
Received 30 December 2021, accepted 27 January 2022, date of publication 4 February 2022, date of current version 29 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149053

Malware Detection: A Framework for Reverse
Engineered Android Applications Through
Machine Learning Algorithms
BEENISH UROOJ 1, MUNAM ALI SHAH 1, CARSTEN MAPLE 2, (Member, IEEE),
MUHAMMAD KAMRAN ABBASI3, AND SIDRA RIASAT 1
1Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan
2WMG, University of Warwick, Coventry CV4 7AL, U.K.
3Department of Distance Continuing and Computer Education, University of Sindh, Hyderabad 76080, Pakistan

Corresponding author: Carsten Maple (cm@warwick.ac.uk)

This work was supported by UKRI through the grants EP/R007195/1 (Academic Centre of Excellence in Cyber Security
Research - University of Warwick), EP/N510129/1 (The Alan Turing Institute) and EP/S035362/1 (PETRAS, the National Centre of
Excellence for IoT Systems Cybersecurity).

ABSTRACT Today, Android is one of the most used operating systems in smartphone technology. This
is the main reason, Android has become the favorite target for hackers and attackers. Malicious codes are
being embedded in Android applications in such a sophisticated manner that detecting and identifying an
application as a malware has become the toughest job for security providers. In terms of ingenuity and
cognition, Android malware has progressed to the point where they’re more impervious to conventional
detection techniques. Approaches based on machine learning have emerged as a much more effective way
to tackle the intricacy and originality of developing Android threats. They function by first identifying
current patterns of malware activity and then using this information to distinguish between identified threats
and unidentified threats with unknown behavior. This research paper uses Reverse Engineered Android
applications’ features and Machine Learning algorithms to find vulnerabilities present in Smartphone
applications. Our contribution is twofold. Firstly, we propose a model that incorporates more innovative
static feature sets with the largest current datasets of malware samples than conventional methods. Secondly,
we have used ensemble learning with machine learning algorithms i.e., AdaBoost, Support Vector Machine
(SVM), etc. to improve our model’s performance. Our experimental results and findings exhibit 96.24%
accuracy to detect extracted malware from Android applications, with a 0.3 False Positive Rate (FPR).
The proposed model incorporates ignored detrimental features such as permissions, intents, Application
Programming Interface (API) calls, and so on, trained by feeding a solitary arbitrary feature, extracted by
reverse engineering as an input to the machine.

INDEX TERMS Android applications, benign, feature extraction, malware detection, reverse engineering,
machine learning.

I. INTRODUCTION
To this degree, it is guaranteed that mobile devices are
an integral part of most people’s daily lives. Furthermore,
Android now controls the vast majority of mobile devices,
with Android devices accounting for an average of 80% of the
global market share over the past years [1]. With the ongoing
plan of Android to a growing range of smartphones and con-
sumers around the world, malware targeting Android devices
has increased as well. Since it is an open-source operating

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

system, the level of danger it poses, with malware authors and
programmers implementing unwanted permissions, features
and application components in Android apps. The option
to expand its capabilities with third-party software is also
appealing, but this capability comes with the risk of malicious
attacks. When the number of smartphone apps increases,
so does the security problem with unnecessary access to
different personal resources. As a result, the applications
are becoming more insecure, and they are stealing personal
information, SMS frauds, ransomware, etc.

In contrast to static analysis methods such as a manual
assessment of AndroidManifest.xml, source files and Dalvik

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 89031

https://orcid.org/0000-0002-5814-7270
https://orcid.org/0000-0002-4037-3405
https://orcid.org/0000-0002-4715-212X
https://orcid.org/0000-0003-4788-4627


B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

Byte Code and the complex analysis of a managed environ-
ment to study the way it treats a program, Machine Learn-
ing includes learning the fundamental rules and habits of
the positive and malicious settings of apps and then data-
enabling. The static attributes derived from an application are
extensively used in machine learning methodologies and the
tedious task of this can be relieved if the static features of
reverse-engineered Android Applications are extracted and
use machine learning SVM algorithm, logistic progression,
ensemble learning and other algorithms to help train the
model for prediction of these malware applications [2].

Machine learning employs a range of methodologies for
data classification. SVM is a strong learner that plots each
data item as a point in n-dimensional space (where n denotes
the number of features you have), with the value of each fea-
ture becoming the vector value. Afterward, it performs classi-
fication by locating the hyperplane that best distinguishes the
two groups, thereby improving the recognition properties of
any two parameters. Conversely, boosting or ensemble tech-
niques like Adaboost assigns higher weights to improve the
behavior of misclassified variables in conjunction with other
machine learning algorithms. If combined along with weak
classifiers, our preliminary model benefits from deploying
such models since they have a high degree of precision or
classification. References [3], [4] and [5], supports classifiers
in their system models to find the highest accuracy. Although
using ensemble or strong classifiers can cause problems like
multicollinearity, which in a regression model, occurs when
two or more independent variables are strongly associated
with one another. Inmultivariate regression, this indicates that
one regression analysis may be forecasted from another inde-
pendent variable. This scope of the study can be presented
as a detection journal analysis itself and can present several
experimentations and results based onmachine learningmod-
els [6], [7].

In the latest versions of the Android operating system (OS),
any app that requires access privileges may ask the OS for
permission, and the OS will ask the user whether they want
to approve or decline the request through a pop-up option.
Many studies have been conducted on the effectiveness of
this resource management strategy. Research shows that con-
sumers make decisions by granting access to all requests to
applications [8]. In comparison, more than 70% of Android
mobile applications request permission that isn’t required or
is not needed in the app in the first place. A chess game
that asks for photographs or requests for SMS and phone call
permits, or loads unwanted packages is an example of an extra
requested authorization. So, trying to set an app’s vindictive-
ness and not understanding the app is a tough challenge. As a
result, successful malicious appmonitoring will provide extra
information to customers to assist them and defend them from
information disclosure [9]. Figure 1 elaborates the android
risk framework through the Google Play platform, which is
then manually configured by the android device developers.

In contrast to other smartphone operating systems, such as
iOS, Android requires users to access apps from untrusted

FIGURE 1. Android security framework.

outlets like file-sharing sites or third-party app stores. The
malware virus problem has become so severe that 97 % of
all Smartphone malware now targets Android phones. In a
year, about 3.25 million new malware Android applications
are discovered as the growth of smartphones increases. his
is roughly equivalent to introducing a new malware version
of Android every few seconds [10]. The primary aim of
mobile malware is to gain entrance to user data saved on the
computer and user information used in confidential financial
activities, such as banking. Infected file extensions, files
received via Bluetooth, links to infected code in SMS, and
MMS application links are all ways that mobile malware
can propagate [11]. There are some strategies for locating
apps that need additional features. Using these approaches,
it should be easy to assess whether the applications labelled
as suspicious and requiring extra authorization are malicious.

Static analysis methodologies are the most fundamental
of all approaches. Until operating programs, the manifest
file and source codes are examined [12]. For many machine
learning tasks, such as enhancing predictive performance or
simplifying complicated learning problems, ensemble learn-
ing is regarded as the most advanced method. It enhances
a single model’s prediction performance by training several
models and combining their predictions. Boosting, bagging,
and random forest are examples of common ensemble learn-
ing techniques [13]. In summary, the main contributions of
our study are as follows:

1) We present a novel subset of features for static detection
of Android malware, which consists of seven addi-
tional selected feature sets such as (Permissions, App-
Components, Method Tags, Intents, Packages, API
Calls, and Services/Receivers) that are using around
56000 features from these categories. On a collec-
tion of more than 500k benign and malicious Android
applications and the highest malware sample set than
any state-of-the-art approach, we assess their stability.
The results obtain a detection increase in accuracy to
96.24 % with 0.3% false positives.

2) With the additional features, we have trained six
classifier models or machine learning algorithms
and also implemented a Boosting ensemble learning
approach (AdaBoost) with a Decision Tree based on
the binary classification to enhance our prediction rate.

3) Our model is trained on the latest and large time
aware samples ofmalware collectedwithin recent years

89032 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 2. Static binary matrix extraction.

including the latest AndroidAPI level than state-of-the-
art approaches.

This research paper incorporates binary vector mapping for
classification by allocating 0 to malicious applications and
1 for non-harmful and for predictive analysis of each appli-
cation fed to the model implemented in the study. The tech-
nique eases the process by reducing fault predictive errors.
Figure 2 shows the procedure for a better understanding
of the concept applied later in our study. The paper passes
both the categories of applications through static analysis
and then is further processed for feature extraction. We pre-
sented features in 0’s and 1’s after extraction. Matrix displays
the extraction characteristics of each application used in the
dataset.

There are major issues to be addressed to incorporate our
strategy. High measurements of the features will make it
difficult to identify malware in many real-world Android
applications. Certain features overlap with innocuous apps
and malware [14]. In comparison, the vast number of features
will cause high throughput computing. Therefore, we can
learn from the features directly derived from Android apps,
the most popular and significant features. The paper imple-
ments prediction models and various computer ensemble
teaching strategies to boost and enhance accuracy to resolve
this problem [15]. Feature selection is an essential step in all
machine-based learning approaches. The optimum collection
of features will not only help boost the outcomes of tests but
will also help to reduce the compass of most machine-based
learning algorithms [16].

Studies have extensively suggested three separate methods
for identifying android malware: static, interactive meaning
dynamically, and synthetic or hybrid. Static analysis tech-
niques look at the code without ever running it, so they’re
a little sluggish if carried out manually and have to face
a lot of false positives [17]. Data obfuscation and com-
plex code loading are both significant pitfalls of the tech-
nique. That is why automated operation helps to achieve
reliability, accuracy, and lesser time utilization [18]. Reverse
engineer Android applications and extract features and do
static analysis from them without having to execute them.
This method entails examining the contents of two files:
AndroidManifest.xml and classes.dex and working on the file
with the.apk extension. Feature selection techniques and clas-
sification algorithms are two crucial areas of feature-based
types of fraudulent applications. Feature filtering methods
are used to reduce the dimension size of a dataset. Any

FIGURE 3. Taxonomy of android architecture.

of the functions (attributes) that aren’t helpful in the study
are omitted from the data collection because of this. The
remaining features are chosen by weighing the representa-
tional strength of all the dataset’s features [19]. Parsing tools
can help learn which permissions, packages or services an
application offers by analyzing the AndroidManifest.xml file,
such as permission android.permission.call phone, which
allows an application to misuse calling abilities. The paper
elaborates exactly what sort of sensitive API the authors
could name by decoding the classes.dex file with the Jadx-
gui disassembler [20]. In certain cases, including two permis-
sions in a single app can signify the app’s possible malicious
attacks. For example, an application with RECEIVE SMS
and WRITE SMS permissions can mask or interfere with
receiving text messages [21] or applying sensitive API such
as sendTextMessage can also be harmful and lead to fraud
and stealing.

