from
the different substations to the common time reference, and
hence a wide-area network status can be accessed. When a
disturbance occurs, the data is collected and undergoes a post-
disturbance analysis. One such method consisting of VMD
and TKEO is discussed in the following subsection.

FIGURE 1. The process of collecting data using PMU.

B. VARIATIONAL MODE DECOMPOSITION
The preprocessed data is decomposed using the VMD tech-
nique, and the instantaneous parameters like instantaneous
amplitude (IA), instantaneous frequency (IF), and damping
ratio (DR) were estimated using the HT method. This section
will first discuss the VMD technique and demonstrate the HT
platform in the later session. VMD is a multi-resolution ana-
lytical signal decomposition method based on the concepts
of adaptive Wiener filtering, one-dimensional Hilbert trans-
form, and Heterodyne demodulation [21]. VMD’s motive is
to decompose a real-valued nonlinear nonstationary signal
f (t) into a set of discrete sets of quasi-orthogonal intrinsic

mode functions (IMF) represented as uk , where K denotes
the mode number. This set of IMF signals are regarded as
modulated amplitude, and frequency signals with a center
frequency of ωk VMD require the subsequent computational
processes as follows:

(1) Hilbert Transform is applied to the one-sided spectrum
of each of the IMFs to compute its signal characteristics.

(2) A multiplication factor of e−jωk t is considered to shift
the frequency spectrum of mode to baseband.

(3) The estimation of bandwidth using gradient of modu-
lated signal based on the L2 norm.
The VMD method is assumed as a constrained optimiza-

tion as in (1)

min (ωk , uk )

〈
K∑
k=1

∥∥∥∥δt [(δ(t)+ i
π t

)
∗ uk (t)

]
e−iωk t

∥∥∥∥
2

〉
(1)

such that
K∑
k=1

uk (t) = f (t).

The objective function is modified into an unconstrained
optimization problem as in (2)

L({uk} , {ωk} , {λ}

= α

K∑
k=1

∥∥∥∥δt [(δ(t)+ i
π t

)
∗ uk (t)

]
e−iωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−
K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+

〈
λ, f (t)−

K∑
k=1

uk (t)

〉
(2)

VMD measures these central frequencies and IMFs at these
frequencies concurrently using an optimization technique
called the alternate direction method of multipliers [36]. The
precise framework of the optimization problem in the time
domain is continuous. The various modes are determined
by updating the previous mode and center frequency, using
equations (3) and (4).

ûn+1
k
=

f −
∑
i<k

ûin+1 −
∑
i>k

ûin + λn

2

1+ 2α(ω − ωnk )
2 (3)

ω̂n+1k =

ω∫
0
ω
∣∣̂un+1

k
(ω)
∣∣2dω

ω∫
0

∣∣̂un+1
k

(ω)
∣∣2dω (4)

The updation of the modes and center frequencies are made,
and the Lagrangian multiplier is also restructured as in equa-
tion (5).

λ̂n+1 = λ̂n +

(
f −

∑
k

ûk n+1
)

(5)
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The mode update process is performed until it converges to a
tolerance factor using equation (6), where ε is the tolerance
factor.

∑
k

∥∥̂un+1
k
− ûn

k

∥∥2
2∥∥̂un

k

∥∥2
2

< ε (6)

Based on the mode number, IMFs are extracted. Parameters
like fidelity factor (α) and mode number (K ) are needed to
initialize the VMD operation. These two parameter values
are randomly allocated, leading to needless decomposition
stages. In this work, the data samples from the PMU have
undergone Fourier spectra [25]. The number of peaks in
spectra was identified and assigned as the mode number.
In the fidelity factor, typically for low-frequency extraction,
higher values of α are preferred, and it is assumed as 8000 for
the VMD process.

C. TEAGER KAISER ENERGY OPERATOR
TKEO monitors the modulation energy and determines the
instantaneous amplitude and frequency. A highly nonlinear
energy operator is considered here and the TKEO ψ(·) is one
of the finest options. A continuous signal c(t) is defined as

ψ(c(t)) = [ċ(t)]2 − c(t)c̈(t) (7)

The energy operator in discrete form is given by

ψ(c(n)) = [c(n)]2 − c(n+ 1)c(n− 1), (8)

where c(n) represents the discrete-time signal. The operator
has a better time resolution in seizing energy fluctuations. The
instantaneous amplitude (IA) and frequency (IF) are shown as

IA(n) =
2ψ[c(n)]

√
ψ[c(n+ 1)− c(n− 1)]

(9)

IF(n) =
1
4
arccos

{
1−

ψ[c(n+ 1)− c(n− 1)
2ψ[c(n)]

}
(10)

Instantaneous values of damping ratio (DR) are calculated
by (15)

DR(n) =
IF(n)√

IF2(n)+ ω2
n

(11)

where ωn be the natural frequency. The TKEO method gives
a quality estimate of instantaneous parameters with less com-
putational complexity.

