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ABSTRACT In this paper, an augmented fault tolerant attitude control system is presented to address the
problem of attitude adjustment for a quad-rotor unmanned aerial vehicle with inertia parameter uncertainties,
the external disturbance and the partial loss of actuator effectiveness. To tackle system uncertainty and
actuator faults, a fixed time compensation controller is developed based on adaptation mechanism combing
with a monitor strategy and Nussbaum gain technique. Robust compensation algorithms under the proposed
closed loop system structure are derived in the sense of Lyapunov stability analysis such that the attitude
tracking-errors converge to a prescribed compact set in a fixed time. Finally, the simulation results demon-
strate the effectiveness of the proposed controller.

INDEX TERMS Quadrotor attitude control, monitor strategy, partial loss of actuator effectiveness, compen-
sation control law design.

I. INTRODUCTION
In recent years, quadrotor unmanned aerial vehicles (QR-
UAV) have been widely developed because of their unique
features such as their hovering, agility and high maneuver-
ability abilities. Nowadays, quadrotors have been applied in
several types of tasks including agricultural services, moni-
toring over nuclear reactors, mapping and law enforcement
and surveillance. The above mentioned tasks imposes new
demands in the areas of control theory and flight control
system design in order to improve unmanned quad-rotors
capable of operating in harsh environments and coping with
complex missions [1]–[4]. Currently, many nonlinear con-
trol methods have been proposed for unmanned quadro-
tors [5]–[15]. In [5], iterative learning control is used to
update the feed-forward input signal to the quad-rotor sys-
tem with recurring uncertainties for achieving high two-
dimensional tracking performance. In [6], [7], the trajectory
tracking problem of quadrotor is analyzed and successfully
tackled by a robust control scheme without linear-velocity
measurements. In addition, the other control strategy such
as adaptive compensation control methods [8], [9], back-
stepping control strategies [10]–[12], and robust control
method [13]–[15] have been also proposed for the attitude
and trajectory tracking control of quadrotor.

The associate editor coordinating the review of this manuscript and
approving it for publication was Farid Boussaid.

Although a number of designed control strategies, inspired
from modern control theory, have been proposed for quadro-
tors, most of the research deals only with the uncertain
external disturbances, assuming that there is no actuator fault
during the entire flight process. This assumption is rarely
satisfied in practice application because some faults may
occur due to the increased friction induced by a failure of
bearings between stator and rotor, thermal aging of com-
ponents, and current drive. That means if the flight control
system is designed without any fault tolerance capability,
an abrupt occurrence of an actuator failure could ultimately
fail. Therefore designing an efficient controller to maintain
flight stability and acceptable performance, despite an abrupt
occurrence of an actuator fault, is a critical issue for flight
safety. In [16], a robust control law based on back-stepping
technique is proposed for QR-UAV with actuator and sensor
faults. Zhang et al. [17] developed a robust fault tolerant
control of QR-UAV with actuator partial loss of effectiveness
faults. Davood et al. [18] proposed an approach for fault
tolerant control of QR-UAV in trajectory tracking control,
which the fault tolerance is achieved by iterative learning
control algorithm so that the stability of the closed-loop
system can be guaranteed. To deal with the coexistence of
the external disturbances and actuator failures, the adaptive
compensation control method [19]–[23] using the on-line
parameters estimation has been prove to be a powerful tool
for solving the flight control problem of quadrotor with the

22568
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1530-2840


J. Dong et al.: Attitude Compensation Control for Quadrotor Under Partial Loss of Actuator Effectiveness

partial loss of actuator effectiveness. Especially based on
the idea of Nussbaum gain technique, Song textitet al. [24]
designed an adaptive compensation strategy and explored
the design of fault tolerant controller in the context of UAV
attitude tracking control.

