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ABSTRACT In nonlinear dynamical systems with barriers/thresholds, the signal response against a weak
external input signal is enhanced by an appropriate additive noise (stochastic resonance). In recent years,
progress in the application of stochastic resonance shows that the existence of additive noise heightens the
memory storage functions in memory elements using bistable oscillations even with extremely low power
consumption. By not restricting the additive noise, the deterministic chaos (an internal fluctuation) induces a
similar phenomenon known as chaotic resonance. Chaotic resonance appears in nonlinear dynamical systems
and is accompanied by chaos–chaos intermittency, where the chaotic orbit intermittently transitions among
separated attractor regions through attractor-merging bifurcation. Previously, a higher chaotic resonance
sensitivity than that of stochastic resonance was reported in various types of systems. In this study,
we hypothesize that chaotic-resonance-based memory devices can store information with lower power
consumption than that of stochastic-resonance-based devices. To prove this hypothesis, we induced attractor-
merging bifurcation in a cubic map system, which is the simplest model for the emergence of chaotic
resonance. Thereafter, we adjusted the internal system parameter under a noise-free system as the chaotic
resonance and applied stochastic noise similar to the condition for inducing stochastic resonance. The results
of this study reveal that, evenwith weakermemory storage input signals, the former exhibits a highermemory
storage capability than the latter. The approach using chaotic resonance could facilitate the development of
memory devices that were hitherto restricted to the application of stochastic resonance.

INDEX TERMS Chaos–chaos intermittency, chaotic resonance, memory storage, stochastic resonance,
synchronization.

I. INTRODUCTION
Considering recent developments in artificial intelligence
(AI), neuromorphic computing, and big data analysis, the
amount of data being stored is increasing exponentially [1].
To manage such large amounts of data, efforts are being
made to develop data storage devices with high den-
sity and high-speed data transmission capability [2]. Such
devices are typified by high-density/high-speed nonvolatile
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memory and utilize phase-change random access memory
(PCRAM) and a combination of PCRAM and neuromorphic
computing [3]–[6]. However, they must also have low power
consumption to achieve a low-carbon society [7]–[9]. There-
fore, memory storage devices with low power consumption
are needed.

To develop such a device, the stochastic resonance mech-
anism [10] (reviewed in [11]–[13]), in which synchroniza-
tion in nonlinear systems possessing a barrier/threshold
under a weak external input signal is strengthened using
an additive stochastic noise with suitable strength, must be
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utilized [14], [15]. In particular, Ibáñez et al. and Stotland and
Di Ventra showed that the existence of additive noise height-
ens memory functions in memory elements with bistable
oscillations, even under scenarios with extremely low power
consumption [14], [15]. Consequently, studies have actively
investigated stochastic resonance for realizing stochastic
memory devices with low power consumption [16]. In mem-
ory devices, memory elements possesses bistable states cor-
responding to ‘‘0’’ and ‘‘1.’’ The elements are initialized
to ‘‘0.’’ Then, they are changed to ‘‘1’’ during the storage
phase. In memory devices that use the stochastic mechanism
resonance, the amplitude of the input signal required for the
state transition can be reduced by the effect of noise.

Along with additive stochastic noise, the deterministic
chaos of an internal system’s fluctuations induces a phe-
nomenon called chaotic resonance that is similar to stochastic
resonance [17]–[25] (reviewed in [12], [13], [26]). In chaotic
resonance, chaos–chaos intermittency (where the chaotic
orbit hops intermittently among several attractors distributed
in spatially different regions) synchronizes with a weak exter-
nal input signal. The profile of synchronization degree fol-
lows a unimodal maximumpeak around the attractor-merging
bifurcation, which is the function that controls the internal
system parameter for attractor-merging (reviewed in [12],
[26]). The sensitivity against the weak input signal and syn-
chronization degree in the chaotic resonance are superior to
those of stochastic resonance [23], [27]. Although numerous
studies have been conducted on chaotic resonance, investiga-
tions were limited to the evaluation of the response of steady
periodic input signals [22], [23], [28]–[32]. Consequently, the
transient response in chaotic resonance, such as the transition
from ‘‘0’’ to ‘‘1’’ in memory devices, remains unclear.

