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ABSTRACT In this study, a control map generation strategy for hybrid electric vehicles based on
machine learning (ML) with optimization data was studied using a multimode hybrid electric vehicle.
The optimization data from dynamic programming were used to produce the control maps by employing
different MLmethods, including Gaussian naïve Bayes, linear discriminant analysis, decision tree, k-nearest
neighbors, and support vector machine. Since control map domains separated into several domains can
exhibit unrealistic control behavior during engine on-off and hybrid mode shift processes, control maps
separated into the same number of domains were used for the simulation study among the different ML
methods. The demand torque and power maps by ML training were used for simulations of representative
driving test cycles from the Environmental Protection Agency. The results with ML methods indicate that
operating domains in the torque and power maps were separated for different driving modes, while they
were not clearly separated in the results of DP optimization. Further, the results with the control maps for
demand power exhibited slightly improved fuel efficiency compared to the maps for demand torque. This
study is meaningful because a control map generation strategy based on ML was not only studied in order
to observe the possibility of utilizing DP optimization results for real vehicles, but different types of ML
methods were also analyzed and discussed to find appropriate methods for vehicle control map generation
in terms of demand torque and power operating points.

INDEX TERMS Hybrid vehicle, machine learning, classification, fuel consumption optimization, dynamic
programming.

NOMENCLATURE
APS Acceleration pedal signal.
BSFC Brake-specific fuel consumption.
DP Dynamic programming.
DSHS Dual split hybrid system.
EPA Environmental protection agency.
EV Electric vehicle.
FCEV Fuel-cell electric hybrid.
FTP Federal test procedure.
HEV Hybrid electric vehicle.
HWFET Highway fuel economy test.
MG Motor and generator unit.
ML Machine learning.
MPC Model predictive control.
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PHEV Plug-in hybrid electric vehicle.
SOC State of charge.
SVM Support vector machine.
UDDS Urban dynamometer driving schedule.

I. INTRODUCTION
As a promising solution for environmental issues and regula-
tions, eco-friendly vehicles such as hybrid vehicles, pure elec-
tric vehicles (EVs), and fuel-cell electric vehicles (FCEVs)
have become popular alternatives to conventional combus-
tion engine vehicles for green and sustainable transporta-
tion. Currently, hybrid electric vehicles (HEVs) dominate the
eco-vehicle market by offering improved fuel efficiency at a
reasonable price to consumers.

Hybrid vehicle systems have been studied extensively
since the 1970s through various research directions. In recent
studies, different types of topics for hybrid vehicles have
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been researched in various areas. These include hybrid sys-
tem architecture developments aimed at improving fuel effi-
ciency and performance for a single motor system [1],
systems based on power split architectures [2]–[4], a sys-
tem based on series-parallel architectures [5], and four-wheel
drive architectures [6]; the design of components for hybrid
vehicles [7], [8]; thermal management of components and
hybrid systems with energy analysis [9]–[12]; optimization
methods for system performance predictions [13]–[15]; and
control strategies for driving energy management [16]–[19].
For controllers of hybrid vehicles, control strategies based
on the optimization of simulation results have been stud-
ied for fuel efficiency improvement [20], [21], even though
the controllers based on the optimization have not yet been
applied for hybrid vehicles in the market and the rule-based
controllers with heuristic data have been used. Else the stud-
ies on HEVs, there have existed recent studies on control
methods on EVs such as an adaptive model predictive con-
trol (MPC) for independently actuated four-wheel EVs [22],
model-based reinforcement learning for EVs [23], and fault-
tolerant control for intelligent electrified vehicles [24].

The results from optimization simulations, such as
dynamic programming (DP) and the equivalent consumption
minimization strategy (ECMS), provide globally optimized
solutions for the given driving cycles. However, these opti-
mization results cannot be applied to the controllers of real
cars.While the demand torque and power data from optimiza-
tion simulations can be used to determine the engine start-up
and hybrid driving modes as control maps of the rule-based
controller, the data have some limitations since the data points
for different modes are mixed and not classified into areas.
Thus, there have been several studies on modifying optimiza-
tion results to apply them to vehicle controllers. There has
also been a study on control map generation with a machine
learning (ML) method for plug-in hybrid electric vehicles
(PHEVs) [20]. However, this suffered from the limitations of
wheel power-based control maps, limited hybrid modes, and
limited ML methods.