Until we started our main idea of the project. The fact
explained that Android applications pose a lot of threats
to its user because of the unnecessary programs compiled
inside them and explained why it is necessary to automate
the process of static analysis for the efficient detection of
malware applications based on the extracted features. The
rest of the paper is planned as follows. Related works are
examined in Section II. Section III presents the design details
of the proposed model. Section IV elaborates the assessment
findings and future threats. The experiments and results will
be dilated and performed in Sections V and VI. Section VII
includes our research issues, recommendations, and conclu-
sions for the future.

VOLUME 10, 2022 89033



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

II. RELATED WORKS
Linux (Android core) keeps key aspects of the security infras-
tructure of the operating system. The Android displays to
the administrator a list of features, sought to reinstall an
update. The program installs itself on the computer after
they issue access. Figure 3 shows the integrated core parts
of Android architecture. It comprises applications at the top
layer and also includes an application framework, libraries
or a Runtime layer, and a Linux kernel. These levels are fur-
ther divided into their components, which make an Android
Application. The Linux Kernel is the key part of Android
that provides its OS functionality to phones, and the Dalvik
Virtual Machine (DVM) is to manage a mobile device. Appli-
cation is the Android architecture’s highest layer. Native
and third-party apps such as contacts, email, audio, gallery,
clock, sports, and so on are located only in this layer. This
framework gets the classes often used to develop Android
apps. It also handles the user interface and device infras-
tructure and provides a common specification for hardware
entry. To facilitate the development of Android, the Platform
Libraries include many C/C++ core libraries and Java-based
libraries such as SSL, libc, Graphics, SQLite, Webkit, Media,
Surface Manager, OpenGL, and others. The taxonomy helps
understand the viewer with a logical algorithmic approach for
grasping the core surfaces and functionality of the operating
system.

The methods proposed in this related work contribute
to key aspects such as selected features for classification
and a higher predictive rate for malware detection. Cer-
tain research has focused on increasing accuracy, while
others have focused on providing a larger dataset, some
have been implemented by employing various feature sets,
and many studies have combined all of these to improve
detection rate efficiency. In [22], the authors offer a sys-
tem for detecting Android malware apps to aid in the orga-
nization of the Android Market. The proposed framework
aims to provide a machine learning-based malware detection
system for Android to detect malware apps and improve
phone users’ safety and privacy. This system monitors dif-
ferent permission-based characteristics and events acquired
from Android apps and examines these features employing
machine learning classifiers to determine if the program is
goodware or malicious. The paper uses two datasets with
collectively 700 malware samples and 160 features. Both
datasets achieved approximately 91% accuracy with Ran-
dom Forest (RF) Algorithm. [23] Examines 5,560 malware
samples, detecting 94 % of the malware with minimal false
alarms, where the reasons supplied for each detection dis-
close key features of the identified malware. Another tech-
nique [24] exceeds both static and dynamic methods that rely
on system calls in terms of resilience. Researchers demon-
strated the consistency of the model in attaining maximum
classification performance and better accuracy compared to
two state-of-the-art peer methods that represent both static
and dynamic methodologies over for nine years through three
interrelated assessments with satisfactory malware samples

from different sources. Model continuously achieved 97%
F1-measure accuracy for identifying applications or catego-
rizing malware. [25] The authors present a unique Android
malware detection approach dubbed Permission-based Mal-
ware Detection Systems (PMDS) based on a study of
2950 samples of benign and malicious Android applica-
tions. In PMDS, requested permissions are viewed as behav-
ioral markers, and a machine learning model is built on
those indicators to detect new potentially dangerous behav-
ior in unknown apps depending on the mix of rights they
require. PMDS identifies more than 92–94% of all heretofore
unknown malware, with a false positive rate of 1.52–3.93%.
The authors of this article [26] solely use the machine learn-
ing ensemble learning method Random Forest supervised
classifier on Android feature malware samples with 42 fea-
tures respectively. Their objective was to assess Random
Forest’s accuracy in identifying Android application activity
as harmful or benign. Dataset 1 is built on 1330 malicious
apk samples and 407 benign ones seen by the author. This is
based on the collection of feature vectors for each application.
Based on an ensemble learning approach, Congyi proposes a
concept in [27] for recognizing and distinguishing Android
malware. To begin, a static analysis of the Android Manifest
file in the Android Application Package (APK) is done to
extract system characteristics such as permission calls, com-
ponent calls, and intents. Then, to detect malicious apps, they
deploy the XGBoost technique, which is an implementation
of ensemble learning. Analyzing more than 6,000 Android
apps on the Kaggle platform provided the initial data for
this experiment. They tested both benign and malicious apps
based on 3 feature sets for a testing set of 2,000 samples
and used the remaining data to create a training set of 6,315
samples. Additional approaches include [28], an SVM-based
malware detection technique for the Android platform that
incorporates both dangerous permission combinations and
susceptible API calls as elements in the SVM algorithm. The
dataset includes 400 Android applications, which included
200 benign apps from the official Android market and
200 malicious apps from the Drebin dataset. [29] Determines
whether the program is dangerous and, if so, categorizes it as
part of a malware family. They obtain up to 99.82 % accuracy
with zero false positives for malware detection at a fraction
of the computation power of state-of-the-art methods but
incorporate a minimal feature set. The results of [30] demon-
strate that deep learning is adequate for classifying Android
malware and that it is much more successful when additional
training data is available. A permission-based strategy for
identifying malware in Android applications is described
in [31], which uses filter feature selection algorithms to pick
features and implements machine learning algorithms such
as Random Forest, SVM, and J48 to classify applications
as malware or benign. This research [32] provides a feature
selection using the Genetic algorithm (GA) approach for
identifying Android malware. For identifying and analyzing
Android malware, three alternative classifier techniques with
distinct feature subsets were built and compared using GA.

89034 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

Another technique achieves satisfactory accuracy but there
FPR is very high with limited samples [33].

One of the important matters that has not been considered
by any of the studies is the sustainability of themodel after the
advancement of applications. This issue is still a challenge for
our research as well. The model’s ability to classify will grad-
ually decrease over time when new features or evolved appli-
cations are created. Only [29] and [26] specify this issue and
introduce it as a drift concept, describing the low performance
of their systems after some time. Our research doesn’t imple-
ment this problem as well, but we suggested some potential
studies to initiate solutions for models’ sustainability in the
research issues and challenges section. Another matter that
could arise in the field of implementing machine learning
algorithms is the ‘‘Multicollinearity Problem’’ whichwe have
discussed in the introduction section. This subject arises
due to the algorithms being dependent on multiple variables
embedded in these machine learning or deep learningmodels.
Although it is one of the rising issues in the area and could
be present in our study it would constitute better as separate
research. Our model is already incorporating a wide range of
evaluations and analysis of Android applications features sets
but this would be a great opportunity to further enhance the
models for future use. There are relevant studies that support
alleviating this challenge by detecting the model’s dependen-
cies in terms of comparing multiple models together and then
calculating the greater impact of the highest given model.
Authors in references [34], [35], [36] consider different tales
concerning different machine learning models to highlight
and find out the measures for different model scenarios.

Tables 1 and 2 elaborates on the novelty of our approach
and compare state-of-the-art methodologies in several cate-
gories. Table 1 focuses on the key novel categories in terms
of malware samples, feature sets, the method proposed, accu-
racy, false-positive rate, the level of API (increased complex
application behavior) and system environment for data pro-
cessing. It also explains that our sample set and feature set
is larger and achieve satisfactory accuracy with 0.3% FPR,
depicting the lowest false positives other than DroidSieve.
Our contribution lands on the upgraded API levels with large
sample sizes including enhanced feature sets to detect mal-
ware. Table 2 elaborates a more in-depth approach and shows
the key features present in the proposed and other approaches
with also the time awareness of the data being collected.

A. REVERSE ENGINEERED APPLICATIONS
CHARACTERISTICS
As for Android apps, various apps have various functionali-
ties. If the app is to use the device tools, you must specify the
corresponding allowances in the Android Manifest format.
Different program forms, therefore, have different declara-
tions of prior approval [37], [38]. System static analysis also
identifies an application as malicious or benevolent. In clas-
sification, they make rational choices using features. The
article shows the taxonomy diagram for the features present
in Android applications [39]. It comprises all the components

FIGURE 4. Reverse engineering APK files architecture.

FIGURE 5. Taxonomy of android manifest.

present in the APK files and how they are when they are
reverse engineered by using a disassembler, in our case Jadx-
gui. Fig.4 shows the process of apk file disassembly.

1) ANDROIDMANIFEST.XML
In the root folder of any reverse-engineered application, there
must be an android Manifest.xml file. The Manifest file gives
essential information to the Mobile application, which is
required by the framework before executing any code for the
app. The authorization process should protect the applica-
tion’s key elements, which include the Operation, Service,
Content Provider, and Broadcast Receivers. These results
mainly accomplished by affiliating these components with
the relevant element in its manifest definition and making
Android dynamically implement the features in the closely
associated contexts [28].

Fig. 5 shows the taxonomy of theAndroidmanifest compo-
nents, which contain all the requested permissions, packages,
intents and features for extraction.

B. FEATURE SET EXTRACTION
Using feature filtering decreases the dimensions of data col-
lection by deleting functions that are not useful for study.
We chose the characteristics based on their capability to
display all data sets. Enhanced efficiency by reducing the
dataset size and the hours wasted on the classification process
introduces an effective function selection process. Our pro-
cess does not support a revamped Android emulator, because

VOLUME 10, 2022 89035



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

TABLE 1. Relative techniques analysis on basis of multiple factors in comparison to proposed approach (PER: Permissions, STR: String, API: Application
Programming Interface, INT: Intents, PKG: Package, APP-C: App Components, SR: Services, RS: Receivers).

it’s not a convenient approach and we preferred our sys-
tem for physical devices in the future. Jadx carries out the
modification and evaluation of source code. The system con-
centrated on trying to hook the byte-level API calls [40].
For our dataset, features from over 1, 00,000 applications
are extracted containing around 56000 extracted features.
Functions and processes of opcode API features are removed
from the disassembled Smali and Manifest files of an APK
file. The Smali file, segmented by the process and the opcode
frequency of Dalvik for every method, is determined by
scanning Dalvik Bytecodes. To verify invocation of a haz-
ardous API in that form, it is also possible to determine the
hazardous frequency of an API invocation for each method
during the byte code search. For string functions, strings are
selected without the method of isolation from the entire Smali
archives [41].

