
Received December 1, 2021, accepted January 26, 2022, date of publication February 4, 2022, date of current version February 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149001

Complex Network–Based Change Propagation
Path Optimization in Mechanical
Product Development
YONG YIN 1,2, SHUXIN WANG 3, AND JIAN ZHOU1
1Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
2Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518000, China
3Wenzhou University of Technology, Wenzhou 325027, China

Corresponding author: Shuxin Wang (wangshuxin@wzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51875429, in part by the General
Program of Shenzhen Natural Science Foundation under Grant JCYJ20190809142805521, and in part by the Research Project of Wuhan
University of Technology Chongqing Research Institute under Grant YF2021-18.

ABSTRACT Change propagation is a process in which a change to one part or element of a developed
mechanical product tends to induce additional changes to other elements of the product, and the changes
can propagate further iteratively. Different change propagation paths yield different change fulfillment
costs (development expenditures, lead times, quality losses, etc.). In this study, we seek an optimal change
propagation path based on complex theories, and by using this approach the cost of the change can be
minimized. In particular, we introduce a modified Dijkstra algorithm coupled with a complex network
described based on two variables: change probability and change impact. The network depicting the
components of a mechanical product and their dependencies is directional while considering both node
weights and edge weights. The roles of the components such as change absorbers, carriers, and multipliers
are identified. Moreover, the loop change propagation paths and ‘‘AND’’ logical relations between sibling
components are investigated. The practical application of the proposed models andmethods is assessed using
an industrial case example of an elevator system, and satisfactory results are obtained. The proposed method
can be employed for analyzing different change propagation paths and their optimization in terms of overall
costs.

INDEX TERMS Change propagation path, complex network, dependencies, modified Dijkstra algorithm.

I. INTRODUCTION
Manufacturing enterprises have faced unprecedented
challenges owing to increased consumption diversity and
market uncertainty. Thus, changes in product development
processes are inevitable. They are usually classified into two
major categories: initiated development changes and emer-
gent changes [1]. The former is often driven by new customer
demands (product size, style, weight, etc.), new environ-
mental constraints (temperature, humidity, vibration, etc.),
technological innovations, and certification requirements at
the early development stages. The latter often originates
from mistakes that may not be revealed until late product
development stages and changes are ineluctably made to fix
the mistakes [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao-Yang Chen .

Generally, a complex product contains thousands of parts
or components that are connected with each other in differ-
ent ways. In this study, we refer to parts and components
as components for simplicity. Components are the smallest
units that cannot be subdivided further. Thus, changes in one
component are likely to induce changes in other components
and they can propagate further iteratively. Different change
propagation paths afford different fulfillment costs (devel-
opment expenditures, lead times, quality losses, etc.). Thus,
the optimization of change propagation paths has attracted
considerable research attention.

Change propagation refers to a process in which a change
in one component of a product may induce additional changes
in its downstream components, even though the triggered
changes are unexpected. Change propagation often pro-
ceeds in a cause–effect–cause–effect manner until the pro-
cess reaches a stable state [3]. The situation becomes even

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 17389

https://orcid.org/0000-0001-6768-4476
https://orcid.org/0000-0001-5934-6418
https://orcid.org/0000-0002-8095-399X

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

more complex when a change propagation occurs during the
development of highly complex products [4]. Here, the com-
plexity denotes the structural complexity of the components
and complex connections between them. Studies indicate that
32.4% of the total change in the components of a complex
product is attributed to propagated changes [5], [6]. The
optimization of change propagation paths can provide con-
siderable benefits, including decreased lead time and expen-
diture cost and improved quality of the product development
process. Therefore, it is important to find the optimal change
propagation paths [7].

In this study, we identify an optimal change propagation
path triggered by an initial change. Using this approach,
the cost of the change can be minimized. The remainder of
this paper is organized as follows. In Section 2, we sum-
marize recent advancements and key challenges from the
change propagation path optimization. A detailed analysis of
change propagation is presented in Section 3. Section 4 intro-
duces the network construction process. In Section 5, the
change propagation path optimization algorithm, namely,
the modified Dijkstra algorithm is introduced. Subsequently,
Section 6 demonstrates a case study of an elevator system
design to verify the proposed models and methods. Finally,
Section 7 summarizes the results of this study and provides
future outlook.