In this study, we hypothesized that the state transition
caused by chaotic resonance can realize a novel memory
storage mechanism with lower power consumption than that
of a mechanism based on the stochastic resonance effect.
To prove this hypothesis, in our preliminary study [33],
we confirmed that memory storage can be realized using
the attractor-merging bifurcation in a cubic map system,
which is the simplest model for the emergence of chaotic
resonance [12], by adjusting the internal system parameter
under a noise-free condition. However, the strength of the
perturbation for transition in chaotic resonance, which relates
to power consumption, has not been compared to that in the
conventional approach that utilizes stochastic resonance [14],
[15]. Additionally, the robustness of chaotic resonance to
background noise and parameter setting error is not clearly
understood. In this study, based on our preliminary study [33],
we evaluated and compared the abilities of the chaotic and
stochastic resonance approaches for memory storage.

II. MATERIALS AND METHODS
A. CUBIC MAP WITH INPUT SIGNALS
A discrete cubic map is a well-known and simple chaotic
system with chaos–chaos intermittency, and it is used for
evaluating chaotic resonance (reviewed in [12]). In this study,
we used an assembly composed of N cubic maps with

memory signals ci(t) (i = 1, 2, · · · ,N ), a parameter setting
error of 1a, and a Gaussian white noise of Daξ (t). This is
given by

xi(t + 1) = F(xi(t))− ci(t)+ Daξ (t), (1)

F(x) = ((a+1a)x − x3) exp(−x2/b). (2)

Here, xi(t) denotes the time series of the variable in the
i-th cubic map, Da represents the noise strength (mean and
standard deviation of ξ (t) are zero and 1.0, respectively; that
is, ξ (t) is produced by a normalized Gaussian process), and
1a follows Dcζ , where Dc and ζ are respectively the error
strength and random values following a normalized Gaussian
distribution. Owing to the increase in a, the attractor-merging
bifurcation arises. Subsequently, a chaos–chaos intermittency
appears [31]. The positive value of ci(t) above a certain
strength causes the transition of xi(t) to the positive attractor
region xi(t) > 0. In this study, b was set to 10.0 [31], and
the size of the assembly was N = 512. The attractor-merging
bifurcation is induced by adjusting the internal system param-
eter a in the chaotic resonance approach.When it is controlled
by the additive stochastic noise as in the stochastic resonance
approach, a is fixed.

In the memory-storage process for the assembly of cubic
maps, the memory signals ci(t) are input in each cubic map.
Before the memory-storage phase, 0 < t < ts: ts and te
represent the start and end times of the memory storage,
respectively, and ci(t) is set to 0. Initially, xi(0) is set to a
negative value. During memory storage (ts ≤ t ≤ te), the
memory signals become ci(t) = Aηi (A > 0), where ηi
represents a binary memory pattern of ‘‘0’’ or ‘‘1’’ gener-
ated using the Poisson process. In the Poisson process, the
occurrence probability of ‘‘1’’ corresponds to 3. After the
memory-storage process (t > te), ci(t) becomes 0. An exam-
ple of ci(t) is shown in Fig.1. The memory-storage patterns
{X1,X2, · · · ,Xi · · · ,XN } are produced through binarization
(i.e., Xi = 1 in xi(te) > 0 and Xi = 0 in xi(te) ≤ 0). As the
parameter set for this study, we used a start time of ts = 100
and end time of te = 200 in the memory storage as well as
3 = 0.1 for the Poisson process.