The research results mentioned previously have achieved
various degrees of success in solving actuator failures. Never-
theless, the three aspects still need to be explicitly considered
in the fault tolerant control design of quadrotor. First of all,
many existing attitude tracking of quadrotor with actuator
failure assume that the system parameters can be accurately
obtained. On the basis of this assumption condition, the fault
tolerant controls are developed [16]–[18]. Unfortunately, the
system parameters (including the thrust factor and drag coef-
ficients or the inertia moment of rotor about its axis of rota-
tion) are hard to measure exactly in real application. It means
that the fault tolerant control schemes with the precise system
parameters condition are not easy to be applied in practical
engineering. Secondly, the above developed fault tolerant
control laws [16]–[18], [20]–[25] can only guarantee that
the tracking error converges asymptotically to the equilib-
rium point or to a small neighborhood of equilibrium point,
while the asymptotic convergence feature is not ideal for
rapid recovery control performance in dealing with faults
arisen from actuators. Indeed, a rapid maneuvering capability
incorporating with a preassigned error convergence time can
improve the response speed of closed loop system even in
case of actuator failure. The third aspect, the control accu-
racy derived from the aforementioned fault tolerant control
methods [19], [22]–[25] cannot be calculated accurately due
to the unknown upper bound of the nonlinear term in the
closed loop system. The tracking accuracy under these results
(see [22], [24], [25]) can be concluded from the inequality in
the form of V̇ (t) ≤ −µ · V (t)+ δ, where V (t) is a Lyapunov
energy function, µ is the related design parameter, and δ is
unknown but bounded function. It is obvious that the exact
error convergence domain cannot be obtained if δ is unknown.
Consequently, these methods are difficult to apply to some
flight missions that require specific control accuracy.

Motivated by the above discussions and analysis, the main
contributions of this thesis are as follows

1) In contrast to the literatures [16]–[18], in this paper an
monitor compensation algorithm combing with Nuss-
baum gain technique is introduced into the closed loop
system, which not only does not require knowledge of
the system parameters but it also releases the conserva-
tive nature of the fixed gains selected in the control law,
and hence the proposed strategy is more applicable for
the real engineering.

2) Robust fault tolerant control methods [16]–[18] and
adaptive fault tolerant control schemes [20]–[25] can
achieve asymptotic tracking control of quadrotors sub-
ject to partial loss of actuator effectiveness, in this
work, an adaptive compensation control structure
assisted by the fixed-time prescribed performance

function is constructed to regulate the predetermined
control performance of the tracking error and to elimi-
nate the effects of adverse factors on the system. Unlike
the results in [16]–[25], the proposed control method
can set the control indexes in advance, one is the
preset control accuracy, and the other is the time to
reach the preset control accuracy, and moreover the
proposed control approach can ensure that the attitude
tracking errors reach the preset control accuracy in a
preassigned time instead of unknown time, regardless
of whether actuator fault occurs or not. This means
that the feature of the proposed approach allows faster
corrective responses and maintains the essential safety
requirements of the quadrotor.

The remainder of this paper is organized as follows:
Section II introduces the quadrotor model and gives the prob-
lem description. The control solution is presented in Sec. III.
Section IV demonstrates the application of the derived con-
trol algorithm to a quadrotor with the partial loss of actuator
effectiveness. Conclusions are given in Sec. V.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PRELIMINARIES
Definition 1: A function is said to be a fixed-time perfor-
mance function β (t) if it has the following properties:

1) β (t) > 0 is continuous and non-increasing function for
t ∈ [0, +∞);

2) β̇ (T ) = 0 with the arbitrarily setting time T ∈
(0, +∞);

3) β (t) = β̄ if t ≥ T , where β̄ is a design parameter.

Combining with the definition above, the following fixed-
time performance function βi (i = 1, 2, 3) are proposed for
the design of the closed-loop system:

βi (t)

=

{
ci1 · sinn+1

( π
2T

(T − t)
)
+ ci2, if 0 ≤ t ≤ T

ci2, if t > T
(1)

where T , ci1 > 0, and ci2 > 0 are design parameters; n+ 1 is
the integer power of function sin(π(T − t)

/
(2T )). Obviously,

formula (1) satisfies the all properties of definition 1. In the
control system design, we select n + 1 = 3. For brevity, the
time variable t will be omitted in the following.
Lemma 1 [26]: The following inequality holds for any a ∈

R+ and y ∈ R:

0 ≤ |y| − y · tanh
( y
a

)
≤ 0.2758 · a. (2)

Lemma 2 [27]: For a continuous and non-increasing func-
tion β (t), the following inequality holds for z ∈ R in the
interval |z | < β (t):

ln
β2 (t)

β2 (t)− z2
≤

z2

β2 (t)− z2
, (3)