II. RELATED RESEARCH
The study on changes can be traced back to the early
1980s [8]. Among various methods, the design structure
matrix (DSM) has been regarded as a good roadmap to
address changes. The DSM has proven to be very valuable
in understanding, designing, and optimizing complex sys-
tem architectures such as those of products, organizations,
and processes, and has been employed in building con-
struction, semiconductor production lines, aerospace devel-
opment and assembling, large-scale product development,
etc [9]. However, some inherent limitations still restrict its
further applications [10]. The DSM is based on a priori
assumption such that the processes in the system are well
defined; thus, DSM-based models cannot be expanded or
refined. Moreover, in the DSM, dependencies between con-
nected parts/entities/activities are not straightforward, which
results in redundant and parallel dependency paths cannot
be distinguished. Axiomatic design (AD) is another popular
matrix-basedmethod for dependency and change propagation
analysis in a 0–1 binary form. AD uses matrix methods
for systematically transforming customers’ needs into func-
tional requirements, design parameters, and process variables
[11], [12]. AD can be used to assess whether a product
development or a system design is good or bad based on the
mappings between each functional requirement and design
parameter of a matrix; however, it cannot guide coupled
design tasks, let alone the analysis and measurement of an
interaction strength [13], [14].

The project evaluation and review technique (PERT) is
a statistical tool for project or process management. It can

be used for analyzing and representing tasks involved in
completing a project and has attracted research attention [15].
A PERT diagram can be used to visually identify the crit-
ical path and potentially reduce the project duration. The
latter is achieved based on a better understanding of depen-
dencies and thus has been successfully coupled and used
with the critical path method (CPM) [16]. However, the
PERT has limitations. For example, it cannot represent a
design process with iteration loops because it was initially
developed for linear processes [17]. Later, the Graphical
Evaluation andReviewTechnique (GERT), one of the intrigu-
ing techniques used for network-based management, has
received increased attention. It owns excellent features such
as stochastic models, feedback loops and multiple sink nodes
which are impossible in PERT/CPM [18]. However, draw-
ing and calculation is much time-consuming in GERT, and
it is unable to deal with dependence of multiple random
variables [19].Several other approaches have been proposed
to address dependency and change propagation analysis.
Ollinger and Stahovich [20] introduced the Redesign IT tool
for managing design changes. Possible side effects origi-
nating from a design change can be determined using this
tool. Chungyu et al. [21] developed an analytic hierarchical
process method for estimating the strength of functional cou-
plings and change propagation with fuzzy control. Li and
Chen [22] suggested a design dependency matrix to examine
the dependencies between parameter relations and functions.
Lee et al. [23] proposed an analytic network process (ANP)
approach for explaining the dependency strength between
parts and modules in a modular product and recommended
the use of this approach for controlling design change impacts
and change propagation because of part dependencies. How-
ever, this approach involves high computations when the
number of parts increases.

The aforementioned approaches are roughly based on
matrix models. However, certain congenital defaults exist in
matrix-based approaches. Hence, network-based approaches
for dependency and change propagation issues have been
recently attracting increasing attention in the engineering
community. The Petri net is considered the preliminary and
formal modeling tool for describing distributed or paral-
lel processing systems [24]. It offers a practical graphical
method for capturing and analyzing the dynamic states of the
system. However, the Petri net is incompatible with complex
problems. It tends to become excessively large even for a
modest-sized system [25].