We will never have a predictable response when the
number of features inside a dataset exceeds the num-
ber of occurrences. In other terms, when we don’t have
enough data to train our machine on, generating a struc-
ture that could capture the association between both
the predictive variables and responses variable appears
problematic.

The system used in this study also incorporates larger
feature sets for classification. Although this problem arises
in machine learning quite often to some extent choosing
the type of model for detection or classification can highly

impact the high dimensionality of the data being used. Sup-
port vector machine and AdaBoost can handle relatively
well than other algorithms because of their high dimensional
space/hyperplane sectioning. Another suspension for our
datasets was the tool used for extracting the given datasets.
Androguard implements parsing and analyzing automation
to further break down components of application apk’s after
decompiling and encourages weighting of the data into
binary, making it easy to use relevant data for classifica-
tion. It uses certain functionality to get useful features from
manifest files of these Android applications reducing the
acquiring irrelevant features. Although the data in this study
works significantly well for evaluation, however, the datasets
will be needed to upgrade in terms of forthcoming evolving
measures.

Certain other authors have presented many tools and pro-
posals to deal with high dimensional data such as [42], [43],
inducing multiple methods such as filtering wrapping to
enhance robustness.

The feature set of our model includes:

F1→ Permissions
F2→ API Calls
F3→ Intents
F4→ App Components
F5→ Packages
F6→ Services
F7→ Receivers

89036 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

TABLE 2. Relative techniques analysis on basis of features and sample collected in comparison to proposed approach.

1) PERMISSIONS
Permission is a security feature that limits access to certain
information on smartphone, with the role of preserving sen-
sitive data and functions that might be exploited to harm
the user’s experience. A unique label is assigned for every
permit, which typically denotes a limited operation. The per-
missions are further categorized into four parts by Google:
normal, dangerous, signature, and SignatureOrSystem. For
evaluating Android permissions, researchers take a variety of
methods [44]. Standard (also called secure) levels of secu-
rity permissions, such as VIBRATE and SET WALLPAPER,
are permissions without risk. Android kit installer will not
allow the user to approve these permissions. The dangerous
security standard will pose warnings to the user before imple-
mentation and will require the user’s consent. The signature
and symbol Security stages of SignatureOrSystem cover the
riskiest permits. Only applications with the same certificate,
as the certificate used to sign the request declaring approval,
are allowed to sign signature permissions [45]. It also acts as
a buffer in the middle of hardware and the rest of the stack.
A variety of different C/C++ core libraries, such as libc
and SSL, are being used in libraries. Dalvik virtual machines
and key libraries are part of the Android Run Time. App
Model defines classes for developing Android applications,
as well as a standardized structure for hardware control
and the management of user experience and app property.

API libraries are used for both proprietary and third-party
users [46]. Table 3 shows some dangerous permissions that
pose problems to the reverse engineered applications.

2) INTENTS
The message delivered among modules such as activities,
content providers, broadcast receivers, and services is known
as Android Intent. It’s commonly used along with the star-
tActivity() function to start activities, broadcast receivers,
and other things. Individual intent counts are exploited as
a continuous feature in categorization. To provide more
specificity, we divide the list of intents into further sec-
tions, such as intentions including the phrases (android.net),
which are linked to the network manager, intents including
(com.android.vending), for billing transactions, and intents
addressing framework components (com.android) and prov-
ing to be harmful elements in these apps.

3) API CALLS
Safe APIs are tools that are only available by the operating
system. GPS, camera, SMS, Bluetooth, and network or data
are some examples. To make use of such resources, the
application must identify them in its manifest [47]. The Cost-
sensitive APIs are those that can increase cost through their
usages, such as SMS, data or network, andNFC. Each version
includes these APIs in the OS-controlled set of protected

VOLUME 10, 2022 89037



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

TABLE 3. Dangerous permissions (Malware probability).

TABLE 4. Frequently deployed malware sensitive API Calls.

APIs that require the device’s user’s sole permission. API
calls that grant sensitive information or device resources
are commonly detected in malicious codes. These calls are
isolated and compiled in a different feature set so they might
contribute to harmful activity. Table 4 elaborates dangerous
API features:

4) API COMPONENTS
The program that requires access or activity e.g., a path from
point A to point B on a route predicated on a user’s location
from another application makes a call to its API, stating
the data/functionality demands. The other software includes
the data/functionality that the first program requested. For
privacy reasons, some API features must be declared and
not used in these apps. These components relate to broadcast
features present in these applications.

5) PACKAGES, SERVICES AND RECEIVERS
The package manifest has always been found in the package’s
root and provides information about the package, such as
its registered name and sequence number. It also specifies
crucial data to convey to the user, such as a consumer name
for the program that displays in the User Interface (UI). The
file format is in .json for packages.
According to a publication process model, Android apps

can transmit and receive messages from the Android system
and other Android apps. When a noteworthy event occurs,
these broadcasts are sent out. The Android system, for exam-
ple, sends broadcasts when different system events occur,
such as the system booting up or the smartphone charging.
Individuals can sign up to receive certain broadcasts [48].

When a broadcast is sent, the system automatically directs
it to applications that have signed up to receive that sort of
broadcast. Services, unlike activities, do not have a graphi-
cal user interface. They’re used to build long-running back-
ground processes or a complex communications API that
other programs may access. In the manifest file, all services
are represented by < service > elements and they allow the
developer to invalidate the structure of the application.

C. CLASSIFICATION
The collection of chosen features in the signature database,
separated into training and test data, and is used to recog-
nize android malware apps by traditional machine learning
techniques [49]. There are three different computer frame-
works: supervised learning, unsupervised learning, and rein-
forcement learning. The supervised learning method is the
focus of this paper, comprises algorithms that learn a model
from externally provided instances of known data and known
results to produce a theoretical model so that the learned
model predicts feedback about previous occurrences over
new data [50]. The deployment of ensemble techniques and
strong learning classifiers helps classification of our binary
feature sets, resulting in correctly categorized malware and
benign samples. We believe that these classification mechan-
ics produce efficient outputs because of their sorting nature.
Fig. 6 explains the process of the learning model.

A comparative algorithm selection for our model based
on AdaBoost, Naive Bayes, Decision Tree classifier,
K-Neighbor, Gaussian NB, Random forest classifier, and
Support Vector Machine performing a relative review which
will give an accurate analysis of the algorithm for the predic-
tion of our model.

1) ALGORITHM CHARACTERISTICS APPRAISAL
The assessment of suggested algorithmswas carried out using
Python. The use of FPR and Accuracy assess our compara-
tive algorithms trials [51]. These estimates, derived from the
following basic factors, are listed further down:

89038 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 6. Machine learning process.

• Accuracy: Accuracy is one criterion being used to eval-
uate classification techniques. True Positive (TP) refers
to the number of malicious apps which were misclas-
sified as malicious, and False Negative (FN) identifies
the number of safe applications which were misiden-
tified as malicious. The number True Negative (TN)
measures the truly benign applications and FN denotes
the number of irregular apps that were wrongly labelled
as normal [52].

• False Positive Rate:Determines themeasuring factor of
a model’s ability to identify correct apps or the model’s
ability to generate FP.

(Accuracy)m,b =
(TP)m,b + (TN )m,b

All samples
(1)

(FPR)m,b =
(FP)m,b

(FP)m,b + (TP)m,b
(2)

Equations (1) and (2) demonstrate the accuracy of the false
detection rate measuring formula applied to calculate the
Detection Rate (DR) and precision whereas variables (m,
b) represent the malicious or benign applications w.r.t. True
Positive (TP), True Negative (TN) and False Positive (FP).
Accuracy of the classification dataset, which contains both
benevolent and malicious applications, our models define
a hyperplane that divides both categories with the largest
probability. One class is synonymous with ransomware and
the other with friendly applications [53]. The authors then
assumed the research data to be unknown applications, which
are classified by projecting them to subspace to determine
if they are on the malicious or friendly side of the hyper-
plane [54]. Then, using our model will correlate all the regres-
sion findings to their original reports to assess the proposed
model’s malware identification accuracy [55]. Static features
make for a pleasing accuracy and precision of more than
90%. What’s more noteworthy is that defining the usage of
API calls in a single part of the Android platform allows for
the creation of the most representative function space or the
resources where malicious and benign can be distinguished
more easily [56], [57]. If the amount of the classification tar-
get is greater than the probability estimates, the classification
target of the testing data is then calculated as that label [58].
The objects are Blue or Red; the dividing lines identify the
border, so an object on the right side is called blue, meaning

FIGURE 7. Flow analysis of our research.

benign, a general scenario and likewise. This is an example of
linear classification, but not all classifications are this basic,
and functional groups are needed to differentiate between
groups [59], [60].

III. PROPOSED METHODOLOGY
The major goal of our research is to determine which criteria
are most helpful in detecting malware in cell phones, partic-
ularly those running Android. We have taken up the task to
train up to sixmachine learning algorithms such as AdaBoost,
Support Vector Machine, Decision Tree, KNN, Navies Bayes
and Random Forest techniques and classify these machine
learning algorithms accurately. The methodology section is
divided in two sections; Pre-Processing (explaining the pre-
requisite processing) and the Proposed Model (Model func-
tionalities and components).

A. PRE-PROCESSING
APK files from numerous apps were included in the resulting
datasets (containing malware and benign characteristics). A
Jadx-Gui decompiler is then used to reverse engineer the
apk files to extract features from the Android manifest file’s
feature set for further processing. These stages are regarded
as pre-processes from before real assessments and are essen-
tial parts before any kind of testing and training using any
predictive models.

Androguard, an open-source tool that extracts prioritised
features from files and converts them into binary values,
is used to extract features. For labelling the false or accurate
android application, we employ binary search techniques, i.e.,
1 or 0 for benign and 1 or 0 for malware. Figure 7 shows our
technique’s pre-processing framework and flow structures,
which must be accomplished before the classifiers are tested.