VOLUME 10, 2022 22569



J. Dong et al.: Attitude Compensation Control for Quadrotor Under Partial Loss of Actuator Effectiveness

B. PROBLEM FORMULATION
Consider a quadrotor with possible actuator faults, and its
attitude model is described as follows [24], [25]: ẋ1 = x2

ẋ2 =
1
Ix

[
(Iy − Iz) · x4x6 + x4Jr�̄r + blbρ1u1 + Tx

] (4a)

 ẋ3 = x4

ẋ4 =
1
Iy

[
(Iz − Ix) · x2x6 + x2Jr�̄r + blbρ2u2 + Ty

] (4b)

 ẋ5 = x6

ẋ6 =
1
Iz

[
(Ix − Iy) · x4x2 + χ lbρ3u3 + Tz

] (4c)

where x1, x2, and x3 are the roll angle, pitch angle, and yaw
angle, respectively; Ii (i = x, y, z) are the inertia parameter
of quadrotor; b and χ are the aerodynamic drag coefficients;
ρi(i = 1, 2, 3) are the health indicator satisfying 0 < ρi ≤

1; �̄r is the overall residual rotor angular being considered
as a bounded disturbance; ui(i = 1, 2, 3) represent control
inputs; lb represent the arm length of quadrotor; Jr denotes
the moment of inertia of each rotor; Ti(i = x, y, z) are the
external disturbances. The flight attitude of the quadrotor is
shown in Figure 1.

FIGURE 1. Flight attitude of quadrotor.

For simplicity’s sake, the attitude subsystem (4a)–(4c) can
be rewritten as{

ẋ2i−1 = x2i,
ẋ2i = $i4i + λiui, (i = 1, 2, 3)

(5)

where 41=[ − x4x6, x4, 1], 42=[x2x6, x2, 1], 43=[x4x2, 1],
$1 = [(Iz − Iy)

/
Ix , Jr�̄rx

/
Ix ,Tx

/
Ix]T ,$2 =[(Iz − Ix)

/
Iy,

Jr�̄r
/
Iy,Ty

/
Iy]T , $3 = [(Ix − Iy)

/
Iz,Tz

/
Iz]T , λ1 = ρ1b lb/

Ix , λ2 = ρ2b lb
/
Iy, and λ3 = ρ3χ lb

/
Iz.

To develop our main results, we need the following
assumptions and lemmas:
Assumption 1: There exist a unknown constant ϑsuch that

max{|Tx |, |Ty|, |Tz|} ≤ ϑ .
Assumption 2: The parameters of subsystems (4a)–(4c)

belong to the compact set �1 = { δ1 ≤ Ix ≤ δ̄1, δ2 ≤

Iy ≤ δ̄2, δ3 ≤ Iz ≤ δ̄3, δ4 ≤ b ≤ δ̄4, δ5 ≤ d ≤ δ̄5, δ6 ≤

Jr�̄r ≤ δ̄6}, where δ̄1, δ̄2, δ̄3, δ̄4, δ̄5, δ̄6, δ1, δ2, δ3, δ4, δ5, and
δ6 are unknown positive constants.
Assumption 3: The command signals x(2i−1)d (i = 1, 2, 3)

are bounded, and moreover their first and second derivatives
are bounded.
Assumption 4: The initial states x2i−1(0)(i = 1, 2, 3) are

bounded, and there exist a positive constant ζ such that
max{[x2i−1(0)− x(2i−1)d (0)]2} ≤ ζ .
Remark 1: From a practical point of view, considering

that the unknown external disturbance energy is finite and
the physical parameters (e.g. aerodynamic drag, the inertia
parameter, etc.) are objectively existing and bounded in real
system, hence Assumptions 1 and 2 are reasonable. It should
be noted that the respective boundary value for external dis-
turbances and the system parameters are not involved in the
design of the control law. Additionally, we plan a bounded
smooth function as the desired attitude command signal to
achieve low-speed missions rather than aggressive attitude
task, it means that the upper bound of initial attitude angles
can be determined previously. Therefore, Assumptions 3 and
4 are valid.
Remark 2: In (4a)–(4c), ρi (i = 1, 2, 3) are introduced

