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ABSTRACT Aircraft trajectory prediction is a challenging problem in air traffic control, especially for
conflict detection. Traditional trajectory predictors require a variety of inputs such as flight-plans, aircraft
performance models, meteorological forecasts, etc. Many of these data are subjected to environmental
uncertainties. Further, limited information about such inputs, especially the lack of aircraft tactical intent,
makes trajectory prediction a challenging task. In this work, we propose a deep learning model that performs
trajectory prediction by modeling and incorporating aircraft tactical intent. The proposed model adopts the
encoder-decoder architecture and makes use of the convolutional layer as well as Gated Recurrent Units
(GRUs). The proposedmodel does not require explicit information about aircraft performance andwind data.
Results demonstrate that the provision of enriched aircraft intent, together with appropriate model design,
could improve the prediction error up to 30% at a prediction horizon of 10 minutes (from 4.9 nautical miles
to 3.4 nautical miles). The model also guarantees the mean error growth rate with increasing look-ahead
time to be lower than 0.2 nautical miles per minute. In addition, the model offers a very low variance in
the prediction, which satisfies the variance-standard specified by EUROCONTROL (EU Organization for
Safety and Navigation of Air Traffic) for trajectory predictors. The proposed model also outperforms the
state-of-the-art trajectory prediction model, where the Root Mean Square Error (RMSE) is reduced from
0.0203 to 0.0018 for latitude prediction, and from 0.0482 to 0.0021 for longitude prediction in a single
prediction step of 15 seconds look-ahead. We showed that the pre-trained model on ADS-B data maintains
its high performance, in terms of cross-track and along-track errors, when being validated in the Bluesky Air
Traffic Simulator. The proposed model would significantly improve the performance of conflict detection
systems where such trajectory prediction models are needed.

INDEX TERMS Aircraft trajectory prediction, 4D trajectory, machine learning, encoder-decoder, convolu-
tion neural network, recurrent neural network.

I. INTRODUCTION
A. AIRCRAFT TRAJECTORY PREDICTION
Aircraft trajectory prediction is a crucial component of any
air traffic control (ATC) system. Aircraft trajectory is defined
as ‘‘a four dimensional (e.g., latitude, longitude, altitude and
time) description of an aircraft’s flight path’’ [1]. Trajectory
prediction refers to the estimation of a flight’s future tra-
jectory within a look-ahead time (prediction horizon) [1].
Accurate aircraft trajectory prediction not only improves sit-
uational awareness of air traffic control officers (ATCOs),
but also provides necessary inputs for other ATC functional-
ities such as departure and arrival management, monitoring
aids, medium-term conflict detection (MTCD), short-term
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conflict alert (STCA), etc [2]. For example, improvement in
the accuracy of trajectory prediction in the look-ahead time of
approximately 4-8 minutes could potentially help to reduce
STCA’s nuisance alerts, which in turns enhances the system
overall efficiency. In the Trajectory-Based Operations (TBO)
concept [3], which is envisioned as the key enabler for the
next generation of air traffic management, trajectory predic-
tion is an essential building block for the Decision Support
Tools (DST) for ATCOs.

Traditional aircraft trajectory predictors compute the air-
craft future trajectories using diverse information such as
flight-plan, aircraft performance, meteorological forecast,
ATCOs and flight crews intents.

Major sources of errors in traditional approaches include
diversity in aircraft performance, uncertainties in input data,
ATCOs intents, and in longitudinal progress (Figure 1a) [4].
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Prediction errors also resulted from limited accuracy of
numerical integration algorithms and simplified aircraft’s
equations of motion [5]–[7]. Among the factors that hin-
der the trajectory prediction, uncertainties in the intents of
ATCOs is recognized as the most significant one [4], which
are influenced by the dynamics of traffic flow, weather con-
ditions, operational constraints, etc. Figure 1b illustrates the
flown trajectory of flights from Kuala Lumpur International
Airport to Singapore Changi Airport. Although those flights
were planned to follow a fixed route, there was a high
variances in the realizations of the planned routes making
trajectory prediction a challenging task.

In the past few decades, the rapid advances in machine
learning algorithms have offered new approaches to improve
the performance of computational models in solving classical
problems in air trafficmanagement [8]. Approaches to the air-
craft trajectory prediction are also being transformed by the
paradigm shift towards data-driven methods using machine
learning techniques [9], [10]. As mentioned earlier, the lack
of information about aircraft intent is a primary source of
trajectory prediction errors. In this study, we aim to model
and incorporate aircraft intent in a deep learning model for
trajectory prediction. The aircraft intent used in our work is
modeled from the historical flown trajectories of the aircraft,
which in turn is derived from the Automatic Dependent-
Surveillance Broadcast (ADS-B) data. In this work, we make
use ADS-B data as the only data source, without other salient
features such as wind and weather information. As for short-
term trajectory prediction, the effect of wind and weather is
considerably stable and is reflected in the actual track data,
which can be learned by the proposed model as latent vectors.
In the following section I-B a review of the related work
is presented followed by details of research objectives and
research contribution in Section I-C.

B. RELATED WORK
Aircraft trajectory prediction is specifically important to air-
craft separation assurance, which includes conflict detection
and resolution. Conflict detection algorithms can be classi-
fied into nominal, worst-case and probabilistic approaches
[11], [12]. Among these, the probabilistic approach is a
trade-off between detection accuracy and computational time
required under various uncertainties. Probabilistic conflict
detection requires as input the predicted positions of the
aircraft with cross-track and along-track errors, by which one
can estimate the probability of the distances (both vertical and
lateral) between any two aircraft to be lower than the standard
separations [13], [14]. Therefore, the estimation of trajectory
prediction errors plays a key role in the provision of an
accurate conflict detection. The increasing availability of
aircraft historical trajectory data (e.g. ADS-B) and advanced
techniques in trajectory mining and pattern analysis [15], [16]
have been contributing to the enrichment of trajectory data,
which allows further improvements of prediction models.

