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ABSTRACT Noise reduction is one of the most important process used for signal processing in communi-
cation systems. The signal-to-noise ratio (SNR) is a key parameter to consider for minimizing the bit error
rate (BER). The inherent noise found in millimeter-wave systems is mainly a combination of white noise
and phase noise. Increasing the SNR in wireless data transfer systems can lead to reliability and performance
improvements. To address this issue, we propose to use a recurrent neural network (RNN) with a long short-
term memory (LSTM) autoencoder architecture to achieve signal noise reduction. This design is based on
a composite LSTM autoencoder with a single encoder layer and two decoder layers. A V-band receiver test
bench is designed and fabricated to provide a high-speed wireless communication system. Constellation
diagrams display the output signals measured for various random sequences of PSK and QAM modulated
signals. The LSTM autoencoder is trained in real time using various noisy signals. The trained system is
then used to reduce noise levels in the tested signals. The SNR of the designed receiver is of the order
of 11.8 dB, and it increases to 13.66 dB using the three-level LSTM autoencoder. Consequently, the proposed
algorithm reduces the bit error rate from 10− 8 to 10− 11. The performance of the proposed algorithm is
comparable to other noise reduction strategies. Augmented denoised signals are fed into a ResNet-152 deep
convolutional network to perform the final classification. The demodulation types are classified with an
accuracy of 99.93%. This is confirmed by experimental measurements.

INDEX TERMS Artificial intelligence, convolutional neural network (CNN), deep learning, denoising,
Doppler frequency, long short-term memory (LSTM), machine learning, millimeter wave, modulator,
receiver, recurrent neural network (RNN), ResNet, signal classification, signal processing.

I. INTRODUCTION
Amplitude and phase noise reduction is important in all
fields of signal processing, including RF and microwave
communications, and data analysis. Phase noise comes from a
multiplicative process widely used for generating millimeter-
wave signals. White noise is proportional to the signal
band, and to the noise temperature. Both are important
in millimeter-wave systems. They can make the extraction
of the desired information from a signal more difficult.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingli Li .

This degrades remote sensing and data transfer in wire-
less communication systems. Most noise reduction algo-
rithms applied to RF signals are based on a time-frequency
representation of the input, and on digital denoising tech-
niques, such as the short-time Fourier transform (STFT), the
singular value decomposition (SVD), and the fast wavelet
transform (FWT) [1].

A recent and effective approach is based on the wavelet
technique. For example, Yu et al. [2] proposed to use com-
plex wavelets for audio signal processing, to protect the
phase of the signal. They developed two new denoising meth-
ods, a sophisticated thresholding process, and biased risk
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TABLE 1. LSTM-CNN architectures for various applications.

thresholding [3], [4]. Using the proposed procedure to find
the threshold can however be challenging.

Many authors propose to use a filter for removing noise and
for restoring the spatial resolution of a signal. For example,
the low-pass filter excludes noise at a low level. The mov-
ing average filter takes an average of the signal. The finite
impulse response (FIR) removes high-frequency components
from the baseband signal [5]. These filters sometimes remove
edge information in the denoising process. The signal-to-
noise ratio (SNR) can then be improved by increasing the
power in the carrier signal, but it is difficult to achieve for
millimeter-wave frequencies.

The proposed approach is based on deep learning tech-
niques, which gained popularity in recent years in the
telecommunications industry, mainly to cancel noise distor-
tion in receiver signals. They are powerful on-time methods
that can be applied to both the phase noise and the ampli-
tude noise. Autoencoders based on perceptrons or recur-
rent neural networks (RNNs) have been successfully used
to extract the features of clean data from noisy signals in
various applications. Many deep learning-based algorithms
were proposed for image processing. Among those, the
long short-term memory (LSTM) network has been success-
fully used to perform sequential learning. A deep LSTM
denoising autoencoder network was used to enhance hybrid
speech [6]. The denoising of transient electromagnetic data
was also performed using an LSTM network autoencoder [7].
An LSTM convolutional neural network (CNN) was pro-
posed to improve voice activity detection [8]. Table 1 lists
related studies that are using similar deep learning algorithms
for various applications. They mainly consists in deep learn-
ing techniques used for image classification or parameter
estimation. The use of deep learning algorithms for telecom-
munications systems have still not been well exploited.
Such a study [9] propose a CNN algorithm for modulation
classification.

In this work, an LSTM-ResNet network was used for the
first time for denoising and classifying receiver signals. The
experimental results were obtained from a V-band six-port
based receiver designed for millimeter-wave wireless com-
munications. This six-port technology, which was developed
for direct-conversion radio receivers, has been studied for
many applications [10], [11]. It can improve the performance
of a receiver, especially in terms of bit error rate (BER) [12].