The operations embedded in the rectangle are to be deter-
mined beforehand, ensuring efficient data collection. The
main role in this is by the decompiler and extractor which
improves and eases the model’s data classification efficiency
for detection of malware applications. Although our study
discusses the challenge of multi-collinearity and the use of

VOLUME 10, 2022 89039



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 8. Proposed methodology of our system.

high dimensional data being implemented, we have discussed
the better output for high-dimensional data in our feature
extracted section but the issue of collinearity still stands and
can be done as a novel contribution as future work.

Succeeding the extraction process and the use of efficient
datasets accommodating useful features, the testing and train-
ing are administered. For our model, a comparative approach
will be adopted based on Naive Bayes, Decision Tree classi-
fier, K-Neighbour, Gaussian NB, Random Forest classifier,
Support Vector Machine and AdaBoost. The comparison
evaluation will provide an accurate assessment of the algo-
rithm used to forecast our model. The installation package is
a ZIP-compressed bundle of files that includes the manifest
file (AndroidManifest.xml) and classes.dex. The manifest
file describes an Android application, namely the activities,
services, broadcast receivers, and content providers that make
up the system. The methodology and the classification are
explained before in the related work section. The next section
describes the model functionality.

B. PROPOSED MODEL
The model gathers information from many Android applica-
tions (Google Play). These reverse-engineered (decompiled
through Jadx-Gui) apps are then subjected to static analysis
to extract features. Our suggested approach in figure 8, for
the training phase, uses the retrieved characteristics to create
vectormapping parsed throughAndroguard. The contribution
is indicated by the proposed feature section that encompasses
nearly 56,000 extracted features from the feature set seen in
figure 8. Those collected features are then composed in a form
of a dataset .csv file, stating the benign and malware prop-
erties in 1 or 0. After we generate the datasets, the features

FIGURE 9. Training model Processing.

are ready for classification by predictive models. We adopted
Python to create a machine algorithm classification perfor-
mance program after collecting the dataset, and then we’ll
employ the best accurate algorithms to train our models for
malware and benign detection. The system’s approach and
its operation are detailed in figure 8, which depicts the whole
methodology of our model and algorithm learning phase with
the training model processing for detection.

Figure 9 shows us the training cycle of the program and
how the model first is constructed and then evaluated. Then
further on the data is cycled towards testing and that is the
data fed to the trained model for further prediction analysis
of the android applications.

The future threats and predictions pointed out in the next
section state insecure android applications which contain
unnecessary permissions, and opt for an easy way for an
attacker to steal private data or launch major attacks, and later
on, present the methodology of our research.

89040 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 10. Graph of application threat increase by 5%.

IV. FUTURE THREATS AND PREDICTION
By 2020, mobile applications will be installed onto consumer
devices over 205 billion times. Statistics by Marketing Land
suggest that 57 percent of the overall digital content time is
spent on mobile devices. Our daily activities always depend
on social networking, bank transfers, business operations,
and mobile managed services applications. Accommodating
over two billion individuals, almost 40% of the world’s total
population, Juniper Sources point to the number of those
using mobile banking services. These predictions and future
threats are based on theoretical data collected through exten-
sive survey of journals, online forums and research articles.

Developers devote close attention to the development of
software to provide us a comfortable and seamless experi-
ence and when someone enthusiastically installs these mobile
applications requiring personal information, the user stops
thinking about the security consequences. This is the reason
people don’t even look closely at the permissions or the
feature updates being asked by the applications [61]. They
simply download the application they want and, when asked
for installation, they overlook everything else and start using
the app.Most of these applications never even ask the consent
of the consumer and the hackers are using their information
without their knowledge. The future threat rises, at the end of
2020 and beginning of 2021:

• 70% of Google Play Store applications require access to
one more ‘‘dangerous permission and packages, up from
66.6% in Q12020, which is a 5 percent raise’’. 69.4% of
applications for children (13 years of age) claim at least
one risky permit up from 68.8% in 2020 (a 1 percent
rise).

• Over 2.3 million applications altogether, over 2.1 mil-
lion applications for children need at least one harmful
authorization.

Figure 10 shows the percent hit in 2020, proceeding to
2021 on both the application for permission criteria. As per
these statistics, the predicted rate in the coming years (till
2025) proposes that there could be a grave danger because
of these unnecessary access as per each level of the Android
API. Figure 10 shows the representation of both the factors,
application for everyone and the other for application kids for
the year 2019-2020. The graph shows the increase in 5% of
the applications with dangerous malware. This takes a great
deal of application security and also depicts the futuristic way

FIGURE 11. Increase in android malware statistics.

FIGURE 12. Third-party well-known dangerous apps increase
from 2013 to 2020.

that if nothing is done on time, these applicationswill increase
up to a higher number in the future.

According to multiple tech reviews, each one published
in 2021, states that according to research of 2,500 top-of-
the-line and rising applications, over two portions of the
most popular Android applications on Google Play request
excessive user permissions and access. These allow apps,
among other unwanted behaviors, to launch harmful scripts
and access messages unnecessarily with unwanted features
inbuilt [62]. They stated that with the increase in usage of
application components and features and also the release of
newAndroid frameworks and APIs each year. It is most likely
that threats are surely to increase by 15% from 5%. The aver-
age Android user has roughly 80 applications loaded, thus at
least one app on the phone demands additional authorization
on the phone. It is likely that excessive authorizations may
jeopardize user data and privacy or even allow device hacks.

Figure 11 elaborates the dangerous malware increase till
2020 with every newer version of API Level. Figure 12 shows
the most rising apps from 2016 to 2021 and the percent-
age of dangerous permissions, packages these applications

VOLUME 10, 2022 89041



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

gain [63]. These applications are used daily and if they are
involved in unnecessary and third-party access, then there is a
special need to apply countermeasures on these applications,
as this is going to be a major threat in the future.

Also, the Figure depicts the need to measure these threats
and devise countermeasures or at least present models to
provide more encoded procedures to carry out for these well-
known applications. These apps provide a lot of opportuni-
ties, but with an increase in private and intellectual property
stored in these apps, certain anecdotes need to be proposed.

V. EXPERIMENTAL RESULTS
In this section, the results of our experimentation are stated.
To start our experimentation discussion, we will elaborate on
the basic criteria for performing our implementation success-
fully and will also briefly discuss the data collection or the
dataset that we got and then further converse about the actual
contribution part.

A. EXPERIMENT SETUP
Our environment is based on Windows 8.1 Pro with Intel R©,
Core (MT) i5-2450 CPU, 2.50 GHz as a processor. The
installed memory (RAM) of the system is 4.00 GB with a
64-bit Operating System (OS), x-64 based processor.

For the generated dataset Androguard 3.3.5 (latest release)
is used for decompiling and feature extraction, deployed
in regulated .csv files in binary vectors. We have installed
Python 3.8.12 (version 3.8) on our system for the implemen-
tation and execution of training and testing scripts of imported
machine learning models.

B. DATASET
Three different datasets are used for our implementation,
mainly apps belonging to Google Play. The static features
of our first two datasets containing API calls, permissions,
intents, packages, receivers and services were collected from
MalDroid [64] and DefenseDroid [65] which includes around
14,000 malware samples. The model also uses a third dataset
of around 6000 malware samples and 2421 benign samples
using our own generated application’s dataset. Applications
in the datasets were randomly selected from Google Play
and then reverse-engineered by the Jadx-GUI tool to acquire
their APK’s. The features present in our own selected appli-
cations are then extracted using Androguard into binary data.
All the datasets from different platforms are combined to
incorporate our multiple features sets more than state-of-the-
art approaches (explained in table 5) in a single training to
achieve higher accuracy and classification of malware. The
datasets are first trained on every algorithm for comparative
classification analysis. After the accuracy of the algorithms
are evaluated, the dataset is again trained and tested on the
higher-performing algorithms to use as a feed, based on the
features, inserted into the database and our model will then
forecast the output for a given android application extracted
features. Table 6 represents the datasets training and testing
ratio and number of columns before and after pre-processing.

TABLE 5. Sample datasets.

TABLE 6. Datasets ratio (Training & Testing), MalD (MalDroid), DefenseD
(DefenseDroid), GD (Generated Dataset), Pre-Pro (Pre-Processing).

FIGURE 13. Boosting mechanism.

The next subsection elaborates the discussion and presen-
tation of the programs for our machine learning algorithms.

C. MACHINE LEARNING ALGORITHM AND ENSEMBLE
LEARNING
Six models have been selected to experiment with two strong
classifiers (AdaBoost, SVM and Random Forest). The model
executes upon KNN, NB, RBF, Decision Tree, SVM and we
have also performed AdaBoost with Decision Tree by cal-
culating the weighted error of the Decision tree based on its
data points. As the input parameters are not jointly optimized,
Adaboost is less prone to overfitting. Adaboost can help you
to increase data performance of existing weak classifiers.
After the higher weight of all the wrongly misclassified data
points is rightly classified, the model can enhance model
accuracy. Figure 13 shows the functioning of the boosting
technique.

Since, there is a distinct boundary between two categories,
ensemble methods and SVM perform rather well enough
when dealing with clear aligned datasets following adequate
extraction processes. Another significant benefit of the SVM
Algorithm is that it can handle high-dimensional data, which
comes in handy when it comes to its use and application in

89042 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 14. Representation of the modules of our program.

FIGURE 15. Program parameters and split functions.

the Machine Learning sector. As seen in the diagram above,
AdaBoost’s greater weighted property aids our weak learner
(Decision Trees) with achieving higher accuracy and wider
consumption for misclassified binary feature inputs.

D. PROGRAM PARAMETERS
Our project is based on Python 3.9.7 and divided our execu-
tion into two programs. The first program, written to compare
the algorithms for the accuracy check of respective mod-
els, based on AdaBoost, Decision Tree, KNN, SVM, Naive
Bayes, and Random Forest for the comparative analysis. The
program uses different import and split functions to train the
models and then stores the result in a variable embedded
for the testing model. The function sklearn.model_selection,
used for accessing the bundles of algorithms, accuracy_score
for accuracy readings, pandas to read the database, and
NumPy to convert the testing model data into rr format.
The parameter on the x-axis is the features of the algo-

rithms and on the y-axis is its label (figure 19), meaning the
accuracy percentage for these algorithms. The x (accuracy
of the models) and y (labels of the models) parameters of
the program are configured to shuffle = True using the
test_train_split function, so each algorithm takes a random
permission value from the dataset. Figures 14 and 15 show
the import modules and parameters values set in our program.

First, all the algorithms are imported into the program
to implement the training data for the model, meaning the
machine is training based on the given datasets. The program
will work as each algorithm will take up random binary value
of an app from the dataset and execute its feature’s accuracy
score in another variable. After training the data, the program
passes the testing data to store into a predictive function. The
program is designed to identify the normal and harmful per-

FIGURE 16. Fit and pred function for SVM.