Various machine learning algorithms have been considered
for aircraft trajectory prediction. Regression methods using

ordinary least square and neural network were employed
in [17] for the task of predicting altitude of the aircraft, which
showed that both regression approaches perform significantly
better than the point-mass model. In [18], the authors used
Generalized Linear Model (GLM) to predict aircraft’s arrival
time at significant points, and the model can also be used for
spacing the aircraft in continuous descent operation. Multiple
regression models approach was also considered for trajec-
tory prediction in [19], in which aircraft trajectories in Termi-
nalManeuveringArea (TMA)were classified by their distinct
patterns, and different regression models were developed for
different groups of trajectory to predict the aircraft arrival
time. Such approach, i.e., trajectory clustering combined with
multiple predictive models, were also employed for trajectory
prediction in [20]–[23]. Other recent studies on the employ-
ment of different machine learning algorithms for trajectory
prediction include Bayesian deep neural networks [24], [25],
variational inference [26], conditional generative adversar-
ial network [27], deep Gaussian process [28]. In addition,
a hybrid machine learning-physics approach was recently
proposed [29], in which an estimation algorithm (Residual-
Mean InteractingMultipleModel) was introduced to improve
a machine learning models by accounting for the motion of
the aircraft.

Deep learning has improved the state-of-the-art in many
problems that challenge the conventional machine learning
methods such as speech recognition, visual object recog-
nition, object detection. For processing sequential inputs,
recurrent neural network (RNN) is often a better approach.
However, traditional RNN has problems of learning long-
term dependencies and vanishing gradient. Long Short Term
Memory [30] (LSTM), a type of RNN, was introduced to
overcome these problems and have been used to advance the
state of the art for many difficult problems such as hand-
writing recognition and generation, language modeling and
translation. A simpler variant of LSTM, Gated Recurrent
Unit (GRU) [31] was introduced to deal with the vanishing
problem and long-term depencies, which combines the forget
and input gates into a single ‘‘update grate,’’ and provides
the similar performance on certain tasks such as speech sig-
nal modeling or natural language processing, with LSTM.
These RNN models can be used as modules inside encoder-
decoder sequence-to-sequence architecture [32] for problems
with both sequential input and output. This encoder-decoder
architecture was used for solving human mobility trajec-
tory prediction [33] or for the vehicle trajectory predic-
tion problem [34] and was shown to outperform other non
encoder-decoder methods. RNN was also combined with
graph model in a structural-RNN framework in [35], which
can learn the trajectory patterns of different agents (pedes-
trians, bicycles or cars). The approach based on 4D graph
(two dimensions for instances and their interactions, one
for time series and one for high-level categorization), and
showed a improvement of 20% of accuracy over previous
models. LSTM and attention mechanism [36] were integrated
within an encoder-decoder architecture in [37] to perform
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FIGURE 1. (a) Cone of uncertainty in aircraft future position. The color gradient indicates degree of uncertainty, darker color means higher
uncertainty. Uncertainty in aircraft position increases with look-ahead time. (b) High variances in the actual flown tracks of flights from
Kuala Lumpur International Airport (WMKK) to Singapore Changi Airport (WSSS). The thick red curves are planned routes.

geo-sensory time series prediction. The attention mechanism
included local spatial, global spatial and temporal attentions
(multi-level attention-based recurrent neural network), which
outperformed nine baseline models. [38] proposed a Hierar-
chical Spatial-Temporal Long-Short Term Memory Network
(HST-LSTM) for location prediction, in which a hierarchical
extension was used for embedding the users’ visiting context.
The results showed the effectiveness of the approach on
real-world dataset. A combination of attention mechanism
and LSTM network for prediction of human location was
proposed in [39], which extended the LSTM network with
attention-based sequence-to-sequence for learning human
semantic trajectories, which was shown to be beneficial to
modelling semantic trajectories and prediction of human
movement patterns. [40] proposed two variants of RNN,
namely Constrained State Space RNN (CSSRNN) and Latent
Prediction Information RNN (LPIRNN), that can incorporate
unique trajectory constraints, of which normal LSTMmodels
are incapable. The proposed variants showed slightly better
results than that of ordinary LSTM networks.

As aircraft trajectories can be naturally modeled as time
sequences of aircraft states, many studies employed sequence
learning techniques, such as RNN, GRU, and LSTM, for
trajectory prediction. A LSTM network was proposed in [41]
for trajectory prediction and was shown to outperform other
methods such as Markov Model and weighted Markov
Model. GRU neural network was also employed for trajectory
prediction in [42], which showed accuracy improvements
compared to LSTM network. A combination of LSTM and
convolutional layer was investigated in [43], in which the
model can predict aircraft trajectory between any arbitrary
two airports at low variance. Such combination of LSTM
and convolutional layer was also employed in [44], where
the prediction accuracy was shown to be increase by 21%
comparing to using LSTM only. The LSTM network was

also demonstrated to be superior to regression methods for
trajectory prediction task [45]. Dynamic physical constraints
was also taken into consideration within a LSTM network
framework in [46], which showed the capability of integrat-
ing both long-term dependencies and dynamic constraints
in trajectory prediction. Another emerging approach is the
vision-based approach, in which aircraft trajectory prediction
is achieved using convolutional LSTM on a series of traffic
scenario images [47]. Such approach is benefited from the
automated feature extraction offered by the convolutional
layers and the input dimension is independent of the scenario
complexity (e.g., the number of aircraft).

We observed that different approaches using deep learn-
ing, specifically recurrent neural network, had been recently
employed for aircraft trajectory prediction, as those meth-
ods very well fit the spatio-temporal property of trajectory
data. Nevertheless, there were limited work that give special
consideration to model the aircraft intent as input features
for deep learning model. Furthermore, some important eval-
uation metrics such as along-track error, cross-track error,
and the error growth rates overtime had not been properly
compared with available standard, such as the standard spec-
ified by EUROCONTROL [2]. In this work, we propose an
approach overcoming these limitations.

C. OBJECTIVES & SUMMARY OF CONTRIBUTIONS
The objective of this research is to propose a machine
learning model for aircraft trajectory prediction that takes
into consideration the aircraft intent, in a prediction horizon
of 1 to 10 minutes.