For this work, the proposed methodology can be summarized
as follows:
• A V-band receiver test bench is designed and fabricated
to provide a high-speed wireless communication sys-
tem. Amonolithicmicrowave integrated circuit (MMIC)
technology is used to implement the six-port down
converter function. Demodulation for various PSK and
QAMmodulations, such as binary PSK (BPSK), QPSK,
8 PSK, 16 PSK, 16 QAM, and 32 QAM, have been car-
ried out experimentally. Simulations and measurements
show excellent demodulation results at a high bit rate,
without the need for six-port calibration.

• An LSTM network autoencoder algorithm is used to
remove noise from demodulated PSK and QAM sig-
nals. The proposed deep learning model increases
the signal to noise ratio by around 3 dB, and con-
sequently decreases significantly the bit-error rate
below 10−11.

• Denoised signals are fed into a deep residual network
(ResNet). Three different ResNet models (ResNet-50,
ResNet-101, and ResNet-152) are implemented to per-
form the demodulation classification. Accuracy, preci-
sion, recall, and F1 scores of various ResNet models are
compared.

• The rotation augmentation technique is applied to
artificially expand the size of the training dataset. Exper-
imental results show that the combination of the aug-
mentation technique, of ResNet-152, and of an LSTM
network achieve an accuracy of 99.93%.

The paper is organized as follows: the experimental
setup of the proposed millimeter-wave transceiver system
is described in Section 2. A description of the LSTM net-
work to denoise voltage signals of the CNN to classify the
denoised in-phase and quadrature (I/Q) signals, and experi-
mental results, are given in Section 3. Section 4 concludes the
paper.

II. EXPERIMENTAL SETUP
Figure 1 illustrates the block diagram of the transmitter and
receiver for the proposed high-speed wireless communication
system. The transmitter includes a 8360 series synthesized
sweeper (HP8360), an Agilent’s E4438C ESG vector signal
generator, and a 20-dBi millimeter-wave SAC-2012-15-S2
conical horn antenna (ANT). An HP8360 C-series is used
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FIGURE 1. Block diagram of the test bench.

FIGURE 2. Short-range 60 GHz wireless link measurement setup.

to generate a local oscillator (LO) signal with a frequency
of 30GHz and a power of 10 dBm. Agilent’s E4438C ESG
vector signal generator baseband quadrature I/Q outputs are
applied to sub-harmonicmixer inputs to generate high symbol
rates random sequences of PSK and QAM symbols. The
generated signals are fed to a conical horn antenna (ANT) to
amplify and broadcast the modulated signals to the receiver
antenna.

The receiver parts include a similar 20-dBi coni-
cal horn antenna, a six-port down-converter, and an
SBL-6039032550-1212-E1 low noise amplifier (LNA) with
25 dB gain and a noise figure (NF) of 5 dB.

The six-port circuit prototype and the related power
detectors are fabricated on a thin ceramic substrate using a
miniaturized hybrid microwave integrated circuit (MHMIC)
technology [20]. The reference signal on the receiver side
is generated using an Anritsu 68347C synthesized signal

generator, a home-made frequency multiplier (FM) with an
HMC578 GaAs active multiplier (×2), and an HMC1105
GaAs passive multiplier (×2). An attenuator operating over
a 40 dB range, and a phase shifter, are also used to con-
trol the power level and the phase of the LO signal in the
millimeter-wave band. The attenuator is adjusted to have a
power of −25 dBm at reference port 5. The six-port circuit
has three hybrid couplers with a 90 degree phase shift and a
Wilkinson power divider [12], [21]. The six-port technology
is used in the receiver part for various reasons: it provides
a straightforward direct demodulation of quadrature demod-
ulation schemes (M-QAM, PSK), a low-cost demodulator
containing only passive circuits and four diodes, and good
dynamic range. Only low power is required for the LO in
the down conversion, which is crucial for mm-waves. These
characteristics result in a low-cost interferometric receiver
with good efficiency [22], [23].
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FIGURE 3. Experimental constellation of the demodulated M-ary PSK and QAM signals.

The propagation path loss is large due to the operat-
ing frequency. The distance between the transmitter and
receiver antennas is therefore set to one meter (the free space
attenuation is 68 dB) so that the signals are detectable.
Two lenses are also added in the setup to compensate for
the low power of the transmitter. A dielectric lens with a
gain of around 6 dB is on the left-hand side, and a pla-
nar meta-material lens [24] with a gain of about 10 dB
is on the right-hand side. A six-port interferometer and a
Schottky diode-based detector ensure well-defined relations
between both the input and all four output signals [25], [26].