into the attitude subsystem in order to describe the partial
loss of actuator effectiveness. In particular, the actuators work
normally if ρi = 1. Correspondingly, there exist the partial
loss of actuator effectiveness if 0 < ρi < 1. Noting that, the
case ρi = 0 is beyond the scope of this paper. Combining the
Assumption 2 and 0 < ρi ≤ 1(i = 1, 2, 3), it is obviously that
λi (i = 1, 2, 3) are positive and unknown bounded parameter
based on the definition of λi, and therefore there exist the
positive constants ιi (i = 1, 2, 3) such that 0 < λi ≤ ιi. Notice
that ιi are only used for analysis and are not involved in the
design of the control law.
In this paper, the control objective is to design an fault

tolerant control law for attitude tracking of QR-UAV with
the partial loss of actuator effectiveness such that the attitude
tracking errors reach the preset control accuracy in the spec-
ified time.

III. THE CONTROL SYSTEM DESIGN
In this section, we use back-stepping design procedure to
obtain a fault tolerant attitude controller with fixed-time pre-
scribed performance [26], [27] and the main theorem.

A. THE FAULT TOLERANT ATTITUDE CONTROLLER DESIGN
Step 1: To develop the fixed time fault tolerant control
method, the following the attitude tracking error e2i−1 and
the auxiliary error e2i (i = 1, 2, 3) are introduced first, i.e.,

e2i−1 = x2i−1 − x(2i−1)d , (6)

e2i = x2i − αi, (7)

where αi(i = 1, 2, 3) are the virtual control laws, and it will
be given later. From (5), (6) and (7), the time derivative of
e2i−1 yields

ė2i−1 = ẋ2i−1 − ẋ(2i−1)d = x2i − ẋ(2i−1)d
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= e2i + αi − ẋ(2i−1)d . (8)

Consider the following barrier Lyapunov function
V1i (i = 1, 2, 3) and define a compact set �V :

V1i =
1
2
log

β2i

β2i − e
2
2i−1

, (9)

�V = {e2i−1 | |e2i−1| < βi ≤ βi (0) , i = 1, 2, 3 } , (10)

where βi are defined in (1). To ensure that e22i−1(0) < β2i (0),
the design parameters ci1 and ci2 (ci1 and ci2 are presented in
βi) need to meet the following condition:

(ci1 + ci2)2 > ζ. (11)

Remark 3: On the basis of e22i−1(0) = [x2i−1(0) −
x(2i−1)d (0)]2 ≤ ζ in Assumption 4 and βi(0) = ci1 + ci2.
Obviously,e22i−1(0) < β2i (0) if the condition (11) hold, and
moreover e2i−1(t) < βi(t) for ∀t > 0 can be satisfied as
long as 1

/
(β2i − e

2
2i−1) is made bounded. The boundedness

of 1
/
(β2i − e

2
2i−1) will be prove in stability analysis.

By differentiating V1i and using (8), we have

V̇1i =
1
2
·
β2i − e

2
2i−1

β2i

·
2βiβ̇i(β2i − e

2
2i−1)− β

2
i (2βiβ̇i − 2e2i−1ė2i−1)

(β2i − e
2
2i−1)

2

=
e2i−1ė2i−1
β2i − e

2
2i−1

−
β̇i

βi
·

e22i−1
β2i − e

2
2i−1

=
e2i−1

β2i − e
2
2i−1

(
e2i + αi − ẋ(2i−1)d

)
−
β̇i

βi
·

e22i−1
β2i − e

2
2i−1

.

(12)

Then, the virtual control law αi (i = 1, 2, 3) are deigned as

αi = ẋ(2i−1)d −
η2i−1 · e2i−1

2
+
β̇ie2i−1
βi

, (13)

where η2i−1(i = 1, 2, 3) are positive design param-
eters. The derivatives of αi is used in subsequent
section. Here, α̇i can be calculated as α̇i= ẍ(2i−1)d −
η2i−1(x2i − ẋ(2i−1)d )

/
2+β̈ie2i−1

/
βi +β̇i(x2i − ẋ(2i−1)d )

/
βi

− β̇2i · e2i−1
/
β2i .