The proposed model adopts the Encoder-Decoder
architecture [32], which can take a sequence as input and
generate another sequence as output. This makes Encoder-
Decoder architecture a suitable choice for trajectory predic-
tion because a trajectory can be naturally expressed as a
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time-sequence of spatial positions. Furthermore, the Encoder
part of the model can extract latent features automatically,
which in turns is used by the Decoder to produce a prediction.

The input to the model is the aircraft current trajectory,
which is defined as a time sequence consisting of current
position of the aircraft and its k last positions. The output
of the model, or the predicted trajectory, is a time sequence
of n positions of the aircraft into the future. Given that all
trajectories have equal time interval between any two consec-
utive positions, n also determines the look-ahead time or the
prediction horizon. Model architecture is described in detail
in Section II.

In this research, the trajectory prediction is limited to en-
route phase. The main contributions of this paper include:
• An effective way to model aircraft intent for the integra-
tion into the trajectory prediction model. Experiments
show that our intent modeling allows the trajectory pre-
dictor to improve performance at different prediction
horizons. To the best of our knowledge, such modeling
of aircraft intent for deep learning prediction model has
not been reported previously.

• An encoder network architecture that effectively learns
patterns in the behavior of aircraft without the need of
explicit information about the aircraft performance.

• A decoder network architecture that fuses information
about aircraft future intent into the knowledge about its
recent behavior, and effectively predicts future trajectory
of the aircraft.

• A loss function which consists of two components,
namely position loss and dynamics stability loss. The
high accuracy of the prediction model is achieved by
minimizing this loss.

• The prediction horizon (i.e., look-ahead time) is inde-
pendent of network architecture and can be dynamically
changed even after the model has been trained.

• The proposed model requires limited amount of infor-
mation. In specific, only historical tracks of the aircraft
(ADS-B data) is necessary for model training.

The aforementioned features enable the proposed model
to outperform existing models using the same approach and
achieves prediction accuracy that is comparable to the stan-
dard specified by EUROCONTROL for aircraft trajectory
prediction [2]. The rest of this paper is organized as follows.
Section II elaborates learning model for trajectory prediction.
Data source used in this work and features engineering are
presented in Section III. Experiment setup, results and dis-
cussion are presented in Section IV. Finally, conclusions are
drawn in Section VI.

II. LEARNING MODEL
This section elaborates the learning model for aircraft
trajectory prediction that incorporates the aircraft intent.
An overview of the proposed model is illustrated in Figure 2.
First, the approach for aircraft intent modeling is presented.
Second, a description of the data and data preparation steps
is provided. Next, the learning model architecture, with

explanation of different loss functions to achieve the learning
objectives is presented. Finally, hyper-parameters and special
treatments to improve training robustness in the experiments
is discussed.

A. AIRCRAFT INTENT MODELING
Aircraft intent refers to the list of waypoints that the aircraft
is set to traverse. Intent modeling is to express the relative
relationship between the aircraft current position and these
waypoints in a form suitable for the learning model. This
relative relationship is encoded in a 10-dimensional vector,
which is referred to as intent vector It , where the subscript t
indicates the time step.

Figure 3 shows an aircraft at the current time in the context
of three waypoints: previous, current, and next waypoints.
The aircraft passed the previous waypoint, is passing by
the current waypoint, and then heading to the next way-
point. An intent vector includes the four distances c1 and c2
(c1, c2 ≥ 0), d1 and d2 (d1, d2 ≥ 0) and the two angles β1 and
β2 (−π ≤ β1, β2 < π). Here, c1 and c2 are the cross-track
distances from the aircraft to the current and the next airways,
respectively. d1 and d2 are the distances from the aircraft to
the current and the next waypoints, respectively. β1 and β2 are
the angles measured from the instantaneous moving direction
of the aircraft to the lines connecting the aircraft to the current
and the next waypoints, respectively. The intent vector also
includes the lateral directions from the aircraft to the current
and the next waypoints. The ten elements of an intent vector
are described in Table 1.

TABLE 1. Elements of the intent vector. See Figure 3 for a visual
explanation.

Physically, d1 and d2 indicate the progress of actualizing
the intent by the aircraft, while c1 and c2 imply the lateral
deviation of the flown trajectory from the planned route.
In addition, β1 and β2 observe the track angle evolution
with respect to the three waypoints. These information helps
the model to discriminate between turning and non-turning
(maintaining heading) behaviors. The intent vector is dynam-
ically computed during prediction to reflect the changes in the
three waypoints as the aircraft is moving and passing them
one by one. The computation of the intent vector is performed
in a local Cartesian coordinates system (see Section III-C2).
Note that the intentmodeling is still valid if the current and the
next airways form a straight line with intermediate waypoints.

B. THE PREDICTION TASK
Let pi denotes the aircraft position at the discrete time step i,
pi =

(
p(1)i , p

(2)
i , p

(3)
i

)
where p(1)i , p

(2)
i , p

(3)
i are the coordinates

17884 VOLUME 10, 2022



P. N. Tran et al.: Aircraft Trajectory Prediction With Enriched Intent Using Encoder-Decoder Architecture

FIGURE 2. Overview of the learning model. (a) Context of trajectory prediction problem. The proposed model performs trajectory prediction in the spatial
context of three waypoints (previous, current and next waypoints). Note that the altitude dimension is not included in the figure for a simple
presentation. (b) Conceptual illustration of the prediction model. The model is trained using the train dataset (upper part) and the trained model
performs predictions using the test dataset (lower part).

FIGURE 3. Aircraft intent modeling. Intent of the aircraft are encoded by
the distances c1, c2,d1,d2 and the angles β1, β2, in the spatial context of
three waypoints.

of the aircraft in a three-dimensional Cartesian reference
frame. Assuming that pt is the aircraft position at the cur-
rent time t , the last k positions are [pt−k ,pt−k+1, . . . ,pt−1].
The next n positions, i.e., future trajectory, of the aircraft is
defined as T n

t = [pt+1,pt+2, . . . ,pt+n] (Figure 2a). Given
the current and the last k positions of the aircraft, the task is to
predict its future trajectory. In other words, we train a model
that receives a vector [pt−k ,pt−k+1, . . . ,pt−1,pt ] as an input
and produces a prediction T̂ n

t =
[
p̂t+1, p̂t+2, . . . , p̂t+n

]
as the output. The model also receives intent vector as an
input. The learning objective is to minimize the difference
between the prediction T̂ n

t and the actual trajectory T n
t . In the

final evaluation settings, we set k = 9 and n = 40. This
means the model receives an input sequence of 10 last posi-
tions (including the aircraft current position) and produces an
output sequence of 40 positions.