In all the cases analyzed in this paper, the properly pre-
processed input data [31], [32] is fed to the VMD process,
and the mode parameters are estimated through the TKEO.
This kind of instantaneous parameter estimation is described
in the literature in [25]. These results were taken as the actual
values for comparison with learning algorithms. LSTM-RNN
architecture is described in the following subsection of the
methodology part.

D. LSTM ARCHITECTURE
A normal BPNN assumes the data instances are independent
and cannot handle sequential data such as text and time-series
data. RNN is a class of neural networks, and its cyclic nature
gives the ability to work with temporal data. Two of them are
famous; one is from Jordan and Elman. Jordan network is a
simple neural network and is formulated as

ht = σ (WhX +Wryt−1) (12)

y = σ (Wyht ) (13)

Here in this equation X is the input, h is the hidden represen-
tation, y be the output, σ be the activation function,Wh is the
weight of hidden layers,Wy is the weight of the output layer,
andWr weight of the recurrent computation. Elman proposed
a slight modification in information from the previous time
step provided by the previously hidden layer, and selection of
Wr is also different from the Jordan technique [33], [34].

After these inventions, bidirectional RNN was invented
by Schuster and Paliwal [35]. This first hidden layer is
unfolded using basic RNN, and the second hidden layer is
simulated in a reversed connection. Then the backpropagation
can be applied on a time scale, and the weights are updated.
This is the basic concept of LSTM-RNN. The disadvantage
of this technique is the vanishing gradient problem stated
by et al. [36]. It deals with the traditional activation functions
in which the gradient is bounded. Usually, the gradients are
calculated by backpropagation, and its error values decrease
exponentially within the time steps, which eventually tends to
long-term dependency loss. LSTM has been introduced and
incorporated by a specially designed memory cell unit called
an LSTM cell to overcome the vanishing gradient problem.
Also, LSTM avoids the long-term dependencies of RNN.

LSTM has different critical parameters in terms of states
and gates, in which states are the values that offer information
for output, and the gates decide the information track of
states. Input state I is defined as

I t = σ (Wixx t +Wihht−1) (14)

where h for the value of the hidden layer otherwise hidden
state and x is the input data.

One more state is there rather than the input state is an
internal state, and it serves as a memory, denoted as m. Gates
are mainly of three types: input gate, forget gate, and output
gate. The input gate decides whether the input state enters the
internal state and is denoted as g and represented as

gt = σ (WgiI t ) (15)

The forget gate adopts whether the internal state forgets the
previous internal state and is denoted as f ′ and represented as

f t = σ (WfiI t ) (16)

The output gate determines if the internal state passes its value
to the output and to the next hidden state. It is denoted as o
and represented as

ot = σ (WoiI t ) (17)
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FIGURE 2. LSTM cell.

Generally, the complete formulation of the LSTM network is
represented as

mt = gt ∗ I t + (f tmt−1) (18)

ht = ot ∗ mt (19)

The symbol ∗ represents the element-wise multiplication of
parameters, and the whole LSTM architecture is represented
symbolically, as in Fig.2.

Hyperparameters of deep neural networks are customized
by their optimization or tuning techniques. Searching for
hyperparameters that result in the best model performance on
a specified set of data is called hyperparameter optimization.
It involves defining a search space with the volume to be
searched in which each dimension represents a hyperparam-
eter, and each point represents a model configuration [37].
First tuned for batch size and epoch, and take the batch size
of 10, 20, 40, 60,80, and 100, epochs of 100,150, 200, and
250, and tuned different combinations of this batch size and
epochs finally get 20 batch size, and 200 epochs are the best
parameters. Next is the grid search for the number of hidden
layers and the number of neurons in the hidden layers. Search
number of neurons in the dictionary of [10], [10, 10], [10, 20],
[10, 20, 30]. From which [10] shows the best results that are
the bidirectional neural network. It has one hidden layer and
ten neurons.

As a result of an activation function, a node or nodes within
a layer of a neural network are transformed into an output
based on the weighted sum of the input. A rectified Linear
activation (ReLU) function is used, and it gives an output x,
if x is positive and otherwise zero. Thus A(x) = max (0, x).
Due to simpler mathematical operations, ReLu is a less com-
putationally expensive option than tanh or sigmoid. Only a
few neurons are activated, making the network sparse and
efficient, leading to easy computation.