Substituting (13) into (12) and using the Lemma 2, then we
have

V̇1i

=
e2i−1

β2i −e
2
2i−1

(
ẋ(2i−1)d−

η2i−1e2i−1
2

+
β̇ie2i−1
βi
−ẋ(2i−1)d

)
−
β̇i

βi
·

e22i−1
β2i − e

2
2i−1

+
e2i−1e2i
β2i − e

2
2i−1

= −
η2i−1

2
·

e22i−1
β2i − e

2
2i−1

+
e2i−1e2i
β2i − e

2
2i−1

≤ −
η2i−1

2
· log

β2i

β2i − e
2
2i−1

+
e2i−1e2i
β2i − e

2
2i−1

. (14)

Step 2: By taking derivative of (7) with respect to time and
using the second equation of (5), one has

ė2i = ẋ2i − α̇i = $i4i + λiui − α̇i. (15)

Note that the nonlinear lumped term$i(i = 1, 2, 3) in (15)
contain unknown bounded parameters and bounded external
disturbances, and therefore there exists the positive constants
σi (i = 1, 2, 3) such that |$i| ≤ σi. Combining with (15),
we can obtain that

e2iė2i = e2i ($i4i + λiui − α̇i) ≤ |e2i|

·σi · |4i| + e2i (λiui − α̇i) . (16)

In order to deal with the unknown parameters λi (i =
1, 2, 3), the Nussbaum gain technique is employed in con-
troller design. A function N (κ) with smooth function κ is
called a Nussbaum-type function if it has the following
properties:

lim
s→∞

sup
1
s

∫ s

0
N (κ) dκ = +∞,

lim
s→∞

inf
1
s

∫ s

0
N (κ) dκ = −∞.

From the above two properties, we know that Nussbaum
functions should have infinite gain and infinite switching fre-
quencies. The commonly used Nussbaum functions include:
κ2 cos κ, κ2 sin κ , and eκ

2
cos[(π/2)κ]. In this paper, the

Nussbaum function N (κ) = eκ
2
cos[(π/2)κ] is used.

Lemma 3 [28], [29]: For a smooth function κ(t) on interval
[0, tf ), and a smooth Nussbaum-type function N (κ), if a
positive definite function V (t) on the same interval satisfies
the following inequality:

V (t)≤h0+
∫ t

0

(
ρ∗ · N (κ) · κ̇+κ̇

)
e−h1(t−τ)dτ , ∀t ∈ [0, tf ),

(17)

where h0 represents a suitable constant, h1 is a positive con-
stant, ρ∗ is a time-varying parameter which takes values in
the unknown closed intervals I = [I−, I+] with 0 /∈ I , then
V (t), κ , and

∫ t
0 ρ
∗
· N (ρ) · κ̇dτ must be bounded on [0, tf ).

Next, we construct the attitude control law as

ui = ui_part1 + µ i · ui_part2, (i = 1, 2, 3), (18)

in (18), the detailed contents of ui_part1, ui_part2 and µi are
given as follows

ui_part1 = N (κi) ·

(
η2i−1 · e2i − α̇ i +

e2i−1
β2i − e

2
2i−1

)
, (19)

ui_part2 = N (κi) ·
σ̂i · |4i|

ε
· tanh

(
e2i · |4i|

a1

)
, (a1 > 0) ,

(20)
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and

µi =



ε

if |e2i−1|2 ≤ b22 + b3,

1− cos

(
π

2
sin

(
π

2
·
|e2i−1|2 − b22
b21 − b

2
2

))
if b22 + b3 < |e2i−1|

2 < b21,
1

if |e2i−1|2 ≥ b21.

(21)

where ε is chosen as

ε = 1− cos

(
π

2
sin

(
π

2
·

b3
b21 − b

2
2

))
, (22)

with positive design parameter bi(i = 1, 2, 3) satisfying 0 <
b3 < b22 < b21 ≤ 1 and b21 − b

2
2 > b3.

Additionally, the parameter updating laws are designed as

κ̇i = e2i

{
η2i−1e2i +

µ i · σ̂i · |4i|

ε
· tanh

(
e2i · |4i|

a1

)}
+

e2ie2i−1
β2i − e

2
2i−1

− e2iα̇i, κi(0) = 1, (23)

˙̂σi =
µi · e2i · |4i|

ε
· tanh

(
e2i · |4i|

a1

)
− a2 σ̂i,(

σ̂i(0) > 0, a2 > 0
)
. (24)

Remark 4: From (21), we obtain that ε ≤ µi ≤ 1(i =
1, 2, 3). In this paper, µi is regarded as a supervisory reg-
ulator. The trajectory of attitude tracking-error is far from
the equilibrium point when quadrotor suffer from the partial
loss of actuator effectiveness, and then a big weight µi =
1 are given to the adaptation term τi_part2 in order to over-
come the adverse influence caused by actuator failure. Once
the trajectory of tracking error reaches the neighborhood
of the equilibrium point, the supervisory regulator µi will
make the self-adjustment strategy, it means a small weight
value is given to the adaptation term in order to reduce the
control energy consumption.