In this paper, a control map generation strategy based on
ML with optimization data was studied with a multimode
hybrid electric vehicle. The purpose of the study is the
generation of realistic control maps by ML methods with
DP optimization results, because the data of DP are not
applicable in real situations due to the unrealistic control
behaviors, even though it serves global optimization results.
First, the optimization results for the demand torque and
power data from the DP simulations were used for generating
control maps using five different ML methods: Gaussian
naïve Bayes, linear discriminant analysis, decision tree, k-
nearest neighbors, and support vector machine (SVM). The
demand torque and power maps generated by these ML
methods were then used as control maps for the controller of
the simulation to determine engine on-off and hybrid mode
decisions for UDDS and HWFET, which are representative
of the Environmental Protection Agency (EPA). The simula-
tion results using ML-based control maps were subsequently

analyzed and discussed in comparison with the optimization
data.

II. SYSTEM DESCRIPTION
A hybrid vehicle system with multiple driving modes, which
has been studied recently, was used for analyzing a control
map generation strategy based on ML. Typical hybrid vehi-
cles can be classified into series, parallel, and power-split
hybrid systems in terms of the power flow paths. Especially,
the power-split hybrid systems can be divided into the input-
split (or output-coupled) and output-split (or input-coupled)
power split systems. Multimode hybrid systems generally
have several driving modes of the typical hybrid architectures
according to the connections to the planetary gear train.

A novel hybrid vehicle system, named Dual Split Hybrid
System (DSHS), includes four different driving modes [3].
Fig. 1 shows the power flow diagrams for the driving modes
of DSHS. The driving modes are determined according to
the positions of the sleeve of the synchronizer, which makes
different mechanical connections between components.

During the electric drive mode, the engine is off and the
vehicle is driven by pure electric power. As in the figure,
the synchronizer is connected to the right side and delivers
the power from MG-2 to the wheel.

There are mainly three hybrid driving modes, which are
determined by the connections of the synchronizer. In the
input-split hybrid mode, the synchronizer is connected to the
right side and the engine power is delivered through the plan-
etary gear train. When the synchronizer is in the center posi-
tion, the systemworks as a parallel hybrid vehicle. The engine
power mainly drives the vehicle and the electric motors are
used for the load leveling to adjust engine operating points
in order to minimize engine power consumption. Once the
synchronizer is connected to the left side, the system operates
as an output-split hybrid mode. Since the output-split hybrid
has relatively low efficiency for the low vehicle speed, the
driving mode is used for relatively high vehicle speed.

Themechanical layout difference of the output-split hybrid
mode from the input-split hybrid mode makes the sys-
tem have different power distributions and system effi-
ciency [25]–[27]. Since the given hybrid system includes
multiple driving modes, the fuel efficiency can be improved
by choosing different modes according to the different driv-
ing situations. The different driving modes of the system
were used for the control map generation according to the
demand torque and power. The detailed strategy of the control
map generation based on ML is described in the following
sections.

III. ANALYSIS METHODS
Dynamic programming (DP) is one of the optimization meth-
ods, which can give global optimum solutions to the given
optimization problems. Even though DP results by simu-
lations have widely been used for analyzing fuel economy
optimization of hybrid vehicle systems, the results are not
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FIGURE 1. Power flow diagrams for the driving modes of DSHS.

applicable for the controllers of real vehicles because the
optimization results do not reflect real situations.

A control map generation strategy based on ML was stud-
ied for producing realistic control maps and the generated
maps were analyzed by simulations. First, the DP simulation
results were generated for the given driving test cycles by the
backward-facing simulation with the vehicle dynamics of the
hybrid system. The torque and power distribution results from
DP optimization were used for generating control maps with
ML methods for classification. The control maps based on
MLwere utilized as inputs of the controller for the simulation
of the hybrid system.

A. CONTROL DESCRIPTION
The wheel torque of the vehicle is determined by the accel-
eration pedal signal (APS) and the current velocity. In the
simulation, instead of APS, the required torque and power
with velocity for the given driving cycles were used as input
parameters for determining torque and speed of the engine
and motors. Fig. 2 shows the control diagram for the simu-
lation of the hybrid vehicle. The control maps generated by
MLwere used for the engine on-off and hybridmode decision
processes. In the simulation, if the demand torque on the
engine is too small even though the hybrid driving mode is
selected by the control maps, the vehicle is controlled by the
electric driving mode. The amount of the load leveling in the
hybrid modes is adjusted for matching the final SOC with the
initial value in the simulation.