C. MODEL ARCHITECTURE
The learning model adopts the encoder-decoder architec-
ture [32], which particularly suits our problem for several
reasons. First, the encoder-decoder architecture allows to
conveniently handle the difference in length of the input and
output data. In fact, the model takes as input a fixed-length
vector of aircraft recent positions and produces a variable-
length vector of aircraft future trajectory. Second, the internal
structure of the encoder and that of the decoder are indepen-
dent of each other. Thus, they can be designed to perform
different tasks. As such, the encoder is trained to recognize
hidden information and patterns in the behaviors of the air-
craft. These knowledge is output by the encoder as a fixed-
length context vector. After that, the decoder dynamically
concatenates the context vector and the intent vector, and
produces predicted trajectory. The overall architecture of our
model is illustrated in Figure 4. Details about the encoder and
the decoder are described below.

1) ENCODER
The encoder is designed to learn and recognize hidden pat-
terns in the recent trajectory of the aircraft. Those hidden
patterns carry information about aircraft dynamics character-
istics under different circumstances, which are essential to the
prediction of future trajectory. To achieve this, the encoder
consists of one one-dimensional convolution (Conv1D) layer
and one fully connected layer, each followed by a ReLU
activation (Figure 4).
Convolutional layer makes use of convolution opera-

tor in place of general matrix multiplication [48, p. 224].
Some important features of convolutional layers are weights
sharing and their ability to capture the local connectivity.
These features make convolutional layers a natural choice
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FIGURE 4. Encoder-decoder architecture for trajectory prediction. The decoder is unrolled for illustration of n sequential prediction steps (only three
steps are visible in the figure).

for patterns recognition in time sequence data like aircraft
trajectory.

The output from the encoder, which is defined as the
context vector, has a length of lc. Here, lc is a hyper-parameter
and determined experimentally. The context vector carries
essential information about the current aircraft dynamics and
other uncertainties such as wind effect. As the prediction
horizon considered in this work is relatively short, changes
in the wind field and other uncertain factors are insignificant.
As a result, the learned information in the context vector can
be used in the prediction of the aircraft future locations.

The parameters of the encoder are presented in Table 2.

2) DECODER
In the proposedmodel, the decoder is a Recurrent Neural Net-
work (RNN). Particularly, RNN is a class of neural networks
where connections between nodes form a directed graph
along a sequence. RNN is designed to recognize sequential
patterns for inferring the next likely outcome. Figure 5a
shows a structure of a RNN. The vanilla RNN has issues of
gradient vanishing and exploding when dealing with long-
term series.Gated Recurrent Unit (GRU), a type of RNN, was
introduced in [31] to overcome these issues in capturing long-
term dependencies. The structure of a GRU cell is demon-
strated in Figure 5b, and its internal computational logic is
described by

zt = σ (Wz · [ht−1, xt ])
rt = σ (Wr · [ht−1, xt ])
ĥt = tanh (W · [rt ∗ ht−1, xt ])
ht = (1− zt) ∗ ht−1 + zt ∗ ĥt

(1)

where Wz, Wr , W are the coefficient matrices, σ is the
sigmoid function and ∗ is the element-wise multiplication
operator.

The decoder is designed to perform n-step sequential pre-
diction. Figure 4 illustrates the unrolled GRU network of
the decoder that predicts the future trajectory of n steps,

T̂ n
t =

[
p̂t+1, p̂t+2, . . . , p̂t+n

]
. At each prediction step,

in general, the GRU receives the current input and the pre-
vious hidden state, and produces a GRU output. This GRU
output is then employed in two ways. First, it is concatenated
with the context vector and then input to a fully connected
layer in order to produce the aircraft position prediction for
the current step. Second, it is used as the GRU hidden state
for the subsequent prediction step (see Figure 4).

The input to the GRU at every step is illustrated in Figure 4.
At a prediction step i, for instance, the GRU input is from the
concatenation of four vectors:
• the last predicted position of the aircraft p̂i−1,
• the last predicted velocity of the aircraft v̂i−1 = p̂i−1 −
p̂i−2,

• the current intent vector as described in Section II-A, and
• the context vector produced by the encoder.

The concatenation of these four vectors forms a GRU input
vector of length (lc+16), where lc is the length of the context
vector (Table 2). At the first prediction step, the GRU hidden
state h0 is initialized to the context vector. The details of
decoder is given in Table 2.

TABLE 2. Parameter settings used in our experiment.

3) LOSS FUNCTION
The model is trained by minimizing the loss that has two
components, namely position loss LtP and dynamics stability
loss LtS.

The position loss LtP measures the deviation of the pre-
dicted trajectory T̂ n

t from the actual one T n
t . It is determined
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FIGURE 5. a) An unrolled recurrent neural network; b) Internal structure of a Gated Recurrent Unit [31].

by the RMSE of the Euclidean distances between correspond-
ing points in T̂ n

t and T n
t , i.e.,

LtP =

√√√√ n∑
i=1

d2
(
p̂t+i,pt+i

)
, (2)

where d(· , ·) yields the Euclidean distance between two
positions.

The dynamics stability loss, as the name suggests, reflects
the stability of the aircraft dynamics. It captures the variation
in the predicted aircraft velocity. Let v̂i = p̂i − p̂i−1 is the
predicted velocity of the aircraft at a time step i. The dynamics
stability loss of the n-step prediction horizon is determined by

LtS =

√√√√ n∑
i=1

d2
(
v̂t+i, v̂t+i−1

)
(3)

Note that when i = 1, v̂t+i−1 ≡ v̂t = pt − pt−1, which is the
current velocity of the aircraft and can be determined from
the model’s input. The total loss is then defined as

Lt = LtP + αL
t
S (4)

where α is a weight coefficient that determines the contribu-
tion of the dynamics stability loss to the total loss.