B. EVALUATION INDICES
To evaluate the dynamical system behaviors, we utilized the
bifurcation diagram of x1. In this study, we assumed that the
elements of the cubic map assembly exhibit similar temporal
behaviors; therefore, we utilized the 1-st element as a typical
example. Moreover, to detect the attractor-merging bifur-
cation and determine whether the attractor is separated or
merged in the absence of external noise (Da = 0) and mem-
ory signals (A = 0), we used the values of F(fmax,min)− xd .
Here, xd exhibits the separation point for the attractors in
the cubic map xd = 0. fmax,min corresponds to the local
maximum and minimum values around x = xd for the map
function, respectively. F(fmax,min) − xd = 0 corresponds to
the attractor-merging bifurcation [31]. Under the condition
forF(fmax)−xd < 0,F(fmin)−xd > 0, in themerged attractor,
the orbit hops between the xi > xd and xi < xd regions.
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FIGURE 1. Conceptual figures for the memory-storage process in the
assembly of cubic maps. (a) Overview of cubic maps xi (t) applied to
memory signals ci (t) and additive stochastic noise Daξ (t). (b) Time series
of the memory signal ci (t) corresponding to the storage pattern. In this
example, the assembly size is set to N = 6. ts and te correspond to the
start and end times for memory storage, respectively.

This indicates that chaos–chaos intermittency appears. The
condition for F(fmax) − xd > 0, F(fmin) − xd < 0, and
xi is constrained to either the xi > xd or xi < xd regions,
depending on the initial value of xi(0).
To determine the chaotic state of xi, the Lyapunov exponent

was calculated as follows [34]:

λ =
1
τM

M∑
k=1

ln(
dk (tl = τ )
dk (tl = 0)

). (3)

Here, dk (tl = 0) = d0 (k = 1, 2, · · · ,M ) denotes M
perturbed initial conditions to xi(t) applied at n = n0 + (k −
1)τ . The time evolution for tl ∈ [0 : τ ] is dk (tl = τ ) =
(xi(t)− x ′i (t))|t=t0+kτ , where x

′(t) is a perturbation applied to
the orbit. Further, λ > 0 and λ < 0 correspond to the chaotic
and periodic states, respectively. In this study, the value of λ
among N cubic maps is averaged.

To quantify the capability for memory storage, the bit error
rate (BER) between the memory pattern ηi and the stored
pattern in the assembly of cubic maps Xi (i = 1, 2, . . . ,N )
was utilized.

III. RESULTS
A. DEPENDENCY OF SYSTEM BEHAVIOR ON INTERNAL
PARAMETER OF CUBIC MAP
First, we demonstrate the dependency of the system behavior
on the internal parameter of cubic map a. A bifurcation

FIGURE 2. System behavior as a function of the internal parameter of the
cubic map a. Bifurcation diagram (top panel). The red and blue dots
denote the cases with positive and negative initial values of x1(0),
respectively. Lyapunov exponent λ (middle panel). Attractor-merging
conditions F (fmax,min)− xd (bottom panel). The chaotic attractor (λ > 0)
merges in a & 2.84, satisfying the attractor-merging condition
(F (fmax)− xd < 0, F (fmin)− xd > 0).

FIGURE 3. Dependency of the capability to store bit-series on the internal
parameter a when the input signal strength is A = 0.01. The BER between
the input bit-series {η1, η2, · · · , ηN } and stored bit-series
{X1,X2, · · · ,XN } (upper panel). The line and bar indicate the mean and
standard error among 10 trials with different initial conditions. The
attractor-merging conditions F (fmax,min)− xd (lower panel). Around the
attractor-merging bifurcation F (fmax,min)− xd = 0 at a ≈ 2.839, and the
BER minimizes to ≈ 4× 10−3. (Da = 0,Dc = 0,b = 10).

diagram using positive and negative initial values of x1(0),
Lyapunov exponent λ, and the attractor-merging conditions
F(fmax,min)−xd is presented in Fig. 2. In a . 2.84, the condi-
tion for attractor-separation (F(fmax)−xd > 0,F(fmin)−xd <
0) is satisfied. Consequently, the chaotic attractor (λ > 0)
separates either the positive or negative x(n) region depending
on the sign of the initial value x(0). While this separated
attractor merges in a & 2.84 through the attractor-merging
bifurcation (F(fmax,min)−xd = 0), chaos–chaos intermittency
appears (F(fmax)− xd < 0,F(fmin)− xd > 0).