FIGURE 17. Predictive measures for AdaBoost.

FIGURE 18. Results stored to acc variable and plotted by plt.bar function.

missions features through the dataset binary values (0.1) and
specifies those results in function pred () As you can see in
the code below, the program uses a fit () function, which takes
the training data as arguments that are fitted using the x and
y parameters into testing data for our two models (AdaBoost
and SVM). All the variables were specified at the end that
was given to each of our algorithms in the program to the
variable acc. After executing the program, every algorithm
will start accessing the dataset and start predicting the dataset
value for the android features. Figures 16 and 17 represent
the main key functions for our models AdaBoost and SVM,
which are discussed above.

Figure 17 also explains the predictive procedure of the
ensemble model with 1000 malware sample runs and given
features to train for a single predictive classification output.
The same fit() function is used for dataset training. The
model is placed for higher weights of decision trees algorithm
within row values and executed in yhat. Accuracy is then
accomplished by declaring the mean and standard deviation
(mean (n_acc_scores), std (n)acc_score))) for the binary clas-
sification output of malware. Further ahead, Figure 18 shows
the plotted assigned value for accuracy after the data is trained
on the models.

Figure 19 shows the accuracy percentage for our models
which is 96.24% and the graph displays the highest correct
predictive frequency out of all the algorithms, professing
the research work for greater validity. This graph is plotted

VOLUME 10, 2022 89043



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 19. Models accuracy percentage w.r.t label.

by training the algorithms on the datasets to verify which
algorithm can classify the application’s features accurately.
Program 1 (python script for models accuracy) is scripted
to import all of the algorithms and execute them one by
one on these datasets to train the algorithms, producing the
most precise values after testing. In the case of AdaBoost,
we trained Decision Tree first on the dataset and then used
those classified values to train on the higher weights using
AdaBoost. AdaBoost takes those classified samples and fea-
tures used by decision trees and generates higher weights for
correct results after training on those features again. (x, y) are
the stored values by decision trees which are given as input
values for AdaBoost to enhance accuracy, hence the model
with the highest accuracy in fig. 19. This program performs
in a way that when all the models are done training, the script
generates a graph using the plt.bar command to display the
algo that classifies most applications correctly. Figure 19 and
Table 7 show the accuracy and the label value that depicts
the training data each algorithm randomly took and trained
its model for.

VI. MODEL PRECISION EVALUATION
After training the datasets on algorithms and achieving
accuracy percentage, individually developed another pro-
gram that uses the properties of the previous code to help
execute and predict the application state according to the
input from the dataset. For this program, the algorithm with
greater prediction capabilities is imported, i.e. AdaBoost
and SVM using the function sklearn imports linear_svc and
sklearn.ensemble import AdaBoost. The database stores input
features into the rr python module as a feeding factor for the
trained models and designated 1 for the benign applications
and 0 for the malware application, meaning the app which
uses unnecessary features will give the output 0, helping the
use understand that this is a malicious app. This will work in a
way that, when the program executes, the algorithms will take
the input from the database and then categorize the features
based on what we trained the algorithm upon. So, if there
are malware applications fed as an input to the database, the
trained model will predict the outcome and label the state of
the application.

TABLE 7. Shows the label values for each algorithm and their accuracy
percentage.

FIGURE 20. Prediction function for SVM for testing data for the database.

Following the import of the trained models, the
random_state = 0 and the testing data = 0.25 for the
algorithms. The import of sklearn.preprocessing_normalize
function, which takes samples separately according to the
Normalize unit. Every set of data with one component or per-
haps more (each data matrix row), rescaled separately from
other samples to the standard. The program also imports the
function sklearn.features_extraction.text which transforms
a text data array into a token count matrix and at the very
end declares the accuracy score of these algorithms by using
sklearn.metrics function, implementing loss, score, and util-
ity functions to quantify performance in the categorization of
the feature sets. Parameters for this program are the same as
the previous program, but to fix features on every algorithm,
the x type is dedicated to the trained models for features
and y type for the prediction of the applications. So when
the program executes it will work in the same manner and
this time gives us the precision value instead of the plotted
accuracy percentage of the algorithms and at last, the program
will print out the pred () function value which was declared
to the model’s testing data. Figures 20 and 21 indicate the
consideration of AdaBoost and SVM prediction for features
extracted for single feature input.

89044 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 21. Prediction function for AdaBoost for testing data for the
database.

FIGURE 22. Output [1] representing the benign application (SVM).

FIGURE 23. Output [0] representing the malware application (SVM).

FIGURE 24. Output [1] representing the benign application (AdaBoost).

FIGURE 25. Output [0] representing the malware application (AdaBoost).

Further ahead, the prediction results of the program are
discussed. As the code executes, the models will take the
features from the dataset that was provided for a single
application. The result displayed in Figure 22 shows that it’s
a benign application. When permission features, again fed
as input the Figure 23 shows that it is a malware applica-
tion based on the features the highly trained models draw
out. In the same manner, the database is fed with feature
binary values and the model will predict the result in 1 or 0.
Figures 16 and 17 elaborate on the predictive function which
will allow AdaBoost and SVM to predict the basis of the
applications on the feeding input. Figures 22, 23, 24 and 25
are output screenshots of 1 showing benign and 0 for harmful
applications with random application features for respective
models.

A. RESULTS
After the forecast of our models, results show that the accu-
racy for our highest predictive systems is 96% and 92%. The
proposed model doesn’t peak in higher accuracy or predictive
rate but it contributes by introducing enhanced and large fea-
ture sets (containing around 56000 newly extracted features)
with the latest API level applications datasets collected in
recent years than state-of-the-art approaches. Another point
of view for a less predictive rate is the limitation of our

FIGURE 26. Orange entries for hon-harmful applications in AdaBoost.

FIGURE 27. Black entries for harmful applications in AdaBoost.

FIGURE 28. Orange entries for non-harmful applications in SVM.

sources/environment to process and generate these datasets
on our models. The novelty and contributions are explained
in Tables 1 and 2.

VOLUME 10, 2022 89045



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 29. Black entries for Harmful applications in SVM.

Figures 26, 27, 28 and 29 show the runs performed on
the datasets on our trained model. The applications in orange
indicate not harmful apps and only passes sensitive features
over the line, which doesn’t pose that much of a threat for the
application, but it still shows the model issue for indicating
true negatives for zero apps. The applications in black indi-
cate harmful applications and the false positive rate (FPR)
of this category which falls over the non-harmful apps is
about 3-4 applications in case of AdaBoost and 6-7 in case of
SVM in our system for 1000 runs, as shown in figures above
achievedwith 96% and 92% accuracy of AdaBoost and SVM.

All four figures are plotted in a hyperplane which describes
the applications classifications in two sections i.e. Harmful
and Non-harmful applications. The above line represents the
harmful apps section (Black and Red) and applications lying
below the line indicated non-harmful applications. The plot-
ted hyperplanes help in understanding the prediction appli-
cations perspective as shown in fig 27 and 29 showing suc-
cessful classification above the line and 3-4 apps below line
indicating misclassifications. The same process is for non-
harmful apps in orange colors (fig 26, 28) and the above line
shows misclassifications but they don’t pose serious threats.

The Forthcoming is the comparative review of both mali-
cious and benign applications of our models and experi-
mental results with accumulative accuracy and FPR. The
purpose to plot a comparative graph of malware detection is
to understand the relative perspective of both our parameters.
Figure 30 represents a comparative analysis of both models
in terms of malicious and benign applications. Triangles in
red represent the classification and detection of AdaBoost
and in the square, the SVM is displayed. The graph shows a
malware section angle for the executive runs performed and
the values above the hyperplane shows the category of Non-
Harmful apps. The 0.7 misclassification rate of SVM and
0.3 of AdaBoost is plotted with malware applications falling
into the true positive category.

Nevertheless, the models perform with 96.24% accuracy
by accurately predicting the applications categories.

TABLE 8. Experimental results (AdaBoost and SVM), Selected, specify
features selected in the model, MalD (MalDroid), DefenseD
(DefenseDroid), GD (Generated Dataset), FPR (False Positive Rate), Acc
(Accuracy).

We use Accuracy and FPR as evaluation markers in this
project. Precision is computed as the percentage of true
harmful samples in the malware tagged by the detection sys-
tem, showing the system’s capacity to discriminate malware
properly in the field of malware detection. False Positive
Rate (FPR) is the criteria to judge the model’s performance
in terms of establishing how many true indications a model
gives. Below are the experimental results in quantitative
measures, presented in table 8, which explains the points
based on accuracy, false positive rate and their predictive
measures after testing on binary input for 1000 runs on our
2 higher predictive models depending on testing and training
of mixed datasets containing features and malware samples.
The operational speed advantage of AdaBoost is not apparent
when adopting the datasets for classification and prediction.
However, given AdaBoost structural features with parallel
learning, we anticipate it will perform better while computing
bigger data sets. We reached the same conclusion after we
analyzed a much bigger data set with over 500,000 apps.

In table 8, both models are compared and trained on
datasets and specify the accuracy, FPR and features used and
selected corresponding to the composing samples. The FPR is
also presented in figures 26 to 28 above, specifying the calcu-
lative measures through a hyperplane. The accuracy and false
positives have been measured by the equation described in
section IV in algorithm characteristics for the number of runs
of the model. Results show 96.24% as the highest accuracy
for the model after experimentation and false-positive rate of
0.3% in the case of the ensemble approach.

Related works explain the originality of our model and
exhibit the novel features and sample size. To conclude our
model still lack fewer percentages in terms of accurate detec-
tion. To justify this fact, table 9 presents some properties of
similar studies with higher performance rates, indicating such
elements which elaborated the efficiency of our system.

[29] This model has exceptional computational/processing
power with a much stronger environment to test and train

89046 VOLUME 10, 2022



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

FIGURE 30. Comparative analysis of malicious and benign in Adaboost and SVM.

TABLE 9. Relative resources (Pro = Processing), (Acc = Accuracy), (FPR =

False Positive Rate).

their datasets. [24] Has somewhat of a similar resource with
higher processing but their sample size is very limited in
comparison to ourmodel. A few other studies describe similar
technical advantages, thus, leaving us to work with restrictive
measures. Table 9 presents some key properties to elaborate
on similar systems’ components.