The inclusion of the dynamics stability loss is beneficial
in several manners. First, minimizing this loss helps the
model to learn the aircraft dynamics effectively. Physically,
the dynamics stability loss measures the fluctuation in the
predicted aircraft velocity in every time interval. As the tra-
jectory predictor is designed for en-route phase, during which
the aircraft velocity is relatively stable, it is desirable that this
velocity fluctuation to be insignificant. Second, experiments
shows that the second term in the right-hand side of Equa-
tion 4 has similar effect of a regularization term in typical
context of machine learning. That means, at an optimal value
of α, minimizing the dynamics stability loss contributes to
reducing over-fitting and improving generalization of the
model. Here, α is treated as a hyper-parameter that needs to
be determined empirically.

Let 2 denotes the set of all trainable parameters of the
model. The learning objective is to determine the optimal set

of parameters 2∗ that minimizes the total loss:

2∗ = argmin
2

L = argmin
2

∑
Tt

(
LtP + αL

t
S
)

(5)

III. DATA SOURCE & FEATURES ENGINEERING
In this section, we present the data source and features
engineering, including data pre-processing steps and aircraft
intent reconstruction from the trajectory data.

A. INTENT RECONSTRUCTION
As described in Section II-A, aircraft intent refers the planned
route of the aircraft. In this work, only ADS-B data is used,
without using filed flightplans of the flights presented in the
data. Thus, we reconstruct the planned routes, or the intent,
of the flights from their flown track data.

Intent reconstruction is performed at two levels. On the
first level, given a set of all designated significant points,
we identify those points that are sufficiently close to the
flown track of a flight, and consider them as the planned
route. Here, designated significant points (or waypoints) are
specified geographical locations in the airspace used to define
flight routes, and they can be collected from the Electronic
Aeronautical Information Publication (eAIP) of the related
Flight Information Regions (FIRs). For convenience, we refer
to the intent on this first level as ordinary intent.

ATCOs often vectors aircraft from their original plans due
to reasons such as conflict resolution, congestion manage-
ment, flows optimization, etc. In those situations, however,
the ATC clearances (in the form of voice instructions) given
to the flight crews are not captured in the ADS-B data. On the
second level of intent reconstruction, we also identify missing
trajectory change points (i.e., turn location) that were resulted
fromATC clearances, in addition to the designated significant
waypoints. We refer to the intent on this second level as
enriched intent. Note that to facilitate the enriched intent,
we first need to identify all turn segments in the trajectory
data.

1) TURN SEGMENT IDENTIFICATION
We determine the turn segments, noted as St , and non-turn
segment, Ss, by the geometric curvature and along a trajec-
tory. Recall that the curvature of a curve κ and its relationship

VOLUME 10, 2022 17887



P. N. Tran et al.: Aircraft Trajectory Prediction With Enriched Intent Using Encoder-Decoder Architecture

FIGURE 6. (a) Radius of a space curve in the calculation of curvature. (b) The determination of additional trajectory change
point for enriched intent. The addition trajectory change point is randomly located in the green circle.

with the curve radius R are given by:

κ =

∣∣∣∣∣d ETds
∣∣∣∣∣ = 1

R
(6)

where ET is the unit tangent vector of the trajectory, s is
the arc length, and R is the radius (Figure 6a). We define a
turn segment as a trajectory segment where all the points in
the segment have R ≤ 40 NM. This radius threshold was
determined empirically to reduce turns mis-detection.

FIGURE 7. Example of reconstructed ordinary intent (left) and enriched
intent (right) for a flown track.

2) ORDINARY AND ENRICHED INTENTS RECONSTRUCTION
Intent reconstruction is performed following the steps below.

a: ORDINARY INTENT
We choose designated significant waypoints to include in the
flightplan of a flight. For non-turn segment, Ss, a waypoint
is included when it is less than 2 NM apart from the flight’s
flown track. For turn segment, St , this threshold is 7 NM. The
ordinary intent for a trajectory can be written as:

IO = {wpi ∈W | dis(wpi,Ss) ≤ 2 NM

or dis(wpi,St ) ≤ 7 NM} (7)

where dis(wpi,S) is the closest Euclidean distance fromway-
point wpi to a segment S, and W is the set of all waypoints
in the airspace.

b: ENRICHED INTENT
To identify an additional trajectory change point (Figure 6b),
first, we determine the time tc at which the curvature reaches
its maximum value during the turn. Second, we find the posi-
tion of the aircraft at tc assuming the aircraft was following
the pre-turn direction. Finally, we randomly choose a point
within a noise circle of radius 1 NM, whose center is placed
at the position found in the second step (the green circle
in Figure 6b). The enriched intent for a trajectory can be
expressed by:

IE = IO ∪ {TCPi} (8)

where each TCPi is an identified trajectory change point.
An example of ordinary and enriched intents for a trajectory
is demonstrated in Figure 7.

B. DATA SOURCE AND PRE-PROCESSING
The data used in this work is Automatic Dependent
Surveillance–Broadcast (ADS–B) provided by the Civil Avi-
ation Authority of Singapore. The data covers a geographical
region of latitude from N0◦0′ to N25◦0′, longitude from
E85◦0′ to E125◦0′ (Figure 8), and dated from March 15th
2019 to April 30th 2019. We consider all the aircraft flown
tracks in the mentioned region during the chosen time win-
dow, and this results in a total of 16,884 flight trajectories.
The following pre-processing steps were applied.

1) DATA FILTERING AND TRAJECTORY RE-SAMPLING
The following conditions were applied for filtering data to
remove noises:
• A trajectory needs to have at least one hour of data in
the mention region and has no missing positions during
a time window of 1000 seconds.
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FIGURE 8. The geographical region (shaded area) of the ADS-B data
considered in this work.

• The computed ground speed from aircraft’s positions
should be stable. Therefore, we discard trajectories that
give rise to speed outliers. Concretely, the top 1 percent
and the bottom 1 percent in distribution of computed
speeds is omitted.