VOLUME 10, 2022 15701



S. Nobukawa et al.: Memory Storage Systems Utilizing Chaotic Attractor-Merging Bifurcation

FIGURE 4. Typical example of the transient behaviors of xi (left parts) and corresponding memory signal ci (right
parts) at the internal parameter a = 2.839, where the BER is minimum, as shown in Fig.3. In the 1st and 3rd cubic
maps, xi (t) follows the rising behavior ci (t) when t > 100. The other cubic maps remain in the negative xi (t)
region. In this trial of memory storage patterns, η1,3 = 1, η2,4,5,6 = 0 (Da = 0,Dc = 0,b = 10,A = 0.01).

FIGURE 5. Dependency of BER on the input signal strength of A and the
internal parameter a. At approximately a = 2.839, the attractor-merging
bifurcation shown in Fig.2 in A & 4.0× 10−3, BER ≈ 2.0× 10−3 is
achieved. (Da = 0,Dc = 0,b = 10).

FIGURE 6. Dependency of BER on the input signal strength of A and the
strength of the additive stochastic noise of Da at a = 2.839, where BER
minimizes under a noise-free condition (shown in Fig. 3). By increasing
the noise strength Da, the lower limit of the input signal strength A,
where BER ≈ 2.0× 10−3 is achieved, increases (b = 10,1a = 0).

B. CAPABILITY FOR MEMORY STORAGE BY ADJUSTING
INTERNAL CUBIC MAP PARAMETER
1) CAPABILITY UNDER NOISE-FREE AND
NO-PARAMETER-SETTING ERROR
We demonstrate the capability of storing the bit-
series {η1, η2, · · · , ηN } for controlling the attractor-merging

FIGURE 7. Dependency of BER on the input signal strength of A and the
strength of the parameter-setting error Dc at a = 2.839, where BER
minimizes under noise-free (Da = 0) and non-parameter-setting error
(1a = 0) conditions (shown in Fig. 3). When the strength of the
parameter-setting error Dc is increased, the lower limit of the input signal
strength A, where BER ≈ 2.0× 10−3 is achieved, increases
(b = 10,Da = 0).

bifurcation by adjusting the internal parameter a under a
noise-free condition Da = 0 and a non-parameter-setting
error Dc = 0. In the upper panel of Fig. 3, the BER between
the input bit-series {η1, η2, · · · , ηN } and stored bit-series
{X1,X2, · · · ,XN } as a function of the parameter a with an
input signal strength ofA = 0.01 is shown. The lower panel in
Fig. 3 shows the attractor-merging conditionsF(fmax,min)−xd
corresponding to the parameter value a in the upper panel
of Fig. 3. The result is shown around the attractor-merging
bifurcation F(fmax,min) − xd = 0 at a ≈ 2.839, and the
BER minimizes to ≈ 4 × 10−3. This minimization can be
construed as a chaotic resonance, where there is a response
of the chaos–chaos intermittency against the weak input
signal for storing the bit-series. In Fig. 4, a typical exam-
ple of the time-series of xi and ci at the internal parameter
a = 2.839, where the BER is minimum, is represented
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FIGURE 8. Dependency of the capability to store bit-series on the noise
strength Da. BER between the input bit-series and stored bit-series in the
cases with signal strengths of A = 0.01 (corresponding to the input
strength of A, as shown in Fig.3), 0.02, and 0.03 (upper panel). The line
and bar indicate the mean and standard error among the 10 trials with
different initial conditions. Bifurcation diagram of x1(t) as a function of
the noise strength D under the signal-free condition (A = 0) (lower
panel). The red and blue dots indicate the cases using positive and
negative initial values of x(0), respectively (a = 2.84,b = 10,1a = 0).