VII. RESEARCH ISSUES AND CHALLENGES
This section highlights our experiment’s prevalent and crucial
topics. These hurdles are based on various stages of our work
and maybe gradually rectified in the work to be undertaken
in the future.

1. Features declared mostly on the device are more
durable than the features specific to the applications
and therefore can usually automate malware detection.
The range of android parameters for processing is
rather big and difficult to detect properly if someone
does not extract the features properly.

2. There is still a fast increase in the number of apps.
Malware apps can always be identified in potential in

combination with methods based on AI or machine
learning, such as inept learning, to make the detection
more sophisticated to make it easier to identify and
regulate app prediction rate.

3. Application behaviours in the malware ecosys-
tem encourage non-emerging threats. Our study
doesn’t incorporate the rider analysis or behaviour
of repackaged malware. The study simply uses the
reverse-engineered apk files and extracts the given
context to the AndroGuard and extracts features in
binary vectors. Although this is a major issue and a key
challenge with the advancement in Android malware.
This approach will be our advanced project to perform
differential or effective analysis on reverse applica-
tions, determining the effects of these applications and
their results.

4. The applications with time induce new features with
enhanced malware abilities which is why we would
have to upgrade the system whenever the model’s FPR
rate after execution increases. The simplest explana-
tion for how to identify if the model is degrading on
evolved features is that our datasets are designed in
binary matrix extracted from features that are currently
implemented in these applications and not features that
will be present in evolved apps in coming years. With
new features, we would have to reverse and extract
those features to form an updated dataset again to train
on these classifiers. 66], [67], [68] and [69] discuss
the possible solutions for this key issue and propose
some possible solutions but for our model and given the
resource we have only performed for current features.
For future work, we will consider model sustainability
and how to classify the malware that our system will
be able to detect even if the features are not yet imple-
mented.

VOLUME 10, 2022 89047



B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

5. The research mentions the problem of multicollinearity
in the introduction, depicting the rise of dependent vari-
ables in-between machine learning algorithms which
cause interpretation in results. However, this field of
study can be taken as a future work for further testing
of several models handling multicollinearity because
our model itself is already performing high processing
detection schemes to generate accuracy for Android
applications features malware. We will foresee this
issue and incorporate it to produce an efficient solution
to the problem. Authors in [70], [71], [72] proposes
some solutions to tackle this challenge and can help
understand viewers queries.

A. LIMITATIONS
The technique in this paper is based on binary classification of
lightweight code of static feature sets present in the Android
manifest file. The three major limitations of our method are:

1. The research doesn’t include dynamic or runtime appli-
cation features. We will consider the potential dynamic
aspects of Android applications in the future, including
real-time permissions and API requests and possible
features extracted. We will evaluate the behavioural
traits of the app using a mixture of dynamic and static
evaluation to discover harmful tendencies.

2. Our system lags in future sustainable operative mea-
sures, meaning the system will need to be upgraded in
terms of forthcoming API levels and malware collec-
tion or terms of new innovative features present in these
Android applications.

3. The constraint of a slow and low processing environ-
ment is another motive for less accuracy and predictive
measures of our model in comparison to a few other
peak detection techniques achieving higher accuracy.

VIII. CONCLUSION
In this research, we devised a framework that can detect
malicious Android applications. The proposed technique
takes into account various elements of machine learning and
achieves a 96.24% in identifying malicious Android appli-
cations. We first define and pick functions to capture and
analyze Android apps’ behavior, leveraging reverse appli-
cation engineering and AndroGuard to extract features into
binary vectors and then use python build modules and split
shuffle functions to train themodel with benign andmalicious
datasets. Our experimental findings show that our suggested
model has a false positive rate of 0.3 with 96% accuracy in
the given environment with an enhanced and larger feature
and sample sets. The study also discovered that when dealing
with classifications and high-dimensional data, ensemble and
strong learner algorithms perform comparatively better. The
suggested approach is restricted in terms of static analy-
sis, lacks sustainability concerns, and fails to address a key
multicollinearity barrier. In the future, we’ll consider model
resilience in terms of enhanced and dynamic features. The
issue of dependent variables or high intercorrelation between

machine algorithms before employing them is also a promis-
ing field.

REFERENCES
[1] Android (GOOG) Just Hit a Record 88% Market Share of All

Smartphones—Quartz. Accessed: Jan. 28, 2022. [Online]. Available:
https://qz.com/826672/android-goog-just-hit-a-record-88-market-share-
of-all-smartphones/

[2] A. O. Christiana, B. A. Gyunka, and A. Noah, ‘‘Android malware detection
through machine learning techniques: A review,’’ Int. J. Online Biomed.
Eng., vol. 16, no. 2, p. 14, Feb. 2020, doi: 10.3991/ijoe.v16i02.11549.

[3] D. Ghimire and J. Lee, ‘‘Geometric feature-based facial expression recog-
nition in image sequences using multi-class AdaBoost and support vec-
tor machines,’’ Sensors, vol. 13, no. 6, pp. 7714–7734, Jun. 2013, doi:
10.3390/s130607714.

[4] R. Wang, ‘‘AdaBoost for feature selection, classification and its relation
with SVM, a review,’’ Phys. Proc., vol. 25, pp. 800–807, Jan. 2012, doi:
10.1016/j.phpro.2012.03.160.

[5] J. Sun, H. Fujita, P. Chen, andH. Li, ‘‘Dynamic financial distress prediction
with concept drift based on time weighting combined with Adaboost sup-
port vector machine ensemble,’’ Knowl.-Based Syst., vol. 120, pp. 4–14,
Mar. 2017, doi: 10.1016/j.knosys.2016.12.019.

[6] A. Garg and K. Tai, ‘‘Comparison of statistical and machine learning meth-
ods in modelling of data with multicollinearity,’’ Int. J. Model., Identificat.
Control, vol. 18, no. 4, p. 295, 2013, doi: 10.1504/IJMIC.2013.053535.

[7] C. P. Obite, N. P. Olewuezi, G. U. Ugwuanyim, and D. C. Bartholomew,
‘‘Multicollinearity effect in regression analysis: A feed forward artifi-
cial neural network approach,’’ Asian J. Probab. Statist., vol. 6, no. 1,
pp. 22–33, Jan. 2020, doi: 10.9734/ajpas/2020/v6i130151.

[8] W. Wang, M. Zhao, Z. Gao, G. Xu, H. Xian, Y. Li, and X. Zhang, ‘‘Con-
structing features for detecting Android malicious applications: Issues,
taxonomy and directions,’’ IEEE Access, vol. 7, pp. 67602–67631, 2019,
doi: 10.1109/ACCESS.2019.2918139.

[9] B. Rashidi, C. Fung, and E. Bertino, ‘‘Android malicious application detec-
tion using support vector machine and active learning,’’ in Proc. 13th Int.
Conf. Netw. Service Manage. (CNSM), Tokyo, Japan, Nov. 2017, pp. 1–9,
doi: 10.23919/CNSM.2017.8256035.

[10] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant
permission identification for machine-learning-based Android malware
detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018, doi: 10.1109/TII.2017.2789219.

[11] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, ‘‘Dendroid:
A text mining approach to analyzing and classifying code structures in
Androidmalware families,’’Exp. Syst. Appl., vol. 41, no. 4, pp. 1104–1117,
Mar. 2014, doi: 10.1016/j.eswa.2013.07.106.

[12] M. Magdum, ‘‘Permission based mobile malware detection system using
machine learning,’’ Techniques, vol. 14, no. 6, pp. 6170–6174, 2015.

[13] M. Qiao, A. H. Sung, and Q. Liu, ‘‘Merging permission and API fea-
tures for Android malware detection,’’ in Proc. 5th IIAI Int. Congr. Adv.
Appl. Informat. (IIAI-AAI), Kumamoto, Japan, Jul. 2016, pp. 566–571, doi:
10.1109/IIAI-AAI.2016.237.

[14] D. O. Sahin, O. E. Kural, S. Akleylek, and E. Kilic, ‘‘New results on
permission based static analysis for Android malware,’’ in Proc. 6th Int.
Symp. Digit. Forensic Secur. (ISDFS), Antalya, Turkey,Mar. 2018, pp. 1–4,
doi: 10.1109/ISDFS.2018.8355377.

[15] A. Mahindru and A. L. Sangal, ‘‘MLDroid—Framework for Android
malware detection using machine learning techniques,’’ Neural Comput.
Appl., vol. 33, no. 10, pp. 5183–5240, May 2021, doi: 10.1007/s00521-
020-05309-4.

[16] X. Su, D. Zhang, W. Li, and K. Zhao, ‘‘A deep learning approach
to Android malware feature learning and detection,’’ in Proc. IEEE
Trustcom/BigDataSE/ISPA, Tianjin, China, Aug. 2016, pp. 244–251, doi:
10.1109/TrustCom.2016.0070.

[17] K. A. Talha, D. I. Alper, and C. Aydin, ‘‘APK auditor: Permission-based
Android malware detection system,’’ Digit. Invest., vol. 13, pp. 1–14,
Jun. 2015, doi: 10.1016/j.diin.2015.01.001.

[18] A. Mahindru and P. Singh, ‘‘Dynamic permissions based Android
malware detection using machine learning techniques,’’ in Proc. 10th
Innov. Softw. Eng. Conf., Jaipur, India, Feb. 2017, pp. 202–210, doi:
10.1145/3021460.3021485.

[19] U. Pehlivan, N. Baltaci, C. Acarturk, and N. Baykal, ‘‘The analysis
of feature selection methods and classification algorithms in permis-
sion based Android malware detection,’’ in Proc. IEEE Symp. Comput.
Intell. Cyber Secur. (CICS), Orlando, FL, USA, Dec. 2014, pp. 1–8, doi:
10.1109/CICYBS.2014.7013371.

89048 VOLUME 10, 2022

http://dx.doi.org/10.3991/ijoe.v16i02.11549
http://dx.doi.org/10.3390/s130607714
http://dx.doi.org/10.1016/j.phpro.2012.03.160
http://dx.doi.org/10.1016/j.knosys.2016.12.019
http://dx.doi.org/10.1504/IJMIC.2013.053535
http://dx.doi.org/10.9734/ajpas/2020/v6i130151
http://dx.doi.org/10.1109/ACCESS.2019.2918139
http://dx.doi.org/10.23919/CNSM.2017.8256035
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1016/j.eswa.2013.07.106
http://dx.doi.org/10.1109/IIAI-AAI.2016.237
http://dx.doi.org/10.1109/ISDFS.2018.8355377
http://dx.doi.org/10.1007/s00521-020-05309-4
http://dx.doi.org/10.1007/s00521-020-05309-4
http://dx.doi.org/10.1109/TrustCom.2016.0070
http://dx.doi.org/10.1016/j.diin.2015.01.001
http://dx.doi.org/10.1145/3021460.3021485
http://dx.doi.org/10.1109/CICYBS.2014.7013371


B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

[20] M. Kedziora, P. Gawin, M. Szczepanik, and I. Jozwiak, ‘‘Malware detec-
tion usingmachine learning algorithms and reverse engineering of Android
Java code,’’ Int. J. Netw. Secur. Appl., vol. 11, no. 1, pp. 1–14, Jan. 2019,
doi: 10.5121/ijnsa.2019.11101.