• Only parts of the trajectories that are between flight
levels 290 and 410 are maintained since we focus on the
en-route phase.

After this filtering process, 2882 trajectories remained for
training and evaluation. Since the proposed model requires
the input and output sequences to have equal time interval
between any two consecutive data points, we employed cubic
spline interpolation for trajectory re-sampling with a fixed
time interval of 15 seconds. We chose this re-sampling inter-
val because it helps to reduce the amount of training data
being fed to the model and therefore speed up model training
without compromising the prediction accuracy.

2) TRAIN & TEST DATASETS SPLITTING
We construct the train dataset using the trajectory data
dated from March 15th to March 25th, and the remaining
data is used for testing and evaluation. The train dataset
includes 690 flight tracks with 358,294 data points and the
test dataset includes 2192 flight tracks with 1,130,913 data
points. We use data from the first 11 days, about 25% of
the total data, to train the model and use the remaining data
to test the performance of the trained model. Experiments,
which is discussed in detail in Section IV-A, showed that the
proposed model converges with this amount of training data
and there is little benefit of using more training data. We also
observed that allocating more data for testing could help to
better evaluate the prediction robustness and stability of the
model.

C. DATASET PREPARATION
1) TRAINING SAMPLES GENERATION
From the pre-processed trajectory data, we generate a sample
by choosing at random a point in a trajectory as the aircraft

current position. We then combine the aircraft current posi-
tionwith k most recent positions to form the input sequence of
length (k+1). The sequence of next n points after the aircraft
current position is regarded as the true value of the output
sequence. Thus, each sample contains an input sequence and
a true output sequence.

2) COORDINATES TRANSFORMATION
Initial experiments showed that the training is more robust
when all positional coordinates in each training sample are
expressed in a local Cartesian coordinate system instead of
using the global geodetic coordinates (i.e., latitude, longitude,
altitude). Therefore, for each sample, we transform all geo-
graphic positions from the global geodetic coordinate to a
local tangent plane, i.e., east-north-up (ENU), coordinate.
This transformation also applies to the computation of the
intent vector. The origin of the local ENU frame is always
placed at the aircraft current position of each data sample.
The output of the decoder are also coordinates in the local
ENU frame.

TABLE 3. Hyper-parameters settings for model training.

IV. EXPERIMENTS & RESULTS
A. MODEL TRAINING AND HYPER-PARAMETERS
The proposed model architecture and learning algorithm are
implemented in Python language using PyTorch deep learn-
ing library. In particular, we utilize a mini-batch stochastic
gradient descent method to train our network model with
automatic differentiation. The Adam optimizer, a variant of
this method implemented in PyTorch, is selected to use in our
experiment with learning rate set to 0.0001.

RNNs in general and GRUs specifically are slow to train
due to the fact that elements in the output are computed
sequentially, one after another. Using large mini-batch size
and taking advantage of GPU computing can reduce the
training time significantly. To further save the training time,
we start with large mini-batch size (i.e., 256 samples per
batch) at the beginning of the training, and gradually reduce
the batch size to as small as 32 samples. In such manner, the
final set of model’s parameters are obtained after 100 training
epochs.

In the final settings, our model predicts the next 40 future
positions of the aircraft given the most recent 10 positions,
including the current position. In the training phase, however,
the output length of the decoder is not necessarily fixed.
In fact, we observed that the model converges faster and
more robust if we allow the output length to alternatively take
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values from the range [5, 40]. More specifically, small values
of n (i.e., 5 or 10) help the model to converge faster in the
‘‘right’’ direction at the beginning. After that, larger values
of n allow the model to improve its performance on longer
prediction horizon. Thus, in training time, n takes controlled
random values within this range, as indicated in Table 3. Once
the model has been trained, we set n = 40 for evaluation.
Such flexibility in the output length is offered by the GRU
network of the decoder.

We also empirically determine the dynamics stability loss
coefficient (α) to be 0.25. Hyper-parameters regarding the
model architecture are shown in Table 2. Hyper-parameters
for model training are indicated in Table 3.

B. INDEX OF PERFORMANCE
Euclidean distance is a common choice for measuring simi-
larities in trajectory prediction evaluation. We employ Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
to evaluate the error in the predicted trajectory.

RMSE =

√√√√1
n

n∑
i=1

d2
(
p̂i,pi

)
(9)

MAE =
1
n

n∑
i=1

d
(
p̂i,pi

)
(10)

where n is the length of output sequence, p̂i and pi are the true
and predicted positions, respectively.

We also consider along-track error (ATE), cross-track
error (CTE) for performance evaluation [5]:

ATE = 1p(1) sinϕ +1p(2) cosϕ (11)

CTE = 1p(1) cosϕ −1p(2) sinϕ (12)

where 1p(1) = p̂(1) − p(1), 1p(2) = p̂(2) − p(2), ϕ is
the angle between the aircraft track and the north direc-
tion. Note that p(1) and p(2) are coordinates in the local
ENU reference frame. The ATE and CTE are illustrated in
Figure 9.

C. RESULTS ANALYSIS
Table 4 compares model’s performance on inputs with ordi-
nary intent and that with enriched intent, in terms of RMSE
and MAE of the Euclidean distances between true positions
and the predicted ones, at different look-ahead times. In gen-
eral, the prediction errors grow linearly with the prediction
horizon. When ordinary intent is provided, from 1 to 10 min-
utes look-ahead time, RMSE grows from 0.49NM to 4.9 NM,
and MAE from 0.3 NM to 3.3 NM. When enriched intent is
available, RMSE ranges from 0.4 NM to 3.4 NM and MAE
from 0.3 to 2.6 NM, from 1 to 10 minutes of prediction
horizon. One can also observe that the RMSE/MAE ratio in
the case with ordinary intent is higher than that when using
enriched intent. This suggests that large errors arise more fre-
quently when the provided intent information is insufficient
or incorrect, which happens when the intent is not enriched.

FIGURE 9. Along-track error (ATE) and cross-track error (CTE) of predicted
aircraft position.