(the corresponding BER is shown in the upper panel of Fig.3).
In the 1st and 3rd cubic maps, xi(t) follows the rising behavior
ci(t) = 0.01 when t > 100. The other cubic maps remain
in the negative xi(t) region set as the initial state of xi(0)
according to ci(t) = 0.

To investigate the sensitivity of adjusting the internal
parameter a, the dependence of the BER on the input signal
strength of A and the internal parameter a is illustrated in
Fig. 5. At approximately a = 2.839, the attractor-merging
bifurcation, as shown in Fig.2, in A & 4.0 × 10−3, BER .
2.0× 10−3 is achieved.

2) CAPABILITY UNDER NOISE AND
PARAMETER-SETTING ERROR
We investigated the robustness against the additive stochastic
noise for highmemory storage capability around the attractor-
merging bifurcation. Figure 6 shows the dependency of BER
on the input signal strength of A and the strength of the
additive stochastic noise of Da at a = 2.839, where BER
minimizes under a noise-free condition (corresponding to
Fig. 3). Increasing the noise strength Da, the lower limit of
the input signal strength A where BER ≈ 2.0 × 10−3 is
achieved increases. Subsequently, the A − Da region with
BER ≈ 2.0× 10−3 disappears in Da & 2.0× 10−4.
In addition to the influence of additive stochastic noise,

the robustness against the parameter setting error for a
was evaluated. Figure 7 shows the dependency of BER
on the input signal strength of A and the strength of the
parameter-setting error Dc at a = 2.839, where BER min-
imizes under the noise-free (Da = 0) and non-parameter-
setting error (1a = 0) condition (shown in Fig. 3).
When the strength of the parameter-setting error Dc is
increased, the lower limit of the input signal strength A,
where BER ≈ 2.0× 10−3 is achieved, increases. Eventually,

FIGURE 9. Typical example of the transient behaviors of xi (left parts) and ci (right parts) for the internal parameter
Da = 7.0× 10−3, where the BER minimizes as shown in Fig. 8. In contrast to the case where the attractor-merging
bifurcation is induced by adjusting the internal system parameter a as shown in Fig.4, the noise-induced chaos–chaos
intermittency of xi (t) does not dominantly follow the rising behavior and remains for ci (t) when t > 100. In this trial for
memory-storage patterns, η1,3 = 1, η2,4,5,6 = 0 (D = 2.8,b = 10,A = 0.03,1a = 0).
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FIGURE 10. (a) Dependency of the BER on the input signal strength of A
and the strength of the additive stochastic noise Da. At approximately
Da = 7.0× 10−3 where the attractor-merging bifurcation shown in Fig. 8
is A & 0.03, BER ≈ 2.0× 10−2 is achieved. (b) Input signal strength of A
dependency of the minimum BER between 10−4 ≤ Da ≤ 10−2 (black line)
and BER in a = 2.839 under the noise-free condition with A = 10−3 (red
line) (upper part). A dependency of the appropriate strength of the
additive stochastic noise Da (lower part) (a = 2.8,b = 10,1a = 0).

the A − Dc region with BER ≈ 2.0 × 10−3 disappears
in Dc & 3.0× 10−4.

C. CAPABILITY TO STORE BIT-SERIES BY ADDITIVE
STOCHASTIC NOISE
After evaluating the control of the attractor-merging bifurca-
tion by adjusting the internal parameter a, we investigated
the memory storage capability when the attractor-merging
bifurcation was induced by an additive stochastic noise
(Da > 0). This is similar to the case of the conventional
approach using the stochastic resonance mechanism [14],
[15]. Considering the evaluation of the dependency of the
capability to store bit-series on the noise strength Da,
the upper part of Fig. 8 shows the BER between the
input bit-series {η1, η2, · · · , ηN } and the stored bit-series
{X1,X2, · · · ,XN } with a signal strength of A = 0.01 (cor-
responding to the input strength A, as shown in Fig.3). 0.02
and 0.03 are the functions of the noise strengthDa. The lower
part of Fig. 8 demonstrates the bifurcation diagram of x1
as a function of the noise strength Da under a signal-free
condition (A = 0). In this evaluation, the parameter-setting
error was absent (1a = 0). For A = 0.01 and 0.02, the BERs