[21] X. Liu and J. Liu, ‘‘A two-layered permission-based Android mal-
ware detection scheme,’’ in Proc. 2nd IEEE Int. Conf. Mobile Cloud
Comput., Services, Eng., Oxford, U.K., Apr. 2014, pp. 142–148, doi:
10.1109/MobileCloud.2014.22.

[22] Permission-Based Android Malware Detection | Semantic Scholar.
Accessed: Oct. 31, 2021. [Online]. Available: https://www.
semanticscholar.org/paper/Permission-Based-Android-Malware-
Detection-Aung-Zaw/c8576b5df33813fe8938cbb19e35217ee21fc80b

[23] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Android malware in your pocket,’’
presented at the Netw. Distrib. Syst. Secur. Symp., San Diego, CA, USA,
2014, doi: 10.14722/ndss.2014.23247.

[24] H. Cai, N. Meng, B. G. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019, doi:
10.1109/TIFS.2018.2879302.

[25] P. Rovelli and Ý. Vigfússon, ‘‘PMDS: Permission-based malware detection
system,’’ in Information Systems Security, vol. 8880, A. Prakash and
R. Shyamasundar, Eds. Cham, Switzerland: Springer, 2014, pp. 338–357,
doi: 10.1007/978-3-319-13841-1_19.

[26] M. S. Alam and S. T. Vuong, ‘‘Random forest classification for
detecting Android malware,’’ in Proc. IEEE Int. Conf. Green Comput.
Commun. IEEE Internet Things IEEE Cyber, Phys. Social Comput.,
Beijing, China, Aug. 2013, pp. 663–669, doi: 10.1109/GreenCom-
iThings-CPSCom.2013.122.

[27] D. Congyi and S. Guangshun, ‘‘Method for detecting Android malware
based on ensemble learning,’’ in Proc. 5th Int. Conf. Mach. Learn.
Technol., Beijing, China, Jun. 2020, pp. 28–31, doi: 10.1145/3409073.
3409084.

[28] W. Li, J. Ge, and G. Dai, ‘‘Detecting malware for Android platform:
An SVM-based approach,’’ in Proc. IEEE 2nd Int. Conf. Cyber Secur.
Cloud Comput., New York, NY, USA, Nov. 2015, pp. 464–469, doi:
10.1109/CSCloud.2015.50.

[29] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro, ‘‘DroidSieve: Fast and accurate classification of
obfuscated Android malware,’’ in Proc. 7th ACM Conf. Data Appl.
Secur. Privacy, Scottsdale, AZ, USA, Mar. 2017, pp. 309–320, doi:
10.1145/3029806.3029825.

[30] Z. Yuan, Y. Lu, and Y. Xue, ‘‘Droiddetector: Android malware char-
acterization and detection using deep learning,’’ Tsinghua Sci. Tech-
nol., vol. 21, no. 1, pp. 114–123, Feb. 2016, doi: 10.1109/TST.2016.
7399288.

[31] S. Ilham, G. Abderrahim, and B. A. Abdelhakim, ‘‘Permission
based malware detection in Android devices,’’ in Proc. 3rd Int.
Conf. Smart City Appl., Tetouan, Morocco, Oct. 2018, pp. 1–6, doi:
10.1145/3286606.3286860.

[32] O. Yildiz and I. A. Doğru, ‘‘Permission-based Android malware detec-
tion system using feature selection with genetic algorithm,’’ Int. J.
Softw. Eng. Knowl. Eng., vol. 29, no. 2, pp. 245–262, Feb. 2019, doi:
10.1142/S0218194019500116.

[33] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek,
‘‘Obfuscation-resilient, efficient, and accurate detection and family identi-
fication of Android malware,’’ Dept. Comput. Sci., George Mason Univ.,
Fairfax, VA, USA, Tech. Rep. GMU-CS-TR-2015-10, 2015, vol. 202.

[34] A. Senawi, H.-L. Wei, and S. A. Billings, ‘‘A new maximum relevance-
minimum multicollinearity (MRmMC) method for feature selection
and ranking,’’ Pattern Recognit., vol. 67, pp. 47–61, Jul. 2017, doi:
10.1016/j.patcog.2017.01.026.

[35] R. Tamura, K. Kobayashi, Y. Takano, R. Miyashiro, K. Nakata, and
T. Matsui, ‘‘Best subset selection for eliminating multicollinearity,’’
J. Oper. Res. Soc. Jpn., vol. 60, no. 3, pp. 321–336, 2017, doi:
10.15807/jorsj.60.321.

[36] A. Farrell, G.Wang, S. A. Rush, J. A.Martin, J. L. Belant, A. B. Butler, and
D. Godwin, ‘‘Machine learning of large-scale spatial distributions of wild
turkeys with high-dimensional environmental data,’’ Ecol. Evol., vol. 9,
no. 10, pp. 5938–5949, May 2019, doi: 10.1002/ece3.5177.

[37] S. Niu, R. Huang, W. Chen, and Y. Xue, ‘‘An improved permission
management scheme of Android application based on machine learn-
ing,’’ Secur. Commun. Netw., vol. 2018, pp. 1–12, Oct. 2018, doi:
10.1155/2018/2329891.

[38] C. L. P.M.Hein, ‘‘Permission basedmalware protectionmodel for Android
application,’’ presented at the Int. Conf. Adv. Eng. Technol., Mar. 2014,
doi: 10.15242/IIE.E0314102.

[39] G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inver-
ardi, ‘‘An investigation into Android run-time permissions from the
end users’ perspective,’’ in Proc. 5th Int. Conf. Mobile Softw. Eng.
Syst., Gothenburg, Sweden, May 2018, pp. 45–55, doi: 10.1145/3197231.
3197236.

[40] P. Topark-Ngarm, ‘‘Identifying Android malware using machine learning
based upon both static and dynamic features,’’ M.S. thesis, Victoria Univ.
Wellington, Wellington, New Zealand, 2014, p. 87. [Online].
Available: https://ecs.wgtn.ac.nz/foswiki/pub/Main/IanWelch/pacharawit-
thesis.pdf

[41] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, ‘‘Machine learning
aided Android malware classification,’’ Comput. Electr. Eng., vol. 61,
pp. 266–274, Jul. 2017, doi: 10.1016/j.compeleceng.2017.02.013.

[42] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, Feature
Selection for High-Dimensional Data. Cham, Switzerland: Springer, 2015,
doi: 10.1007/978-3-319-21858-8.

[43] B. Pes, ‘‘Ensemble feature selection for high-dimensional data: A stability
analysis across multiple domains,’’ Neural Comput. Appl., vol. 32, no. 10,
pp. 5951–5973, May 2020, doi: 10.1007/s00521-019-04082-3.

[44] A. Hamidreza and N. Mohammed, ‘‘Permission-based analysis of Android
applications using categorization and deep learning scheme,’’ in Proc.
MATEC Web Conf., vol. 255, 2019, p. 05005, doi: 10.1051/matec-
conf/201925505005.

[45] T. Boksasp and E. Utnes, ‘‘Android apps and permissions: Security
and privacy risks,’’ M.S. thesis, Dept. Telematics, Norwegian Sci.
Technol., Trondheim, Norway, 2012, p. 143. [Online]. Available:
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/262677/
566356_FULLTEXT01.pdf?sequence=1

[46] N. Yadav, A. Sharma, and A. Doegar, ‘‘A survey on Android malware
detection,’’ Int. J. New Technol. Res., vol. 2, no. 12, p. 7, 2016.

[47] F. I. Abro, ‘‘Investigating Android permissions and intents for malware
detection,’’ City Univ., London, U.K., Tech. Rep., 2014, p. 5 and 169.

[48] M. Magdum and S. K. Wagh, ‘‘Permission based Android malware detec-
tion system using machine learning approach,’’ Int. J. Comput. Sci. Inf.
Secur., vol. 14, no. 6, Jun. 2016.

[49] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, ‘‘A multimodal deep
learning method for Android malware detection using various features,’’
IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773–788,Mar. 2019,
doi: 10.1109/TIFS.2018.2866319.

[50] H. A. Alatwi, ‘‘Android malware detection using category-
based machine learning classifers,’’ M.S. thesis, Rochester Inst.
Technol., Rochester, NY, USA, 2016, p. 62. [Online]. Available:
https://scholarworks.rit.edu/theses/9069/

[51] P. Basavaraju and A. S. Varde, ‘‘Supervised learning techniques in mobile
device apps for Androids,’’ Dept. Comput. Sci., Montclair State Univ.,
Montclair, NJ, USA, Tech. Rep., 2017, p. 12, vol. 19, no. 2.

[52] R. N. Romli, M. F. Zolkipli, and M. Z. Osman, ‘‘Efficient feature
selection analysis for accuracy malware classification,’’ J. Phys., Conf.
Ser., vol. 1918, no. 4, Jun. 2021, Art. no. 042140, doi: 10.1088/1742-
6596/1918/4/042140.

[53] J. Abah, O. V. Waziri, M. B. Abdullahi, U. M. Arthur, and O. S. Adewale,
‘‘A machine learning approach to anomaly-based detection on Android
platforms,’’ Int. J. Netw. Secur. Appl., vol. 7, no. 6, pp. 15–35, Nov. 2015,
doi: 10.5121/ijnsa.2015.7602.

[54] I. K. Aksakalli, ‘‘Using convolutional neural network for Android malware
detection,’’ Dept. Comput. Eng., Erzurum, Turkey, 2019.

[55] I. Martín, J. A. Hernández, A. Muñoz, and A. Guzmán, ‘‘Android
malware characterization using metadata and machine learning tech-
niques,’’ Secur. Commun. Netw., vol. 2018, pp. 1–11, Jul. 2018, doi:
10.1155/2018/5749481.