FIGURE 2. Control diagram for the simulation of the hybrid vehicle
system.

B. SYSTEM MODELING
The hybrid system used in this study is the same as in the
reference [3]. The simulation conditions are chosen fromEPA
fuel economy test data for Toyota Prius Prime with the model
year of 2020.

The engine was modeled with a BSFC map to calculate
the fuel consumption and the motors were modeled with the
efficiency map to calculate electrical energy from the battery.
The maps for the engine and motors were manipulated ran-
domly just for the study, which are not the same as the data
in the production cars.

The variation of the state-of-charge (SOC) of the battery
can be obtained once the amount of the battery power con-
sumption is determined by the required power formotors. The
derivative of SOC can be expressed as [28],

˙SOC =
VOC −

√
V 2
OC − 4RinPbat

2RinIbat
(1)

where ˙SOC is the balance rate of the state-of-charge, VOC
is the open circuit voltage of the battery, Rin is the internal
resistance of the battery, Pbat is the battery power exchange
with electric components, and Ibat is the current from the
battery.
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The torque and speed data for the engine and motors were
calculated from the speed and torque equations for the plan-
etary gear train. The speed and torque equations are given
by [27]

(1+ h) ωC = ωS + hωR (2)

τS : τC : τR = 1 : − (1+ h) : h (3)

where h is the standing gear ratio of the planetary gear train,
ωC is the angular speed of the gear carrier, ωS is the angular
speed of the sun gear, ωR is the angular speed of the ring gear,
τS is the torque on the sun gear, τC is the torque on the gear
carrier, and τR is the torque on the ring gear.

The required wheel torque and speed can be obtained
from the torque and speed equations of the planetary gear
train. The torque loaded on the wheel can be used for cal-
culating traction force as follows.

Ft =
τw

rdyn
(4)

where Ft is the traction force, τw is torque loaded on the
wheel, and rdyn is the wheel dynamic radius. The acceleration
of the vehicle is determined by the force balance equation for
the vehicle dynamics, which is expressed as,

ma = Ft + Fg + Fr + FD (5)

Fg = −mg sin θ (6)

Fr = −Cr · mg cos θ (7)

FD = −
1
2
ρAf Cdv2 (8)

where m is the mass of the vehicle, a is the acceleration of
the vehicle, Fg is the gravitational force, Fr is the rolling
resistance, FD is the aerodynamic drag, τw is torque loaded
on the wheel, rdyn is the wheel dynamic radius, g is the
gravitational acceleration, θ is the angle of the slope, Cr is
the rolling resistance coefficient, ρ is the density of the air,
Af is the frontal area of the vehicle, Cd is the drag coefficient
of the vehicle, and v is the velocity of the vehicle.

C. OPTIMAL CONTROL MANAGEMENT
As an optimization method for the vehicle fuel consumption
modeling, the simulation results from DP guarantees global
optimization for the model, even though heavy computation
is needed compared to other optimization methods.

The choice of control variables is determined based on
the objective function for every state. The equations are
expressed as follows [28]–[30],

J∗ = min
∑tend

t0
L (x (k) , u (k)) (9)

L = ṁfuel + fp (10)

where J is the objective function, L is the instantaneous cost
function, x is the state variables, u is the control variable,
k is the stage of time, ṁfuel is the instantaneous fuel con-
sumption rate, and fp is the instantaneous penalty function.
In the penalty function, the engine start-up power is added to
the instantaneous cost function when the engine starts in the
simulation to avoid frequent engine starts.

D. MACHINE LEARNING METHOD
There have been studies for ML methods associated with
energy effectiveness [31], [32]. For the classification of the
driving mode data from DP simulation, five different ML
methods for the surface decision problems were used in the
study.

The naïve Bayes classifier is one of the simple probabilis-
tic classifier algorithms based on Bayes’ theorem, assuming
naïve and independence between data sets. Input data are
used for calculating the prior and conditional probabilities.
Naïve Bayes classifiers are relatively simple to implement
and it is widely used for a large number of features due to
small computational complexity [33]. Among naïve Bayes
classifiers, the Gaussian naïve Bayes classifier is applied in
this study, which assumes that the features have Gaussian
distributions.

The linear discriminant analysis, which is one of the dis-
criminant analysis methods, was used as an ML method for
data classification in this study. The method separates the
data sets by using a linear combination of features and it is
assumed that data in the same class are independent of each
other in the linear discriminant analysis [34].