The output voltages are given by:

v1 =
K
4
|(aRF − aLO)2|;

v2 =
K
4
|(aRF − jaLO)2|;

v3 =
K
4
|(aRF + aLO)2|;

v4 =
K
4
|(aRF + jaLO)2|, (1)
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FIGURE 4. The repeated LSTM network blocks with tanh input and output blocks.

where the constantK is measured in V/W. The four baseband
voltages v1 to v4 from the millimeter-wave front-end receiver
are connected to four identical video amplifiers for amplify-
ing baseband voltages.

A DSO80804B Agilent infiniium digital oscilloscope is
then used to display and record the received demodulated sig-
nals. The I/Q can be computed by subtracting two baseband
voltages and by reducing the DC offset value [25]:

I = v3 − v1;

Q = v4 − v2. (2)

Figure 3 illustrates demodulation results of a pseudo-random
PSK and QAM bit sequence of 100 nanoseconds. Given
the limitations of the oscilloscope, we saved 1Ms/s (mega-
samples per second) and each symbol has a duration of 1µs.
We therefore have a packet size of 105 symbols in dura-
tions of 0.1 second. We can see that the demodulated signal
shapes follow the input of the modulated signals generated
by the transmitter. We observe that the odd and even index
voltages are out of phase. The I/Q signal generation by
a differential approach therefore increases their levels and
decrease the inherent DC offset of the demodulator. The mea-
sured BER on the test bench, using a pseudo-random QPSK
sequence, is less than 10−8, which corresponds to an SNR of
about 11.8 dB. In the next section, a description of the LSTM
network to denoise voltage signals, and of the CNN to classify
the denoised in-phase and quadrature (I/Q) signals, is given
in details.

III. PROPOSED DEEP LEARNING METHODS AND
RESULTS
A. RECURRENT NEURAL NETWORKS WITH LONG
SHORT-TERM MEMORY
Deep learningmethods have beenwidely used to extract valu-
able information in complex systems. Various architectures
are available, depending on the characteristics of the input

FIGURE 5. Architecture of the LSTM network autoencoder with one
encoder and two decoder layers.

data. Recurrent neural networks (RNNs) can deal with the
time dependent nature of the input data. They have been
used in areas with sequential data, such as for text, audio,
and video processing [27], [28]. Given the cyclic connections
in the RNN architecture, current state updates depend on
past states and on current input data. However, RNNs cannot
deal with long minimal lags between relevant signals. Hence,
long short-term memory (LSTM) networks can be used for
introducing gate functions into the cell structure [29]. LSTM
networks are deep learning models, which can be divided
into two broad categories: LSTM-dominated networks, and
integrated LSTM networks. A basic LSTM unit is made of
a single hidden layer, with an average pooling layer and a
logistic regression output layer. The hidden layer consists of
standard recurrent cells, such as sigma cells or tanh cells.
Signals are denoised using multilayer LSTM networks. The
architecture of a multilayer LSTM network is illustrated in
Figure 4. In this recurrent structure, useful informations are
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stored to minimize the loss function in each neuron, and
the noise of the signals is released by the memory units
of a forgetting gate. LSTM unit processing is based on the
following equations, which give the update of the internal
state ct , and the output vector ht :

ft = σ (Wf ht−1 +Wf xt + bf );

it = σ (Wiht−1 +Wixt + bi);

c̃t = tanh(Wc̃ht−1 +Wc̃xt + bc̃);

ot = σ (Woht−1 +Woxt + b0);

ht = ot tanh (ct ), (3)

where xt , ft , it and ot are the input vector, the activation
vector of the input gates, the forget vector and the output
vector, respectively. Also,Wf ,Wi,Wc̃, andW0 are the weights
that represent the state of the cells. The input gates can
decide which values should be stored in the cell states, and
the output gates decide what information should be omitted
from the cell states. The memory unit may first perform a
sigmoid transformation, called the forget gate, in the previous
sequence and in the current input to forget some dependencies
which do not have any influence on the minimizing of the loss
function. It should be noted that if the value of the forgetting
gate becomes 1, this means that this information should be
kept. The value 0 indicates that it gets rid of all informa-
tion. Another sigmoid transformation is then performed to
calculate the current input share in the current state while the
current state is obtained by performing the tanh transforma-
tion on the previous instantaneous state and on the current
input. After the tanh transformation, some dependencies are
remembered, which play a significant role in minimizing the
loss function. Finally, the output of the neuron is obtained
from the previous state, the current input, and the current
state.