monotonously degenerate a noise of increasing strength.
When A = 0.03, the BER minimizes at Da ≈ 7.0 × 10−3

around the noise-induced attractor-merging bifurcation. Nev-
ertheless, this BER becomes higher (BER≈ 0.02) in com-
parison with the case where the attractor-merging bifurcation
is adjusted by the internal parameter a, as shown in Fig.3
(BER≈ 4.0×10−3). Figure 9 shows a typical example of the
time-series of xi and ci at the noise strength of Da = 7.0 ×
10−3, where the BER is minimum, as shown in Fig.8 (A =
0.03). In contrast to the case where the attractor-merging
bifurcation is induced by adjusting the internal system param-
eter a, as shown in Fig.4, the noise-induced chaos–chaos
intermittency of xi(t) does not dominantly follow the rising
behavior ci(t) = 0.03 (i = 1, 3) and remains at ci(t) = 0
(i = 2, 4, 5, 6) when t > 100.
To further study the sensitivity of this memory storage to

additive stochastic noise, the dependence of the BER on the
input signal strength of A and the strength of the additive
stochastic noise Da is illustrated in Fig.10(a). At approx-
imately Da = 7.0 × 10−3, where the attractor-merging
bifurcation occurs (as shown in Fig.8), in A & 0.03, BER .
2.0×10−2 is achieved. According to the values of BER shown
in Fig.10(a), the minimum BER between 10−4 ≤ Da ≤ 10−2

at each input signal strength of A are represented in Fig.10(b).
In comparison with the case where an adjustment is made to
the internal parameter a under a noise-free condition where
BER ≈ 4.0×10−3 in A = 10−3, to achieve the same amount
of BER, a higher A is needed (A & 0.4).

IV. DISCUSSION AND CONCLUSION
This study proposed a memory storage mechanism using
the high sensitivity of the signal response around the
attractor-merging bifurcation in the assembly of cubic maps
with chaos–chaos intermittency and evaluated its capability.
To control the attractor-merging bifurcation, two approaches
were utilized: one was for adjusting the internal cubic map
parameter and the other, for applying stochastic noise sim-
ilar to the conventional approach using the mechanism of
stochastic resonance. After comparing the capabilities of both
approaches, we confirmed that the former exhibits a high
memory storage capability even under weak memory storage
input signals. Moreover, this high memory storage ability
was maintained under certain levels of existence of stochastic
noise and parameter-setting error.

First, we examined the reason why the memory stor-
age capability exhibits a peak around the attractor-merging
bifurcation. Under the condition of the attractor-merging
bifurcation, the state transition frequency in the autonomous
chaos–chaos intermittency is extremely low [31]. The appli-
cation of an external input signal to the system having
low autonomous chaos–chaos intermittencies plays a role
in the perturbation for inducing exogenous chaos–chaos
intermittencies even under a weak applied signal. Conse-
quently, the state transition that corresponds to memory stor-
age is achieved through the synchronization of chaos–chaos
intermittency. This tendency of high synchronization of the
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chaos–chaos intermittency is congruent with previous find-
ings in other systems with attractor-merging bifurcation [12],
[22], [23]. Therefore, dynamical systems with locally cubic
map structures can be utilized to achieve the memory storage
systems (reviewed in [12], [26]).