The decision tree is a classificationmethod using a tree-like
model to separate data sets. This method is simple and inter-
pretable with white-box models, even though it is unstable
because a small change of a model can lead to a large change
in the results. For optimization of decision tree methods, the
time complexity of the method has widely been studied [35].

The k-nearest neighbors algorithm is used for classification
and regression, which determines the area based on the class
of k-nearest neighbors. It is one of the simplest machine
learning methods for classification problems, and the per-
formance of general k-nearest neighbors methods is limited
since a single layer of neighbors is generally considered for
classification [36].

The support vector machine (SVM) classifies input data
sets by constructing hyperplanes based on the maximum
margin approach. SVMsolves a convex optimization problem
to provide an optimal solution, which is possible to avoid
local minimizations [37].

In the study, the machine learning toolbox in MATLAB
was used for applying ML methods, Gaussian naïve Bayes,
linear discriminant analysis, decision tree, k-nearest neigh-
bors, and SVM. TheMLmethods were applied for the control
map generations based on DP optimization results in the
following simulation results.

IV. RESULTS AND DISCUSSION
The control maps for the hybrid vehicle were generated by
ML methods with the simulation data from DP optimization,
which could be employed for determining engine on-off and
hybrid mode decisions. The hybrid system was simulated
with the generated control maps for UDDS (also called
FPT-72) and HWFET driving test cycles. The simulation
results with ML-based control maps were then compared
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FIGURE 3. (a) Operating points of demand torque from DP optimization and (b-f) decision surface results by machine learning methods for UDDS driving
test cycle.

with the DP simulation results. For the control maps, demand
torque and power maps can be used to decide the engine
start-up and hybrid modes. The control maps for demand
torque and power were generated by ML methods and com-
pared to observe which made better control maps for deter-
mining the control decisions.

Figs. 3, 4, 5, and 6 (a) show the operating points of demand
torque and power from the DP optimization results for the
UDDS and HWFET driving test cycles, which were evenly
distributed over the range of vehicle speeds for the UDDS
cycle. By comparison, the points for the HWFET driving test
cycle were focused on high vehicle speeds. For the demand
torque maps, there were points with high torque values, while
the maximum power point increased according to increases in
vehicle velocity.

The demand torque and power maps from DP optimization
results were used for generating control maps based on ML
methods. Figs. 3, 4, 5, and 6 (b-f) show the decision surface
results by ML methods for the UDDS and HWFET driving
test cycles. For the results for Gaussian naïve Bayes, Linear
discriminant analysis, and SVM, the control map areas were
divided into four sections for each input data class, except for
Gaussian naïve Bayes with the demand power map for the
HWFET driving test cycle. Further, the control maps were
split into a bunch of sections for the results by the decision
tree and k-nearest neighbors methods.

The wide scattering of the operating points in DP opti-
mization results is a reason for preventing an application
to real vehicles due to unrealistic control behaviors such

as busy shifting modes. In the ML results, the classifica-
tion methods group the operating points into the four areas
same as the number of input classes, which is similar to
the shape of the control maps used in the controllers of real
vehicles.

To observe any differences between the input and output
data, the resubstitution loss was obtained, which calculates
the loss between the training data and the results from ML
methods. The resubstitution loss was calculated by the mean
squared error as follows,

mes =

n∑
j=1

wj
(
f
(
xj
)
− yj

)2
n∑
j=1

wj

(11)

where mes is the mean squared error, n is the number of data,
x is the input data, y is the response to the input data, f is the
response prediction, and w is the weight vector.
Table 1 shows the resubstitution losses for the classifica-

tion results by ML training of the demand torque and power
maps for the UDDS and HWFET driving test cycles. The
results indicate that the decision tree and k-nearest neighbors
methods have small resubstitution losses compared to the
results from the other ML methods. This means that the
output results with the same number of classified domains
as the number of the input classes have large resubstitution
losses because the input data are distributed extensively over
the trained area.
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FIGURE 4. (a) Operating points of demand power from DP optimization and (b-f) decision surface results by machine learning methods for UDDS
driving test cycle.

FIGURE 5. (a) Operating points of demand torque from DP optimization and (b-f) decision surface results by machine learning methods for
HWFET driving test cycle.