More recently, research on complex networks has unified
scholars from different disciplines including mathematics,
physics, sociology, manufacturing science, and computer sci-
ence. Further, researchers have considered the theory of com-
plex networks and gradually adopted it to describe and solve
dependency and change propagation problems in complex
manufacturing systems. For example, Yu et al. proposed
a network-based method for analyzing change impacts in
customized complex product development and developed a
change propagation searching model based on the Matthew

17390 VOLUME 10, 2022

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

effect theory [26]. Cheng and Chu presented three change-
ability indices (degree changeability, reach changeability, and
between changeability) based on the weighted network the-
ory [2]. Lee et al. proposed an ANP approach for estimating
the relative importance of parts and modules in a modular
product in terms of design change impacts and propaga-
tion. [23]. Gong et al. analyzed the indices to evaluate the
importance of nodes and studied a method for classifying
the nodes of a product development network [27]. Ma, Jiang,
and Liu built a design change analysis model based on the
design property network. They defined a change propaga-
tion intensity (CPI) by quantifying the change propagation
impact and sought the optimal influence propagation path
corresponding to the minimized maximum of the accumu-
lated CPI [28]. Qin et al. introduced a weighted network for
multistage machining processes based on a complex network
and proposed a method of variation propagation analysis and
variation source identification based on the manufacturing
cost. [29].

Based on this literature review, many fruitful results have
been achieved when exploring dependency and change prop-
agation problems using complex networks. However, a lot of
challenges still arise when applying the existing methods in
the optimization of change propagation paths during product
development.

(1) When the complex network theory is used to determine
the optimal change propagation path, the shortest path is often
considered as the optimal one. However, the shortest path
may not be the optimal one because the components may
serve as change absorbers and absorb more changes than they
themselves cause, may serve as change carriers that take the
same number of changes as they cause themselves, or may
serve as change multipliers and generate more changes in
other systems than they require themselves [30]. This case
is different from those reported in other studies [2], [3].

(2) Previous studies on the optimization of change prop-
agation paths did not consider loop paths when seeking the
shortest change path. They only searched for change prop-
agation paths along upstream or downstream routes (in one
direction). However, loop paths do exist, which was not
considered in the past, and can be optimal. In other words,
existing studies were ineffective in determining the optimal
change propagation path by considering loop paths.

(3) When seeking the optimal change propagation path,
‘‘AND’’ logical relations between sibling components are
not considered. Moreover, the case where at least two sib-
ling nodes of an upstream node must change simultaneously
for the change propagating from their common father node
has not been considered in the literature to the best of our
knowledge.

In this study, we develop a framework to determine the
optimal change propagation path during the development of
a mechanical product based on the complex network theory.
Changes propagating along the optimal paths can fulfill the
change process at the minimal cost. The network is direc-
tional while considering both node weights and edge weights.

Moreover, we investigate loop paths formed by links between
components that may constitute propagation paths. Finally,
we consider ‘‘AND’’ logical relations between sibling com-
ponents in a change propagation process.

III. MODELS AND ANALYSIS
A. A DEMONSTRATIVE EXAMPLE
Fig. 1 presents a demonstrative application example from
the literature [31], illustrating change propagation for a
given design scenario. A Sallen–Key low-pass filter product
includes a unity-gain amplifier, a signal source (S), two resis-
tors (R1 and R2), and two capacitors (C1 and C2).

FIGURE 1. A demonstrative application example of the Sallen–Key
low-pass filter product.

The performance of the filter is characterized using two
parameters, cutoff frequency (ωc) and quality factor (Q),
which are expressed as

ωc =
1

2π
√
R1R2C1C2

(1)

Q =

√
R1R2C1C2

C2(R1 + R2)
(2)

Initially, the filter exhibits a baseline ωc of ω zero kHz
and a Q of 0.5. However, a customer demands a change
in ωc to 5 kHz while retaining Q at 0.5. This goal can be
achieved using several possible solutions. In other words, two
or more alternative schemes involving different components
can achieve the same goal. For example, the R1 value can
be doubled provided that R1 equals R2, the C1 value can be
doubled by assuming C1 equals C2, or both the C1 and C2
values are doubled if C1 and C2 are unequal, etc.
Fig. 1 demonstrates that R1, R2, C1, and C2 are the com-

ponents of the filter and are ‘‘linked’’ through electrical
parameters. The change requirement (CR) in ωc from a cus-
tomer ωiggers a change in one component, which in turn
induces additional changes in other components until the cir-
cuit reaches a new stability. This example reveals that a CR is
often associated with several components. Different choices
of which components should change yield different change
propagation paths, which correspondingly involve different
consumptions of different resources. Therefore, investigating
how a change may affect other components and ways to
control the change propagation paths with minimal costs are
required.