Now, we consider the second Lyapunov function as

V2i =
e22i
2
+
σ̃ 2
i

2
, (i = 1, 2, 3) (25)

where σ̃i = σi − σ̂i, and σ̂i is used to estimate σi.
Differentiating V2i with respect to time and using (16)

yields

V̇2i = e2iė2i + σ̃i ˙̃σi
≤ |e2i| · σi · |4i| + e2i (λiui − α̇i)− σ̃i ˙̂σi
= |e2i| · σi · |4i| + η2i−1e22i − η2i−1e

2
2i

+κ̇i − κ̇i + e2iα̇i − σ̃i ˆ̇σi. (26)

Combining (18), (19), (20), and (23), we have

e2iλiui = e2iλi
(
ui_part1 + µ i · ui_part2

)
= N (κi) · λi ·

(
η2i−1 · e22i − e2iα̇ i +

e2ie2i−1
β2i − e

2
2i−1

)

+N (κi) · λi · e2i ·
µ i · σ̂i · |4i|

ε
· tanh

(
e2i · |4i|

a1

)
= N (κi) · λi · κ̇i. (27)

With the help of (23), (24), and (27), then (24) becomes

V̇2i ≤ |e2i| · σi · |4i| + η2i−1e22i − η2i−1e
2
2i + κ̇i

− e2i

{
η2i−1e2i +

µ i · σ̂i · |4i|

ε
· tanh

(
e2i · |4i|

a1

)}
−

e2ie2i−1
β2i − e

2
2i−1

+ e2iα̇i + N (κi) λiκ̇i − e2iα̇i

− e2i ·
µ i · σ̃i · |4i|

ε
· tanh

(
e2i · |4i|

a1

)
+ a2 σ̃iσ̂i

= |e2i| · σi · |4i| − η2i−1e22i + N (κi) λiκ̇i

+κ̇i −
e2ie2i−1
β2i − e

2
2i−1

−e2i ·
µ i · σi · |4i|

ε
· tanh

(
e2i · |4i|

a1

)
+ a2 σ̃iσ̂i.

(28)

Based on Lemma 1 and young’s inequality, the following
two relationships can be established, i.e.,

|e2i| · σi · |4i| − e2i ·
µi · σi · |4i|

ε
· tanh

(
e2i |4i|

a1

)
≤ |e2i| · σi · |4i| − e2i · σi · |4i| · tanh

(
e2i |4i|

a1

)
≤ 0.2758a1σi, (29)

a2 σ̃iσ̂i = −a2
(
σi − σ̂i

) (
σi − σ̂i − σi

)
≤ a2

[
−
(
σi − σ̂i

)2
+

(
σi − σ̂i

)2
2

+
σ 2
i

2

]

= −
a2σ̃ 2

i

2
+
a2σ 2

i

2
. (30)

According to (29) and (30), (28) can be rewritten as

V̇2i ≤ −η2i−1e22i + N (κi) λiκ̇i + κ̇i −
e2ie2i−1
β2i − e

2
2i−1

−
a2σ̃ 2

i

2
+
a2σ 2

i

2
+ 0.2758a1σi. (31)

B. THE STABILITY ANALYSIS OF THE CLOSED LOOP
SYSTEM
The main result of the attitude control performance is sum-
marized in the following theorem.
Theorem 1:Consider the attitude system (5) with the exter-

nal disturbance, uncertain system parameters and the partial
loss of actuator effectiveness under Assumptions 1–4. With
the application of the proposed attitude control law (18), and
parameters update laws (23)–(24), if the initial condition sat-
isfies e2i−1 (0) ∈ �V , then the following control objectives
can be achieved.

1) all signals in the closed-loop system remain bounded
for all t ≥ 0;
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2) the attitude tracking errors e2i−1(t) (i = 1, 2, 3)
converge to a preset region in a fixed time, that is,
|e2i−1(t)| < ci2 for t > T .