In terms of the number of the classified domains and resub-
stitution errors, the results can be divided into two groups
of ML methods. For the control map generation study, the

number of classified domains is important, since the number
of domains is related to the engine on-off and hybrid mode
shifts. If the control modes are split into several domains, the
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FIGURE 6. (a) Operating points of demand power from DP optimization and (b-f) decision surface results by machine learning methods for HWFET driving
test cycle.

TABLE 1. Resubstitution losses for the classification results by ML
training.

possibility of engine on-off and hybrid mode shifts increases
resulting in worsened drivability and fuel efficiency, which is
not ideal in actual situations. Thus, the ML methods with the
same number of domains as classes (Gaussian naïve Bayes,
linear discriminant analysis, and SVM)were used for the sim-
ulations to observe vehicle performance with the generated
control maps.

The control maps from the ML methods were used to
simulate DSHS to analyze the results with the data from DP
optimization. Fig. 7 shows the operating points of demand
torque from DP optimization and ML-based control maps for
the UDDS driving test cycle. As shown in the figure, the areas
of the driving modes for DP optimization overlapped each
other, since the operating points were only determined for
fuel consumption minimization. By contrast, the simulation

results with the control maps based onMLmethods show that
the driving mode areas are clearly separated, which is more
realistic than the data from DP optimizations.

Fig. 8 shows the simulation results of the SOC variations
by DP and ML-based control strategies with demand torque
maps for the UDDS driving test cycle. The final SOC simula-
tion results are ended at the same as the beginning SOC well,
which means that the simulation is well controlled with the
given control maps.

Fig. 9 displays the simulation results of the accumulated
fuel consumption by the DP and ML-based control strategies
with demand torque maps for the UDDS driving test cycle.
As expected, the fuel consumption with DP optimization was
the lowest compared to the simulations using control maps
by ML methods, which is approximately 6% lower than the
results with the ML-based control maps. Among the results
with the control maps, the data from the linear discriminant
analysis provided the lowest fuel consumption.

Fig. 10 shows the operating points of demand power from
DP optimization and ML-based control maps for the UDDS
driving test cycle. The data from the DP optimization have
points that overlap with the points from other driving modes,
while the data from the simulation with the control maps
based on ML hardly overlap with the points from other driv-
ing modes using the results from the demand torque maps.

Fig. 11 shows simulation results of accumulated fuel con-
sumption by the DP and ML-based control strategies with
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FIGURE 7. Operating points of demand torque from DP optimization and
ML-based control maps for UDDS driving test cycle, (a) DP, (b) linear
discriminant analysis, and (c) SVM.

demand power maps for the UDDS driving test cycle. The
fuel consumption of the simulation results with the control
maps based on ML was approximately 5% more than that

FIGURE 8. Simulation results of the SOC variations by DP and ML-based
control strategy with demand torque maps for UDDS driving test cycle.

FIGURE 9. Simulation results of the accumulated fuel consumptions by
DP and ML-based control strategy with demand torque maps for UDDS
driving test cycle.

from the DP optimization. Even though the fuel consumption
amounts are similar, the results with theGaussian naïve Bayes
exhibited the lowest fuel consumption among the simulation
data with the control maps based on ML.

Themodeling of the hybrid systemwas also simulated with
the HWFET driving test cycle. Since this cycle represents a
highway driving situation, the driving speeds are focused at
approximately 80 km/h and the drivingmodes are also limited
to the specific modes.

Fig. 12 shows the operating points of demand torque from
DP optimization andML-based control maps for the HWFET
driving test cycle. As expected, the data positions from DP
optimization overlap with points of the other driving modes.
In the figures of the simulation results with the control maps
by ML, the areas of the data are separated from the data of
other driving modes, even though the location is within the
area of the other driving modes.

Fig. 13 shows simulation results of the accumulated fuel
consumption by the DP andML-based control strategies with
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FIGURE 10. Operating points of demand power from DP optimization and
ML-based control maps for UDDS driving test cycle, (a) DP, (b) Gaussian
naïve Bayes, and (c) linear discriminant analysis.

demand torque maps for the HWFET driving test cycle. It can
be observed that the variation range of SOC with the control
maps based on ML was wider than that of DP optimization.

FIGURE 11. Simulation results of the accumulated fuel consumptions by
DP and ML-based control strategy with demand power maps for UDDS
driving test cycle.