Second, we discussed the memory storage capability when
the attractor-merging bifurcation is induced by adjusting the
internal parameter a (see Fig. 3) and examined why it is
higher than that of the case where the attractor-merging
bifurcation is controlled by stochastic noise (see Fig. 8).
The additive stochastic noise induces attractor-merging [12].
Through the abovementioned perturbation, the chaos–chaos
intermittency, which is unrelated to the input signal for mem-
ory storage, also emerges owing to additive noise. Subse-
quently, the input signal strength A must be set sufficiently
higher than the noise strength of Da. Therefore, the memory
storage capability in the case with noise is inferior to the
case with internal system parameters. This tendency was also
reported in studies that compared the chaotic and stochastic
resonances [23], [27]. Utilizing this high memory storage
capability in the case with control through the internal param-
eter a might enable the realization of memory devices with
low power consumption.

Third, in contrast, because the approach utilizes stochas-
tic noise, which is similar to stochastic resonance, back-
ground noise can be employed. Consequently, the use of
background noise leads to low power consumption [14], [15].
However, recent studies on logical circuits used for memory
devices driven by the effects of stochastic resonance have
indicated that the range of the noise strength required to
induce stochastic resonance is narrow [35]. Consequently,
because the noise strength required for the induction of
stochastic resonance is weak, an approach that applies
compensated nonstochastic perturbation was proposed to
achieve an adequate level of perturbation for stochastic reso-
nance [35], [36]. The generation of an external perturbation
increases power consumption. Therefore, when the noise
strength is weak, an alternative solution, which uses an
approach for the chaotic resonance controlled by an inter-
nal system parameter, should be utilized to overcome the
issue related to stochastic resonance, rather than additionally
applying the perturbation; as a result, this alternative solution
achieves low power consumption.

The limitations of this study are discussed as follows.
We investigated the capability of memory storage with
chaotic resonance. However, to reveal the relationship
between power consumption and storage capability in actual
application environments, the electronic circuit of this
mechanism should be implemented. Our previous study
demonstrated the electronic circuit implementations for
chaotic resonances in Chua’s circuit [37]; the electronic
circuit systems used in the conventional approach that uti-
lizes stochastic resonance [14], [15] might be utilized for
the approach for chaotic resonance under the parameter
set for chaos–chaos intermittency. The outcome obtained in
the aforementioned study can be used in the application of

the electronic circuit for storing memory with chaos–chaos
intermittency. In the actual circuit implementations using
an approach that controls the attractor-merging bifurcation
by adjusting the internal system parameter, the memory
storage capability is influenced by the stochastic noise and
memory-setting error (see Figs. 6 and 7). This influence has
also been noted in various types of chaotic systems where
chaotic resonance appears [24]. Therefore, the enhance-
ment of its robustness is important for circuit implementa-
tion. Moreover, the chaos–chaos intermittency induced by
attractor-merging bifurcation is widely observed in various
systems, especially neural systems [22]–[24], [32]. There-
fore, this approach for chaotic resonance might be applied
to neuromorphic computing. Additionally, we proposed the
‘‘reduced region of orbit’’ (RRO) feedback method as an
alternative approach for the emergence of attractor-merging
bifurcation. The chaotic resonance induced by this method
has demonstrated high sensitivity against a weak external
input signal [22], [23], [31], [38], [39]. Therefore, the capa-
bility of the RRO feedback signal must be investigated for
memory storage. In future studies, to realize a memory device
based on chaotic resonance with low power consumption, the
aforementioned aspects must be evaluated.

In summary, this study demonstrated that the chaotic res-
onance induced by adjusting internal system parameters for
the emergence of attractor-merging can detect memory stor-
age signals, even the strength is weak, until the noise- and
parameter-setting errors reach a certain level. Moreover, this
detection capability is superior to that in the case of the
approach induced by additive stochastic noise, which aids the
realization ofmemory devices with extremely low power con-
sumption. Although several limitations remain, our proposed
method, which utilizes chaotic resonance, could facilitate the
development of memory devices hitherto restricted to the
application of stochastic resonance.
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