Algorithm 1 LSTM Layer Pseudocode
1: Input: x = [x1, . . . , xn] F n = 10 000
2: function LSTM Cell (input, ft−1, c̃t−1)
3: for i = 1 to n do
4: Calculate it , ft , and ct (eq 3)
5: Update cell state c̃t (eq 3)
6: Calculate output Ot (eq 3)
7: end for
8: end function
9: Output: h = [h1, . . . , hn]

This dependency on the previous data makes this method
suitable for denoising purposes. Algorithm 1 describes the
LSTM algorithm. It goes through multiple epochs until either
the maximum number of iterations is reached, or when the
cost function target is met.

There is no pure signal in the real world. One of the main
challenge of signal processing is canceling the unsatisfied
noise. There are many mathematical strategies to remove
noise from a signal. However, these methods are used when

Algorithm 2 LSTM Autoencoder Pseudocode
1: function LSTM Autoencoder(inputs)
2: inputs = input (shape:[samples, timesteps, features])
3: Encoded (LSTM (ReLU))
4: Decoded 1 (repeat, LSTM, time distributed)
5: Decoded 2 (repeat, LSTM, time distributed)
6: end function
7: Set Parameters (test/train data, encoder and decoder

LSTM units, and optimizer and cost parameters)
8: Normalize the dataset (values from 0 to 1)
9: for epochs and batch size do

10: Predict results using LSTM model
11: Cost (cross entropy mean)
12: Optimizer (ADAM, learning rate 0.001)
13: end for

TABLE 2. Comparison of three different denoising methods.

the range of the signal noise is constant. The exact shape of
the noise cannot be estimated, or it is unknown in many cases.
The LSTM network autoencoder is used for these purposes.
A deep LSTM network consists in a return sequence, a repeat
vector, and time distributed functions. Figure 5 shows the data
flow and the architecture of the LSTM network autoencoder
with one encoder layer and two decoder layers, one for the
reconstruction and one for the prediction. The input to the
model is a sequence of 500 vectors with 10,000 samples.
In what follows, Layer 1 reads the input data, and it out-
puts 500 features. The output of this layer is considered
as an encoded feature vector. In a reconstruction layer of
the decoder, the repeat vector replicates the encoded feature
vector 500 times. Then, the next layer is designed to unfold
the encoded feature vector. Hence, the encoder is used in
the reverse order in the decoder layer. The final layer, Time
Distributed (Dense(1)), is added at the end to give the output.
In a prediction layer of the decoder, the repeat vector is set
to 100 features. Figure 6 shows the denoised demodulation
results of pseudo-random PSK and QAM using the LSTM
network autoencoder. The SNR of the proposed receiver is
around 11.8 dB and it increases to 13.66 dB using the three-
level LSTM method. Consequently, the proposed algorithm
reduces the bit error rate from 10−8 to 10−11. In Table 3,
the SNR and BER of three different denoising techniques are
compared. The wavelet (wdenoise function with the Sym-
let family of order 4) and low-pass Savitzky-Golay filters
(sgolayfilt function) denoising methods are applied using the
Matlab toolbox. As shown in Table 3, the wavelet denois-
ing technique gives results comparable to the LSTM net-
work autoencoder methods. However, the proposed method
is a very simple technique and does not require defining a
threshold, and it will protect all the important information in
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FIGURE 6. Denoised signals using the multi-step encoder-decoder LSTM2.

the demodulated signals. In the next section, a conventional
neural network algorithm will be used to classify various
demodulation constellation signals using the denoised data
outputs of the LSTM networks.

B. ResNet CONVOLUTIONAL NETWORKS
Deep convolutional neural networks brought notable
improvements to image classification techniques. Deep net-
works can be enriched by adding a number of stack layers,
and by integrating low, mid, and high-level features and

classifiers [30], [31]. The number of layers (the depth of
the neural network) is known to influence the accuracy of
the classification [32], [33]. But increasing the depth of
the network can also cause saturation. Accuracy may then
degrade rapidly. Increasing the number of layers may lead to
overfitting and increased training errors [34].