B. RELATION BETWEEN COMPONENTS
A complex product involves thousands of components. These
components are linked with each other in various ways such

VOLUME 10, 2022 17391

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

as in terms of geometric constraints (length, breadth, thick-
ness, depth, etc.), machining sequences (serial or parallel
and upstream or downstream), material relations (expansion
coefficient, heat transfer coefficient, elastic modulus, allow-
able stiffness, etc.), and environmental conditions (humidity,
temperature, air velocity, etc.). If components of a complex
product are treated as nodes and the relation links between
each component are regarded as edges, the components and
their links constitute a complex network. Thus, the complex
network theory can be an effective tool for investigating
change propagation paths.

There are two feasible modes for developing a depen-
dency network for two types of linking relations: functional
and structural relations. The former are often mapped in
the form of parameters, while the latter are associated with
component locations in the product. Based on these two types
of linking relations, two propagation patterns are possible:
parameter propagation pattern and topological face propaga-
tion pattern. For the former, changes in parameters propagate
to exogenous parameters. Alternatively, for the latter, the
changed component propagates topological face changes to
other components so as tomeet assembly requirements. How-
ever, an in-depth analysis reveals that changes in assembly
requirements are related to geometric structure parameters
such as diameter, stroke, thickness, and length. Thus, all
change propagations can be attributed to parameter links
between components. This details parameter relation network
construction approaches that we use in this study.

C. PARAMETER CHANGE PROPAGATION PATTERNS
Once an initial change in the component of a product is
triggered, change propagation becomes inevitable and can
induce further changes in other components. Fig. 2 presents
the process of change propagation [32]. A CR induces a
series of subsequent changes in components A1 and A2
which are considered to be the components that originate
the change propagation. Each originating change component
corresponds to different change propagation paths.

FIGURE 2. Process of change propagation.

The parameter change relation between components can be
expressed as y = f (x1, x2, . . . , xi, . . . , xn), where y denotes
the changed parent parameter and xi represents the ith child
changed parameter. The parent parameter is dependent, and
its value is determined by interdependent child parameters.
In other words, a CR from the parent parameter must demand
changes in its one or more child nodes. However, as changes
in the child nodes can offset one another, the parent parameter
may remain the same when changes occur in its child nodes.
For example, even if both the C1 and C2 values are doubled,
Q remains the same (Eq. (2)).

Generally, three categories of nodes can be found: root,
transition, and leaf nodes [3]. Root nodes are present at the
top of the change network and only act as parents. To facilitate
the analysis of parameter change propagation patterns, CRs
are generally treated as the root nodes (Fig. 2), similar to ωc
and Q in the Sallen–Key low-pass filter product. Moreover,
the root nodes cannot be changed directly and must vary with
their child nodes. For example, the ωc and Q of the Sallen–
Key low-pass filter product are typical parent node and are
determined using their child nodes R1, R2, C1, and C2 based
on Eqs. (1) and (2). Conversely, leaf nodes are the smallest
units of a change. They are present at the bottom of the change
path and can only play the role of child nodes, similar to B11
and B12 in Fig. 2. Transition nodes exist between the root
and leaf nodes, functioning as the parent for the downstream
nodes or a child for the upstream nodes. For example, A1 and
A2 in Fig. 2 are typical transition nodes.

Changes can propagate in different directions, considering
initially changed nodes at different locations. If the change
propagates from the root nodes to the child or transition
nodes, it is a downstream propagation. For example, the
change propagation path from the CR to B12 via A1 is a
downstream propagation, represented by the solid arc with
an arrow (Fig. 2). Alternatively, a change propagation from
the child or transition nodes to the root nodes is an upstream
propagation, indicated by the dotted arc with a directed arrow
in Fig. 2.