The analysis in Table 4 also indicates that providing the
model with enriched intent significantly reduces both errors,
comparing to the case where only ordinary intent is con-
sidered. In specific, when enriched intent is used, RMSE
improves approximately 14% to 30% depending on the look-
ahead time, and MAE improves approximately 11% to 20%.
It is very interesting to observe that the improvement in two
types of error is more significant when the prediction horizon
is farther into the future. This suggests that enriched intent
of the aircraft plays a more important role in maintaining
accurate predictionwhen one performs predictionwith longer
look-ahead time. For short-term prediction, the recent state
of the aircraft influences the prediction performance more
than the intent does. In fact, finding the dynamic balance
between the influence of recent behavior and that of future
intent when making prediction at different look-ahead times
is an important exercise in model design.

TABLE 4. Model prediction performance in terms of RMSE and MAE (in
nautical miles) at different look-ahead times. The results are shown for
two different levels of intent reconstruction.

We now examine further the model performance by inves-
tigating cross-track error (CTE) and along-track error (ATE).
As shown in Figure 9, CTE indicates how much the aircraft
slide off the actual course, while ATEmeasures the difference
between the projected position along the actual course and its
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true value. Figure 10 presents boxplots of these two errors
at different prediction horizons. For CTE (Figure 10a), the
model achieves a good prediction accuracy, where 50% of
the errors are below 1 NM and 75 % of them below 1.8 NM,
at 10 minutes prediction horizon. For ATE (Figure 10b),
the median value of the error goes from about 0.15 NM
at 1 minute look-ahead time to 1.5 NM at 10 minutes. The
ATE is not as low as the CTE due to the fact that uncertainty
grows faster during the longitudinal progress. One attribute of
the ATE is that it can be used to estimate the error in arrival
time of the aircraft at certain point in the future, given infor-
mation about the aircraft speed. A common property of CTE
and ATE observed from Figure 10 is that they both linearly
increasewith the look-ahead time. The accumulation of errors
over many sequential prediction steps can not be completely
avoided, unfortunately. Nevertheless, the model is successful
in avoiding large explosion of the errors over time, and the
consistent linear relationships between errors and prediction
horizon makes the errors’ behavior more predictable.

Figure 11 shows the distributions of CTE and ATE at three
different prediction horizons of 2, 5, and 10 minutes, per-
formed on the test dataset. These distributions also indicate
that a majority of test cases produce low errors. For example,
it can be observed that at 2 minutes look-ahead time, about
75% of the cases have both CTE and ATE below 0.5 NM.
When we look farther into the future, e.g., at 5 minutes, about
75% of the test cases have CTE below 1 NM and have ATE
below 1.3 NM. Longer look-ahead time amplifies the gap
between CTE and ATE because of the effect of increasing
uncertainty during the longitudinal progress, as wementioned
earlier.

The model predicts the aircraft future trajectory without
information about aircraft performance. In air traffic man-
agement, aircraft performance (or aircraft type) is usually
associated with their wake turbulence categories (WTC),
i.e., light, medium, and heavy aircraft. To verify the model
performance for different aircraft categories, a further inves-
tigation on the prediction errors is performed on different
WTCs. Figure 12a shows the statistics of different air-
craft types presented in the test dataset, and how they are
grouped into medium and heavy WTCs (en-route airspace
have medium and heavy aircraft only). We allow the model
to perform prediction for the medium and the heavy groups
separately, and the results are shown in Figure 12b in terms
of mean Euclidean distance errors. It is observable from
Figure 12b that the difference in prediction errors between
the two groups of WTCs is insignificant. The insignificant
difference between these errors suggests that the model does
not have any bias toward any specific WTC, and the model’s
performance is consistent regardless of aircraft WTC. This
also indicates that our design of the encoder is able to char-
acterize the dynamics of different aircraft types; thus, the
explicit information of the aircraft type can be safely removed
from the input. This is an important feature offered by our
model as it helps to limit the amount of information needed
while maintaining stable and high performance.

Now, we offer a comparison between performance of our
model and that of the model recently developed in [46].
We choose the work [46] for benchmark for it also attempted
to embed intent of the aircraft in the prediction model in the
form of physical constraints. The model in [46] also made use
of LSTM network, which can be considered as a variant of
recurrent neural network like GRU. One difference between
the two is that the model in [46] makes use of the constraint
as a part of the loss function, while we input the aircraft intent
to the decoder. In this study, the proposed model takes as
input the last 10 positions and can predict future trajectory
as a positions sequence of flexible length, where the time
interval between two consecutive points is 15 seconds. The
model in [46] takes as input the last 10 positions and predicts
a position at 15 seconds into the future. Thus, for comparison,
we allow our model to predict one step of 15 seconds and
compare the prediction with that of [46]. The prediction error
resulted from our model is accumulated after every prediction
step; thus, a small error in a single-step prediction is desirable.

TABLE 5. Performance benchmark with state-of-the-art model.

The comparison is presented in Table 5. The benchmark
shows that our model performs significantly better and more
stable than cLSTM does, in terms of MAE and RMSE of
latitude and longitude predictions. The fact that the ratios
RMSE/MAE of our model (1.38 for latitude and 1.31 for
longitude) are significant lower than that of cLSTM (4.06
for latitude and 4.59 for longitude) suggests that our model
produces very low variance compared to cLSTM, and that
large errors happen less frequently in our case than they do in
cLSTM.

TABLE 6. Model prediction increment in mean and standard deviation of
errors by minute.

To further assess the model performance, we compute
the error growth rates at different prediction horizons. The
error growth rate measures how much the prediction error
is worsened after every minute of look-ahead time. A good
predictor should be able to keep these error growth rates
within bounds. Table 6 presents the growth rates of ATE and
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FIGURE 10. Boxplots of (a) Cross-Track error and (b) Along-Track error at different prediction horizons.

FIGURE 11. Distribution of Cross-Track Error (CTE) and Along-Track Error (ATE) at different prediction horizons. The first row shows CTE and the second
row shows ATE. The three columns indicate three prediction horizons at 2, 5, 10 minutes, from left to right.