Fig. 14 shows the operating points of demand torque from
DP optimization andML-based control maps for the HWFET
driving test cycle. The fuel consumption with the ML-based
control maps was higher than that of DP optimization (as
expected), and the difference ratio was approximately 1%.

Fig. 15 shows the operating points of demand power from
DP optimization andML-based control maps for the HWFET
driving test cycle. The data positions of DP optimization were
mixed (especially for the electric and parallel hybrid modes),
while those of the simulation results with ML-based control
maps were clearly separated, even though the areas of the
power split modes were located within the other modes. Since
the separated control maps are more likely to control the
engine on-off and hybrid mode shifts more clearly, the results
withML-based control are more realistic to apply with hybrid
vehicle controllers.

Fig. 16 shows simulation results of accumulated fuel con-
sumption by the DP and ML-based control strategies with
demand power maps for the HWFET driving test cycle. The
fuel consumption for the simulation results with ML-based
control maps was approximately 0.5% more than that for
DP optimization, which is smaller than the difference for the
demand torque maps.

The results with linear discriminant analysis and Gaussian
naïve Bayes, with the torque and power maps respectively,
show the lowest fuel consumptions for UDDS driving test
cycle, while the results of different ML methods are similar
for HWFET driving test cycle. Even though it is not easy
to analyze the results theoretically, we can predict that the
results are affected by various external factors such as the type
of hybrid systems, driving test cycles, and ML methods.

In conclusion, demand torque and power maps for hybrid
vehicle control were generated by five different ML methods
with DP optimization results. The results indicate that the
domains were separated into the same number of the driv-
ing modes with Gaussian naïve Bayes, linear discriminant
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FIGURE 12. Operating points of demand torque from DP optimization
and ML-based control maps for HWFET driving test cycle, (a) DP,
(b) Gaussian naïve Bayes, and (c) linear discriminant analysis.

analysis, and SVM methods. By comparison, the domains
were split into several areas more than the number of input
driving modes with the decision tree and k-nearest neighbors

FIGURE 13. Simulation results of the SOC variations by DP and ML-based
control strategy with demand torque maps for UDDS driving test cycle.

FIGURE 14. Simulation results of the accumulated fuel consumptions by
DP and ML-based control strategy with demand torque maps for UDDS
driving test cycle.

methods, even though the two methods had smaller classi-
fication errors. The control maps based on Gaussian naïve
Bayes, linear discriminant analysis, and SVM methods were
used for the simulations to observe any differences from
the results of DP optimization. The simulation results with
ML-based control maps show that the operating points were
clearly separated according to the driving modes, while the
data points of DP optimization overlapped with the other
driving modes. Further, the simulation results indicate that
the fuel consumption for the given driving cycles was lower
when the control maps of demand power were utilized instead
of those for demand torque. This study shows the possibility
of applying control maps based on ML with optimization
data from simulations to hybrid vehicles, even though the
control strategy needs to be specified and detailed further
before applicationwith production vehicles. As a futurework,
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FIGURE 15. Operating points of demand torque from DP optimization
and ML-based control maps for HWFET driving test cycle, (a) DP,
(b) Gaussian naïve Bayes, and (c) linear discriminant analysis.

controllers based on MPC can be studied for the real vehicle
development with the given control map generation strategy.

FIGURE 16. Simulation results of the accumulated fuel consumptions by
DP and ML-based control strategy with demand torque maps for UDDS
driving test cycle.

V. CONCLUSION
Control map generation strategies using ML methods with
DP optimization results were studied for a multimode hybrid
electric vehicle. The control maps were generated by five
different ML methods with the optimization data. The results
with Gaussian naïve Bayes, linear discriminant analysis, and
SVM demonstrate that the number of classified domains was
the same as the number of input classes. By contrast, the
result domains with decision tree and k-nearest neighbors
were split into many sections (more than the number of input
classes), which is not ideal for the control maps of rule-
based controllers. The control maps from ML methods were
applied to simulations of the UDDS and HWFET driving test
cycles. As expected, the demand torque and power results
show that the operating points were grouped for the same
driving modes, contrary to the DP optimization results. In the
simulation results, the fuel consumption with the demand
power maps generated by ML methods was relatively lower
compared to the demand torque maps. This study is mean-
ingful because a control map generation strategy based on
ML was not only studied in order to observe the possibility
of utilizing DP optimization results for real vehicles, but
different types of ML methods were also analyzed to find
appropriate methods of vehicle control map generation in
terms of the demand torque and power operating points.
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