To determine the optimal change propagation path,
‘‘AND/OR’’ logical relations are employed between sibling
nodes to analyze the propagation patterns [32]. The ‘‘AND’’
logical relation indicates that more than one downstream
sibling component will be simultaneously affected by a
change in the same upstream parent component. As shown
in Fig. 3(a), the change in A1 unavoidably triggers simul-
taneous changes in both B11 and B12, indicating the exis-
tence of ‘‘AND’’ logical relation between them. Alternatively,
an ‘‘OR’’ logical relation implies that one downstream com-
ponent is sufficient to fulfill the change that propagates from
an upstream component. For example, A1 induces a change
in only one of the sibling components (B11 and B12); thus,
the logical relation between B11 and B12 with respect to the
upstream parent A1 is ‘‘OR’’ (Fig. 3(b)).

FIGURE 3. ‘‘AND/OR’’ logical relations between sibling nodes: (a) ‘‘AND’’
logical relation between B11 and B12;nd (b) ‘‘OR’’ logical relation
between B11 and B12.

The logic relations between sibling components of the
same parent can be assessed based on their parameter
associations [32]. The parameter association between two

17392 VOLUME 10, 2022

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

components Ci and Cj is expressed as

P(Ci,Cj) = {pi1, pi2, . . . , pik , . . . , pim}, (3)

where P(Ci, Cj) denotes the set of parameters of Ci affecting
the parameters of Cj; pik denotes a parameter element in the
set; and m denotes element number in the set.

Using Eq. (3), the logic relation between components Cj
and Ck corresponding to the common upstream component
Ci is ‘‘AND’’ if P(Ci,Cj) ∩ P(Ci,Ck) 6= Ø; otherwise, it is
‘‘OR.’’ Note that Cj and Ck are sibling components of the
same parent component Ci.

D. COMPONENT CHANGE BEHAVIOR
The change propagation process beginswith a change in a sin-
gle component but involvesmultiple components. The change
propagation behavior can be divided into three categories.

1) CARRIER
When changes propagate through a carrier, it changes accord-
ingly; however, it neither increases nor decreases the number
of changes. In other words, changes input into a carrier induce
changes in it; however, the same number of changes is output
to its downstream nodes. A carrier does not increase the
overall complexity of the change propagation problem.

2) MULTIPLIER
A multiplier can induce more changes in its downstream
nodes than those propagated to it from its upstream nodes.
The complexity of the change propagation increases because
multipliers can stir up an ‘‘avalanche’’ of changes, exerting
more negative effects on the budget or lead time of the product
development.

3) ABSORBER
An absorber can absorb more changes than it generates.
Thus, changes propagated from its upstream nodes can be
absorbed and fewer changes are transferred to its downstream
nodes. Absorbers reduce the overall complexity of the change
propagation in the product development.

To understand and identify multipliers, absorbers, or car-
riers in a product, a reasonable posterior approximation of
the CPI is introduced [33], [34]. In this index, a component
i changes owing to a change propagating from other com-
ponents connected with this component. The sum of links
inducing changes from all otherN components to i is denoted
as Cin(i), and the sum of change propagation links from the
component i to all other components is denoted as Cout (i).
CPI(i) characterizes the change propagation behavior in the
absorber–multiplier spectrum and is expressed as

CPI (i) =
Cout (i)
Cin(i)

. (4)

Clearly, a CPI value of greater than 1 indicates a multiplier
component, whereas a value of less than 1 corresponds to
an absorber component. Moreover, components with a CPI
value of 1 are considered carriers.

E. PARAMETER CHANGE PROPAGATION MODELS
In the case of a CR in a product, the initial change com-
ponent is selected by the product designer and the change
gradually propagates to other components. Thus, the changes
(if occur) in a component may be the initial ones or those
caused by the direct or indirect change propagation from its
upstream nodes. To facilitate the modeling of the parameter
change propagation in a product, two variables are intro-
duced: change probability ‘‘CPij’’ and change impact ‘‘CIij.’’
The former is described as the probability that a compo-
nent jmust change based on an initial CR concerning compo-
nent i. Alternatively, the latter is considered as the probability
that the downstream successor component j changes when
a change is propagating from its upstream predecessor i.
Regarding the initial change component i, its propagation
probability and change impact are expressed asCP0i andCI0i,
respectively.