Deep networks often suffer from vanishing gradients.
As the model back propagates, gradients get smaller, which
can make learning difficult. To address this problem, the deep
residual learning framework has been used in this research to
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FIGURE 7. A residual block of deep residual network with three layers.

help train deeper networks. The main innovation of ResNet
is the skip connection. A skip connection diagram is labeled
‘‘identity connection’’ in Figure 7. The skipped connections
are known as identity shortcut connections. This allows the
network to learn the identity function, which can then pass
the input through blocks without passing through the other
weight layers. The desiredmapping is denotedH (x). The zero
and identity mappings are computed using F(x) = H (x)− x
and F(x) + x respectively. It is assumed that the optimal
performance can be achieved when the blocks are closer
to the identity mapping rather than to the zero mapping,
and it should also be easier to find perturbations using the
reference to an identity mapping. This makes it possible to
stack extra layers and to create a deeper network, to neutralize
the missing gradient, and to allow the network to pass through
layers that it feels are less important for training.

In this work, the input data includes 1200 signals belonging
to 6 different classes related to demodulated I/Q signals.
The 6 classes are defined as: 1) BPSK; 2) QPSK; 3) 8 PSK;
4) 16 QAM; 5) 16 PSK; 6) 32 QAM. The ResNet is applied
to the I/Q signals that are collected using the wireless sen-
sor, and they are denoised using LSTM network autoen-
coders. A data augmentation technique is applied to artifi-
cially expand the size of the training dataset. Augmentation
techniques are powerful methods to reduce training errors
due to overfitting. In this work, the rotation augmentation
technique is performed by rotating the image one degree
clockwise, and one degree counter-clockwise with respect to
the y-axis.

80% of the data is used for the training, and 20% is used
for the tests. To evaluate the effect of the number of layers,
the ResNet with three layers (ResNet-50, ResNet-101, and
ResNet-152, where the two or three-digit number gives the
number of layers) were implemented. Accuracy, precision,
recall, and F1 scores of various ResNet models are given in
Table 3. The computing times for each epoch are also listed in
the last column of Table 3. The results show that ResNet-152
offers the best performance in comparison with ResNet-50
and ResNet-101.

Curves of accuracy and loss, with respect to the number
of epochs, are shown in Figure 8. We see that combining the

FIGURE 8. Curves of accuracy and loss w/r to the number of epochs for
the ResNet-152 network.

TABLE 3. ResNet accuracy, precision, recall, and F1 scores for various
numbers of layers.

ResNet-152 and the LSTM network lead to a classification
with an accuracy of 99.93%. The performance of the network
is maintained while the number of layers is increased in the
ResNet. This may be attributed to the fact that the identity
mapping is made in the network. There are some layers on the
current network that do not affect the network performance
to avoid overfitting effects by increasing the depth of the
network. Assessing the performance of the network, based
on the input data size and on the processing time of the
deep learning methods, is always a challenge. For example,
in the current research, combining the CNN and the LSTM
network results in a classification with an accuracy of 98.6%,
and a processing time of 32 s/epoch for 1200 signals in the
input dataset. There would be 6000 signals if we were using
the augmentation technique, and rotating the image by five
degrees to artificially expand the size of the training dataset.
The ResNet method is therefore used to avoid the drawbacks
of the overfitting, for a given input dataset size, which leads
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FIGURE 9. The confusion matrix of the ResNet-152 network.

to higher classification accuracy and more processing time.
To show the performance of the ResNet-152 algorithm, the
confusion matrix, or error matrix, is shown in Figure 9. This
matrix reports the number of false positives, false negatives,
true positives, and true negatives for all 6 demodulation
classes. We find that the proposed demodulator with the
lowest number of constellation points can be classified with
high accuracy. For a small number of constellation points,
there are no false positive or false negative. For a high number
of constellation points, the number of false positives and false
negatives is negligible.

IV. CONCLUSION
This paper propose a deep learning technique for noise
reduction and signal classification in RF microwave com-
munication systems. A V-band receiver based on a six-port
technology is designed and fabricated using the miniaturized
hybrid microwave integrated circuit (MHMIC) technology.
Output voltages and constellation diagrams are measured
for various random sequences of PSK and QAM modulated
signals. A recurrent neural network (RNN) with a long short-
term memory (LSTM) network autoencoder architecture is
proposed to achieve signal noise reduction. The LSTM net-
work autoencoder is trained with various noisy signals in real
time, and the trained system is used to reduce noise in the
tested signals. The signal-to-noise ratio (SNR) of the pro-
posed receiver is around 11.8 dB, and it increases to 13.66 dB
using the LSTM network. Consequently, the proposed algo-
rithm reduces the bit error rate from 10−8 to 10−11. Denoised
signals were fed into ResNet convolution networks to perform
the final classification. ResNet-152 classified constellation
diagrams with an accuracy of 99.93%.
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