The assessment of LSTM-RNN architecture towards PMU
data is as follows. The datasets from the PMU units are
collected and evaluated; these are called testing datasets.

The next step is the preprocessing of data in which the data
is subjected to noise filtering, checking for missing values,
and averaging to the mean value. This phase is necessary
to make the data set comfortable with the algorithm and
reduce computation time. Training and testing data can be
calculated as

Training data = PQ∗80%

Testing data = PQ∗20%

Here the P represents the number of samples Q is the input
variable. 80% is the percentage target of the training data, and
20% defines the percentage target of testing data.

Using the Python tensor flow library is used to evaluate
the LSTM network. The decision for each weight of the
LSTM is apprehended in quantity to the derivative of the
error. There are three hidden gate layers in each hidden
node. A comparison between the estimated accuracy of the
algorithm and the actual response is made to determine the
learning rate and activation. Then the performance of LSTM
accuracy is an evaluation of Mean Absolute Error (MAE),
Mean Square Error (MSE), and Mean Absolute Percentage
Error (MAPE).

MAE =

∑∣∣λt − λt ∣∣
S

(20)

MSE =

∑∣∣λt − λt ∣∣2
S

(21)

MAPE =
1
S

∑∣∣∣∣∣λt − λtλt

∣∣∣∣∣× 100% (22)

where S represents the number of testing data, λt represents
identified data, and λt is the target data. The complete algo-
rithm is programmed and implemented in Keras with tensor
flow backend on a desktop computer with 3.2 GHz.

The raw frequency data from various PMU units over
different nodes should be preprocessed adequately in the
first stage. It should filter out noise from the measurements,
detrend the data, and set up a proper window frame for offline
training. After the preprocessing stage, different power dis-
turbance cases were analyzed and fed to ANN or LSTM
approach in a sliding window manner. The estimated instan-
taneous values of amplitude, frequency, and damping ratio are
the results for each mode and it is the output. Fig.3. represents
the overall approach for implementing training and testing
of the learning algorithm. The present study focuses only on
applying the learning algorithms to estimate parameters in the
power oscillations. The results should be verified with actual
values. ANN approaches of backpropagation neural network
and radial basis function are tested. Also, the GRU tech-
nique is tested with the dataset, and finally, the LSTM-RNN
approach is implemented for the instantaneous parameter pre-
diction with a good fit LSTM model. The results and discus-
sion section describe the dataset generation and application
of various learning approaches in parameter estimation.
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FIGURE 3. Scheme for training using a learning approach.

III. RESULTS AND DISCUSSION
A. DATA SET CREATION
The application of the proposed approach to a two-area Kun-
dur system is discussed in this section and is shown in Fig.4.
A post-event analysis is carried out based on the measure-
ments obtained via the standard system. The system consists
of 11 buses, four generators, and two areas. The two areas
are connected through a weak tie-line between buses 7 and 9.
A rotor speed signal is recorded during the 20-second sim-
ulation period at 60 samples per second. Generator three is
considered for reference, and a few disturbances are applied
to the system to create a suitable training model. VMD tech-
nique is applied to the measurements, and the predefined
parameters are assigned. The mode number is assumed to
be six and the fidelity factor to be 8000. The measurements
are decomposed into six modes by applying VMD, and the
IMF is selected by using the correlation coefficient. Based
on the appropriate IMF, instantaneous parameters are esti-
mated using the TKEO method. It includes instantaneous
amplitude, frequency, and damping ratio. This method is
trained using various disturbances like three-phase fault, line
removal, varying the load, etc., and is shown in Fig.5. Sim-
ilarly, so many disturbance cases can be created for the data
generation, and the result is used for the training purpose of
learning techniques. IMF3 is preferred based on the excellent
correlation coefficient and is used to estimate the instanta-
neous parameters.

B. APPLICATION OF VARIOUS LEARNING APPROACHES
Based on the generated sample set, various learning algo-
rithms and their application on parameter estimation are ver-
ified in this subsection. The parameter summary of various

FIGURE 4. Two area interconnected system.

FIGURE 5. Various cases of disturbances of two area system.

learning algorithms and the statistical error parameters are
shown in TABLE 1 and TABLE 2 respectively.