CTE in terms of mean and standard deviation (std) of the
errors, in the unit of NM per minute. It can be observed that
the error growth rates produced by our model are very stable,
in terms of mean and std of the error, for both along-track
and cross-track. This indicates that our model can effectively
manage the accumulated prediction errors when prediction
horizon becomes farther into the future.

The EUROCONTROL Specification for Trajectory Predic-
tion [2] specifies the required growth rates for ATE of mean
0.1 NM/min and std 0.2 NM/min, and for CTE of mean

0.1 NM/min and standard deviation of 0.3 NM/min. In terms
of mean growth rate, the model performance is quite close
to the specifications. The model demonstrates that it can
maintain a very low variances in the error growth rates despite
increasing look-ahead time. In specific, for 10 minutes look-
ahead, the proposed model offers ATE growth rate std rang-
ing from 0.132 NM/min to 0.167 NM/min, which is lower
than 0.2 NM/min. For CTE, in 10 minutes prediction hori-
zon, the proposed model produces growth rates std ranging
from 0.121 NM/min to 0.171 NM/min, which is significantly
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FIGURE 12. Prediction errors for different aircraft wake categories. (a) Number of different aircraft types in the test set. (b) Mean of prediction errors for
medium and heavy aircraft.

FIGURE 13. Four scenarios of aircraft trajectories being simulated in the BlueSky ATC Simulator and their corresponding predicted trajectories by the
model. In each scenario, the left figure demonstrates the trajectory segment on the BlueSky’s screen, and the right figure shows comparison between
simulated (red) and predicted (green) trajectories, given the input to the model (i.e., recent locations of the aircraft) in blue.

low comparing to 0.3 NM/min. Although there is room for
improvement in the mean of error growth rates, the results
are promising if one takes into consideration that the model
requires only recent trajectory and simple intent information
as input.

V. SIMULATION VALIDATION
To further evaluate the performance of the prediction model,
we perform model validation in an air traffic simulator.
The BlueSky ATC Simulator [49] is used for this pur-
pose. BlueSky is an open-source and research-oriented air
traffic simulator that can integrate highly realistic aircraft
dynamics via the EUROCONTROL’s Base of Aircraft Data
(BADA) [50]. To simulate an aircraft trajectory, the BlueSky
simulator takes the flight-plan and aircraft type as inputs and
generates a 4D trajectory. A flight-plan generally includes
all the waypoints that the aircraft is going to traverse and

the constraints (i.e., air speed, altitude, heading etc.) at each
waypoint.

To facilitate the validation, we prepare a validation tra-
jectories dataset in which each trajectory is simulated by
the BlueSky’s Flight Management System (FMS) given
the respective pre-defined flight-plan. During flight simula-
tion, locations of aircraft are recorded at every 15 seconds.
The trained model takes the 10 most recent locations of
an aircraft as inputs and predicts the aircraft’s location in
the next 10 minutes. Model performance is evaluated by
the errors when comparing the predicted trajectories with the
BlueSky simulated ones, in terms of along-track and cross-
track errors. The validation dataset consists of 1,138,343 data
points in total.

Figure 13 depicts four scenarios of aircraft trajectories
being simulated in the BlueSky simulator and the compar-
ison between the simulated trajectories and the predicted
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FIGURE 14. Boxplots of (a) cross-track and (b) along-track errors at
different prediction horizons between the predicted trajectories by the
model and the simulated trajectories by the BlueSky Simulator.

TABLE 7. Validation results in BlueSky simulator: along-track and
cross-track errors growth rate at different prediction horizons.

ones. These four scenarios are chosen to demonstrate the
model’s performance at different kinds of aircraft intent
(i.e., waypoints in the flight-plan) and at different segments
(i.e., straight and turn segments) of the trajectory. It is observ-
able that the model predicts the aircraft future locations
equally well during the straight and turn segments of the
trajectory. ATE and CTE of the validation are presented in
Figure 14, in which the errors resulted from the validation
in BlueSky Simulator are comparable with the errors per-
formed on the ADS-B test dataset (Figure 10). Furthermore,

the cross-track and the along-track error growth rates during
simulation validation, as shown in Table 7, also approach the
test results performed on ADS-B data earlier (Table 6). This
consistency in model’s performance suggests that the model,
which is trained on ADS-B dataset, can generalize well in the
simulation environment without the need of further training.

VI. CONCLUSION
In this work, a deep learning model, based on encoder-
decoder architecture, is proposed for aircraft trajectory
prediction by modeling and incorporating aircraft intent.
Specifically, an encoder network that effectively learns pat-
terns in the behavior of aircraft without the need of explicit
information about the aircraft performance and a decoder
network that fuses information about aircraft future intent into
the knowledge about its recent behavior, and effectively pre-
dicts future trajectory of the aircraft is designed. We demon-
strate that an effective modeling and incorporation of intent,
could improve the prediction performance up to 30% in terms
of Root Mean Squared Error of Euclidean distance between
predicted and true positions, at 10 minutes prediction hori-
zon (look ahead time for Conflict Detection models in Air
Traffic Control systems). Our approach also produce very low
variance in the prediction, compared to the standards required
by EUROCONTROL. The accumulated prediction error over
time is also well managed by the proposed model. The model
is also able to discriminate different aircraft dynamics during
prediction without the need of explicit information about
aircraft wake categories. With these features, the proposed
model outperforms the existing state-of-the-art model in air-
craft trajectory prediction. Another benefit from the proposed
approach is that the model requires minimal amount of infor-
mation to perform the prediction.

A key factor that contributes to the safe operation of an
airspace sector is the situational awareness of air traffic con-
trollers, and this in turn depends on how well the controllers
anticipate the traffic movement, particularly all aircraft future
locations. Thus, an accurate and reliable aircraft trajectory
prediction would be valuable for the controllers to probe
any potential incidents in the sector and resolve them timely
and efficiently. Future extensions of this work may include
(1) extended design of model architecture for incorpora-
tion of multi-aircraft intent, (2) modeling of uncertainty in
the implementation of ATCO instructions by flight crews,
(3) analysis of effects of traffic flow management strategies
used by ATCOs on aircraft intent, (4) further investigation of
model performance using actual ATC clearance data instead
of enriched intent, etc.
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