Proof: Select the Lyapunov function candidate as

V̄ = V1i + V2i =
1
2
log

β2i

β2i − e
2
2i−1

+
e22i
2
+
σ̃ 2
i

2
. (32)

Differentiating V̄i with respect to time and using (14) and
(31) yields

V̄i ≤ −
η2i−1

2
· log

β2i

β2i − e
2
2i−1

+
e2i−1e2i
β2i − e

2
2i−1

+N (κi) λiκ̇i + κ̇i − η2i−1e22i −
e2ie2i−1
β2i − e

2
2i−1

−
a2σ̃ 2

i

2
+
a2σ 2

i

2
+ 0.2758a1σi

≤ −
η2i−1

2
log

β2i

β2i − e
2
2i−1

−
2η2i−1e22i

2
−
a2σ̃ 2

i

2

+N (κi) λiκ̇i+κ̇i+1i ≤ −ξiV̄i+N (κi) λiκ̇i+κ̇i+1i.

(33)

where ξi = min{η2i−1, a2} and 1i = 0.5a2σ 2
i + 0.2758a1σi.

Multiply (33) by eξit , and then integrate it over [0, t],
it becomes

V̄i(t)≤V̄i(0)+1i
/
ξi +

∫ t

0
(λi · N (κi) κ̇i+κ̇i) · e−ξi(t−τ)dτ.

(34)

According to Lemma 3, we conclude from (34) that
V̄i(t), κi and

∫ t
0 λiN (κi) κ̇idτ must be bounded [0, tf ), which

implies that V1i and V2i are bounded. From the definition of
V1i and V2i, we known that e22i (t) and σ̃

2
i are bounded and

e22i−1 (t) < β2i (t) for t ∈ [0, +∞) due to the boundedness
of V1i. According to (1), one obtain

|e2i−1 (t)| < ci1 · sinn+1
( π
2T

(T − t)
)
+ ci2,

for 0 ≤ t ≤ T , (35)

|e2i−1 (t)| < ci2, for t > T . (36)

Note that ci1, ci2, and T are the preset parameters which
can be chosen by the requirement of different tasks. It can
be seen from (36) that when the preset parameters (ci2 and
T ) are chosen, the control accuracy of the tracking error after
the specified time T is determined accordingly, it means the
tracking errors converge to the following prescribed compact
set

�e = {e2i−1 (t) | |e2i−1 (t)| < ci2 } for t > T . (37)

The proof is completed.
The structure of the control system is shown in Figure 2.

FIGURE 2. Attitude control system structure.

TABLE 1. The nominal parameters of quadrotor model.

IV. NUMERICAL SIMULATIONS
In this section, we give a numerical simulation to illustrate
the proposed control scheme and demonstrate the effective-
ness with Matlab-Simulink. The sampling time for ordinary
differential equation solvers tool is 10−4. The desired altitude
and attitude signals are chosen as follows

θd = 0.6 sin (0.5t) · (1− cos (0.5t))
φd = 0.6 cos (0.5t) · (1− cos (0.5t))
ψd = 0.8 sin (0.5t) · (sin (0.5π t))

In simulation, quadrotor parameters satisfy Ix = Īx +
1Ix , Iy = Īy + 1Iy, Iz = Īz + 1Iz, b = b̄ + 1b, Jr =
J̄r + 1Jr where Īx , Īy, Īz, b̄, and J̄r are the nominal part
of system parameters which are shown in Table 1, and the
uncertain parts 1Ix ,1Iy,1Iz,1b,1Jr are selected within
45% of the nominal part. The control system parameters are
given as η2i−1 = 12, a1 = ε = 0.01, a2 = ci1 =
1, ci2 = 0.02, b21 = 1, b22 = 0.5, b3 = 0.01, T = 1. The
initial values of system states and updating laws are chosen
as θ (0) = −0.2 rad , φ(0) = −0.15 rad , ψ(0) = −0.22 rad ,
and σ̂i(0) = κ̂i(0) = 1. The disturbances are chosen as
Tx = 1.5 cos(t), Ty = 2 cos(t), Tz = 1.5 cos(t) sin(t). In
addition, the health indicator are chosen as

ρ1 =

{
0.7+ 0.2 cos(t), for t ≥ 8s
1, for t < 8s

ρ2 =

{
0.7+ 0.2 sin(t), for t ≥ 8s
1, for t < 8s
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TABLE 2. The design parameter configuration with different methods.