ANN models use a feed-forward backpropagation neural
network that sets the maximum number of epochs to 500.
After each epoch, the network weight is adjusted and biased
to the minimum error value. TANSIG transfer function gives
lower MSE. The model is trained with different numbers
of hidden layer neurons 1, 2, 5, 8, and 10, 12, 15. Out of
these hidden layers, 20 neurons show a better least mean
square error of 0.0010, and the TRAIN-LM algorithm gives
faster results. It is verified with both 10 and 60 time steps,
and when we increase the time steps, the errors become
smaller. The ANN model shows good performance and an
overall regression value of 0.96574 for mode 3, as shown
in Fig.6. Regression means the correlation between output
and target and the R-value estimates as one indicates a close
relationship. The trained models are tested using another
disturbance within the system by applying a three-phase fault
at 6 seconds between bus 7 and 8, as shown in Fig.7. Com-
parison of BPNN estimate with actual values is visualized in
Fig.8. The RBFNN is also adapted with different time steps.
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The results show that the MAE parameter reduces much
better than backpropagation. It still shows performance dif-
ficulties in the nonlinear problems and needs to catch this by
upgrading to another learning technique. However, it is not
easy to follow the peak when the amplitude varies dramati-
cally. The ANN techniques are unsuitable for nonlinear sys-
tems, indicating that more accurate approaches are necessary
to estimate instantaneous parameters [38].

FIGURE 6. Regression curve for the trained model using BPNN.

FIGURE 7. Test data for the assessment.

In the case of GRU can capture the dependencies of
input and output parameters. It achieves better performance
than ANN methods regarding statistical parameters shown in
TABLE 2. GRU with 60 time steps offer better performance
than with 10 or 1 time step. Its MAE values are smaller than
BPNN and more than the RBFNN technique. The identified
model obtained through GRU can be modified using better
learning techniques.

TABLE 1. Parameter summary.

TABLE 2. Estimated MAE, MSE, and MAPE values of parameters (IF).

TABLE 3. Comparison of computational strength.

LSTM-RNN models are also trained using the mode esti-
mation results. The instantaneous parameters are taken as
target data and input as preprocessed frequency signals from
PMU. Optimization helps the model to reduce losses and
provide the most accurate results. This model uses adap-
tive moment estimation because it is too fast and converges
rapidly. Out of the total samples, 80% is used for training and
20% for validation. The convergence characteristic of various
algorithms of BPNN, RBFNN, and GRU is compared with
the LSTM network. LSTM ensures a good fit model for the
estimation of parameters, and it reflects in the convergence
characteristics.

Overfitting and underfitting analysis are the primary pur-
poses of investigating training and validation errors. The
underfitting analysis should be considered if training perfor-
mance is lower than validation. Also, if it is vice versa, the
overfitting analysis should be considered. Training loss and
validation loss are close for a properly trained model, with
validation loss being slightly greater than the training loss.
Comparison of LSTM estimate with actual values is visual-
ized in Fig.9. The convergence characteristics in Fig.10 show
the better performance of LSTM. It is observed that LSTM
shows better convergence and minimum error compared with
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FIGURE 8. Comparison of BPNN estimate with actual values.

FIGURE 9. Comparison of LSTM estimate with actual values.

FIGURE 10. Convergence characteristics of various algorithms.

the ANN techniques and GRU. The increase in the time steps
of LSTM will improve the convergence as per the studies.

For a well-trained LSTM, the identifying performance
is independent of the previous system configuration

and parameters. The minimum values of MAE, MAPE, and
MSE values of LSTM in TABLE 2 reflect the quality of
the deep learning approach in LSTM in applying power
oscillation analysis. As per the convergence characteristics,
LSTM takes 26 epochs with 10 time steps for converging,
and it implies the higher training quality in the results.

Overall CPU time and memory storage are verified for
different methods are shown in TABLE 3. LSTM approach
dominates in this analysis too, with its more incredible con-
verging speed. From the final results of convergence and
statistical analysis, it is observed that Ann techniques and
GRU sacrifice more input characteristics and time steps to get
a better result. Meanwhile, the LSTMmethod always follows
the peak and uses fewer neurons and time steps.

IV. CONCLUSION
This research paper is a preliminary step towards a more
extended project of a complex real-time power system envi-
ronment. In this LSTM architecture is used to predict the
dominant modes or the instantaneous behaviour of the sys-
tem. The proposed technique is based on the offline training
of the LSTM technique and is compared with conventional
approaches like BPNN, RBFNN, and GRU techniques. The
development of the training set is done through a prepro-
cessing stage, VMD and TKEO combination is used for the
mode estimation. The proposed technique is validated using
two area Kundur system with a simulated test signal, and
its effectiveness is verified using statistical parameters like
MAE, MAPE, and RMSE values. Convergence characteris-
tics were also plotted based on the learning techniques used
in this article. LSTM results offer the lowest error values than
the conventional learning techniques. Through this research,
paper authors are trying to establish the importance of the
deep learning approach in the estimation of instantaneous
oscillatory parameters in power systems.
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