[56] S. Fallah and A. J. Bidgoly, ‘‘Benchmarking machine learning algorithms
for Androidmalware detection,’’ Jordanian J. Comput. Inf. Technol., vol. 5,
no. 3, p. 15, 2019.

[57] X. Jiang, B. Mao, J. Guan, and X. Huang, ‘‘Android malware detection
using fine-grained features,’’ Sci. Program., vol. 2020, pp. 1–13, Jan. 2020,
doi: 10.1155/2020/5190138.

[58] H. Yuan, Y. Tang, W. Sun, and L. Liu, ‘‘A detection method for
Android application security based on TF-IDF and machine learning,’’
PLoS ONE, vol. 15, no. 9, Sep. 2020, Art. no. e0238694, doi: 10.1371/
journal.pone.0238694.

VOLUME 10, 2022 89049

http://dx.doi.org/10.5121/ijnsa.2019.11101
http://dx.doi.org/10.1109/MobileCloud.2014.22
http://dx.doi.org/10.14722/ndss.2014.23247
http://dx.doi.org/10.1109/TIFS.2018.2879302
http://dx.doi.org/10.1007/978-3-319-13841-1_19
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.122
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.122
http://dx.doi.org/10.1145/3409073.3409084
http://dx.doi.org/10.1145/3409073.3409084
http://dx.doi.org/10.1109/CSCloud.2015.50
http://dx.doi.org/10.1145/3029806.3029825
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1145/3286606.3286860
http://dx.doi.org/10.1142/S0218194019500116
http://dx.doi.org/10.1016/j.patcog.2017.01.026
http://dx.doi.org/10.15807/jorsj.60.321
http://dx.doi.org/10.1002/ece3.5177
http://dx.doi.org/10.1155/2018/2329891
http://dx.doi.org/10.15242/IIE.E0314102
http://dx.doi.org/10.1145/3197231.3197236
http://dx.doi.org/10.1145/3197231.3197236
http://dx.doi.org/10.1016/j.compeleceng.2017.02.013
http://dx.doi.org/10.1007/978-3-319-21858-8
http://dx.doi.org/10.1007/s00521-019-04082-3
http://dx.doi.org/10.1051/matecconf/201925505005
http://dx.doi.org/10.1051/matecconf/201925505005
http://dx.doi.org/10.1109/TIFS.2018.2866319
http://dx.doi.org/10.1088/1742-6596/1918/4/042140
http://dx.doi.org/10.1088/1742-6596/1918/4/042140
http://dx.doi.org/10.5121/ijnsa.2015.7602
http://dx.doi.org/10.1155/2018/5749481
http://dx.doi.org/10.1155/2020/5190138
http://dx.doi.org/10.1371/journal.pone.0238694
http://dx.doi.org/10.1371/journal.pone.0238694


B. Urooj et al.: Malware Detection: Framework for Reverse Engineered Android Applications

[59] A. M. García, ‘‘Machine learning techniques for Android malware detec-
tion and classification,’’ Ph.D. thesis, Auton. Univ. Madrid, Madrid,
Spain, 2019, p. 170. [Online]. Available: https://dialnet.unirioja.es/
servlet/tesis?codigo=221389

[60] S. Y. Yerima, M. K. Alzaylaee, and S. Sezer, ‘‘Machine learning-
based dynamic analysis of Android apps with improved code cover-
age,’’ EURASIP J. Inf. Secur., vol. 2019, no. 1, p. 4, Dec. 2019, doi:
10.1186/s13635-019-0087-1.

[61] Y. Dong, ‘‘Android malware prediction by permission analysis and data
mining,’’ M.S. thesis, Dept. Comput. Inf. Sci., Univ. Michigan-Dearborn,
Dearborn, MI, USA, 2017, p. 71. [Online]. Available:https://deepblue.lib.
umich.edu/bitstream/handle/2027.42/136197/YouchaoDong_Thesis_
0327.pdf%3Fsequence%3D1%26isAllowed%3Dy

[62] D. V. Priya and P. Visalakshi, ‘‘Detecting Android malware using
an improved filter based technique in embedded software,’’ Micropro-
cessors Microsyst., vol. 76, Jul. 2020, Art. no. 103115, doi: 10.1016/
j.micpro.2020.103115.

[63] A. Hemalatha and D. S. S. Brunda, ‘‘Detection of mobile malwares using
improved deep convolutional neural network,’’ vol. 7, no. 14, p. 7, 2020.

[64] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani,
‘‘Dynamic Android malware category classification using semi-supervised
deep learning,’’ in Proc. IEEE Int. Conf. Dependable, Autonomic Secure
Comput., Int. Conf. Pervasive Intell. Comput., Int. Conf. Cloud Big Data
Comput., Int. Conf. Cyber Sci. Technol. Congr. (DASC/PiCom/CBDCom/
CyberSciTech), Calgary, AB, Canada, Aug. 2020, pp. 515–522, doi:
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094.

[65] Android Malware Detection | Kaggle. Accessed: Nov. 14, 2021. [Online].
Available: https://www.kaggle.com/defensedroid/android-malware-detec
tion

[66] X. Fu and H. Cai, ‘‘On the deterioration of learning-based malware
detectors for Android,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.,
Companion Proc. (ICSE-Companion), Montreal, QC, Canada, May 2019,
pp. 272–273, doi: 10.1109/ICSE-Companion.2019.00110.

[67] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, ‘‘DroidEvolver: Self-
evolving Android malware detection system,’’ in Proc. IEEE Eur. Symp.
Secur. Privacy (EuroS P), Stockholm, Sweden, Jun. 2019, pp. 47–62, doi:
10.1109/EuroSP.2019.00014.

[68] H. Cai, ‘‘Assessing and improving malware detection sustainability
through app evolution studies,’’ACMTrans. Softw. Eng.Methodol., vol. 29,
no. 2, pp. 1–28, Apr. 2020, doi: 10.1145/3371924.

[69] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, ‘‘Enhancing state-of-the-art classifiers with API semantics
to detect evolvedAndroidmalware,’’ inProc. ACMSIGSACConf. Comput.
Commun. Secur., New York, NY, USA, Oct. 2020, pp. 757–770, doi:
10.1145/3372297.3417291.

[70] A. Katrutsa and V. Strijov, ‘‘Comprehensive study of feature selec-
tion methods to solve multicollinearity problem according to evalua-
tion criteria,’’ Expert Syst. Appl., vol. 76, pp. 1–11, Jun. 2017, doi:
10.1016/j.eswa.2017.01.048.

[71] R. Grewal, J. A. Cote, and H. Baumgartner, ‘‘Multicollinearity and mea-
surement error in structural equation models: Implications for theory
testing,’’ Marketing Sci., vol. 23, no. 4, pp. 519–529, Nov. 2004, doi:
10.1287/mksc.1040.0070.

[72] M. S. Devi, A. Poornima, J. Kosanam, and T. Hari S. Prashanth, ‘‘Outlier
multicollinearity free fish weight prediction using machine learning,’’
Mater. Today, Proc., p. 7, Mar. 2021, doi: 10.1016/j.matpr.2021.02.773.

BEENISH UROOJ received the bachelor’s degree
in computer science from COMSATS University
Islamabad,Wah Campus, Pakistan, in 2019, where
she is currently pursuing the master’s degree in
information security with the Department of Com-
puter Science. She is also working as a part-time
Graphic Designer and a Freelancer. Her confer-
ence paper about Security in SCADA Systems was
declared runner up in best developmental research
in 2021 (soon to be published). Her research inter-

ests include cyber security, threat hunting, and security in industrial control
systems (ICS).

MUNAM ALI SHAH received the B.Sc. and
M.Sc. degrees in computer science from the Uni-
versity of Peshawar, Pakistan, in 2001 and 2003,
respectively, the M.S. degree in security technolo-
gies and applications from the University of Sur-
rey, U.K., in 2010, and the Ph.D. degree from the
University of Bedfordshire, U.K., in 2013. Since
July 2004, he has been associated with the Depart-
ment of Computer Science, COMSATSUniversity
Islamabad, Pakistan. He is the author of more than

225 research articles published in international conferences and journals.
His research interests include the IoT protocol design, QoS, and security
issues in wireless communication systems and applications of machine
learning. He received the Best Paper Award of the International Conference
on Automation and Computing, in 2012.

CARSTEN MAPLE (Member, IEEE) is currently
a Professor of cyber systems engineering at the
WMG’s Cyber Security Centre (CSC), University
of Warwick. He is also the director of research
in cyber security working with organizations in
key sectors, such as manufacturing, healthcare,
financial services, and the broader public sector to
address the challenges presented by today’s global
cyber environment. His interests include informa-
tion security and trust and authentication in dis-

tributed systems. He is a member of several professional societies, including
the Council of Professors and Heads of Computing (CPHC) whose remit is
to promote public education in computing and its applications and to provide
a forum for those responsible for management and research in university
computing departments. He is also an elected member to the Committee
of this body. He is an Education Advisor for TIGA’s the trade association
representing the U.K. games industry. He is a fellow of the British Computer
Society and the Chartered Institute for IT. He is a Chartered IT professional.
He also holds two Professorships in China, including a position at one of the
top two control engineering departments in China.

MUHAMMAD KAMRAN ABBASI received the
Ph.D. degree in computer science from the Univer-
sity of Bedfordshire, U.K. He is currently working
as an Associate Professor with the Department
of Distance Continuing and Computer Education,
University of Sindh. His research interests include
unsupervised machine learning, informatics, and
educational technology.

SIDRA RIASAT received the bachelor’s degree
in computer science from Fatima Jinnah Women
University. She is currently pursuing the master’s
degree in information security with the Depart-
ment of Computer Science, COMSATS Univer-
sity, Islamabad. Her research interests include
cyber security, block chain smart cities, and
SCADA networks.

89050 VOLUME 10, 2022

http://dx.doi.org/10.1186/s13635-019-0087-1
http://dx.doi.org/10.1016/j.micpro.2020.103115
http://dx.doi.org/10.1016/j.micpro.2020.103115
http://dx.doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
http://dx.doi.org/10.1109/ICSE-Companion.2019.00110
http://dx.doi.org/10.1109/EuroSP.2019.00014
http://dx.doi.org/10.1145/3371924
http://dx.doi.org/10.1145/3372297.3417291
http://dx.doi.org/10.1016/j.eswa.2017.01.048
http://dx.doi.org/10.1287/mksc.1040.0070
http://dx.doi.org/10.1016/j.matpr.2021.02.773