ρ3 =

{
0.8+ 0.2 cos(t), for t ≥ 8s
1, for t < 8s

To evaluate performance of the proposed control method,
adaptive fault tolerant compensation control [19] and robust
fault tolerant control based on terminal sliding mode control
technique [23] are chosen for comparison. The three con-
trol approaches are applied to quadrotor with same model
information and the same simulation step, and the control
parameters of the methods [19] and [23] are given in Table 2.

FIGURE 3. The tracking trajectory of x1 and x1d.

FIGURE 4. The tracking error e1(e1 = x1 − x1d).

The simulation results are shown in Figs. 3–10. The
response curves of the attitude tracking trajectories are illus-
trated in Figs. 3, 5 and 7. These results show that the attitude
tracking objectives can be achieved by the three control meth-
ods, nonetheless, the fine control performances are different.
From Figs. 4, 6, and 8, compared with the other two methods,
the proposed method has a fast convergence rate at the initial
stage of attitude control (for 0 ≤ t ≤ 1s), and moreover the
proposed method guarantee the attitude error converge into a

FIGURE 5. The tracking trajectory of x3 and x3d.

FIGURE 6. The tracking error e3(e3 = x3 − x3d).

FIGURE 7. The tracking trajectory of x5 and x5d.

bounded region when t > 1s, even when the partial loss of
actuator effectiveness occurs, i.e.,

The proposed method :


max{|e1(t)|, t > 1s} = 0.016,
max{|e3(t)|, t > 1s} = 0.005,
max{|e5(t)|, t > 1s} = 0.007.

Obviously, the simulation results are perfectly matched
with Theorem 1. The proposed method realizes the preset
control precision after a specified-time (As stated by Theo-
rem 1, the preset tracking precision should be |e2i−1(t)| <
0.02, for t > 1s based on ci2 = 0.02 and T = 1s). As for the
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FIGURE 8. The tracking error e5(e5 = x5 − x5d).

FIGURE 9. The Nussbaum gain.

FIGURE 10. The proposed control signals.

other two methods, the maximum errors are as follows:

The method [19] :


max{|e1(t)|, t > 1s} = 0.08,
max{|e3(t)|, t > 1s} = 0.038,
max{|e5(t)|, t > 1s} = 0.035.

The method [23] :


max{|e1(t)|, t > 1s} = 0.072,
max{|e3(t)|, t > 1s} = 0.04,
max{|e5(t)|, t > 1s} = 0.047.

It can be observed that the proposed method obtains a good
performance than the methods [19] and [23], especially after
the occurrence of the partial loss of actuator effectiveness.
The curves of Nussbaum gain and control signals are shown

in Fig. 9 and Fig. 10, respectively. We can see that the
amplitude of Nussbaum gain and control signals suddenly
become larger when the actuator fault occurs. This is due
to the fact that the control system needs to produce a suffi-
ciently large control output to overcome the adverse influence
caused by actuator failure. Through the attitude tracking error
curves, we can also find that our method has a rapid response
when the partial loss of actuator effectiveness occurs and the
tracking error accuracy is always kept within the specified
range |e2i−1(t)| < 0.02 for t > 1s, compared with the other
two methods. That means the lumped disturbance (including
inertia uncertainties, external disturbance and the partial loss
of actuator effectiveness) are well suppressed.

V. CONCLUSION
A new fault tolerant control scheme based on compensation
control technique for attitude tracking of a quad-rotor is
derived in the presence of the external disturbances, inertia
parameter uncertainties and rotor with partial loss of effec-
tiveness. Under the back-stepping design structure, an fixed-
time prescribed performance attitude controller using the
self-adjusting mechanism are designed to compensate the
error caused by the adverse factor including the disturbance,
parameter uncertainties and rotor with partial loss of effec-
tiveness in attitude system of quad-rotor. Using the Lyapunov
method, it proved is that the designed controller could guar-
antee the convergence and stability of the closed loopsystem.
Numerical simulations are included to support the theory
analyses. The results demonstrate that the proposed controller
effectively.
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