Fig. 4 presents a demonstrative example of the change
propagation model. Three components Ci, Cj, and Ck in a
product are linked by two directed edges ij and jk, indicated
by bold lines with arrows in Fig. 4. The dotted line with an
arrow that represents ik implies that Ci and Ck are not linked
directly. A CR in the product entails initial changes in Ci
and Cj. Only an initial change occurs in Ci because it has no
upstream parents. However, Ci will transfer its change to Cj
with CPij because they are directly connected, in addition to
the initial change necessary for the CR. Regarding Ck , two
sources of changes are possible. One is the change directly
propagating from its upstream component Cj with CPjk , and
the other may indirectly originate from Ci with CPik .

FIGURE 4. A demonstrative example for the change propagation model.

Each component along the change propagation path can
undergo three types of changes: initial changes (if any),
changes directly propagating from its upstream components,
and changes directly propagating from its upstream compo-
nents. Assuming a component k is linked to i (i = 1 to m)
directly and to j (j = 1 to n) indirectly and CP0k is the initial
change probability (CP) of Ck , its overall CP OCPk can be
expressed as

OCPk = CP0k + CPIi ∗
m∑
i

(CPik ∗ CIik)+ CPIj

∗

n∑
j

(CPjk ∗ CI jk), (5)

whereCPIi denotes the CP index of Ci, indicating its role as a
carrier, multiplier, or absorber; CPik represents the CP of Ck
owing to the change propagating from i; and CIik represents

VOLUME 10, 2022 17393

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

the change impact between Ci and Ck that are linked directly.
Similarly, CPIj represents the role of Cj; CPjk denotes the CP
of Ck for the change propagating from j; and CIik denotes the
change impact between Cj and Ck that are linked indirectly.

An example of only three components Ca, Cb, and Cc is
provided in Fig. 5. Using Eq. (5), the overall CPs of the
components in Fig. 4 are

OCPb = CP0a
OCPb = CP0b + CPIa × CPab × CIab
OCPc = CPIb × CPbc × CIbc + CPIa

×CPbc × CIac. (6)

FIGURE 5. Three components Ca, Cb and Cc for change propagation
model.

As discussed in Sec. I, a propagation path refers to a chain
of linked components involved in the change propagation.
Each component along the propagation path has a certain
probability to change given by Eq. (5). Moreover, different
change costs are involved in the case of different components
selected to accomplish the CRs. Thus, the change cost for
a change propagation path is the sum of the costs for each
component participating in the propagation:

Ppc =
n∑

k=1

OCPk ∗ Ck , (7)

where Ppc denotes the total cost of the change for each
component along the change propagation pat;; n denotes the
number of components along the change propagation path;;
OCPk represents the CP of component k (Eq. (5)); and Ck
indicates its change cost. In this study, we aim to determine
the optimal change propagation path with the minimum Ppc
value in Eq. (7).

IV. NETWORK DESCRIPTION
A complex product embraces thousands of components
linked with each other. Here, the components of a complex
product are regarded as nodes and the links between them are
regarded as edges. The components and their links constitute
a complex network, where node weights are used to represent
the CP caused by an initial change and edge weights are
used to express the linking strength between components. The
complex network model can be represented as

FDN = (V ,E, I ,w) (8)

and
V = {v1, v2, , vn}
E = {eij|i, j ∈ n}
W = {W (vk)|vk ∈ V }
w = {w(eij)|eij ∈ E},

(9)

where V denotes the set of nodes representing components
connected with each other in a product, n denotes the number
of total nodes, E represents the set of edges, eij represents the
linking relation between nodes vi and vj; comma W denotes
the set of node weights for V , W (vk) represents the weight
for vk ; comma w denotes the set of weights for E , and w(eij)
represents the linking strength between vi and vj. The node
weight and edge weight of the network are described below.

1) NODE WEIGHT
The node weightW (vi) for node vi is the CP required for the
initial change. Obviously, W (vi) is equal to CPij. If a high
CP is observed at the node, this node exhibits a high weight.
Conversely, a tiny CP in the node indicates a low weight.

2) EDGE WEIGHT
The linking strength between two nodes can be expressed as
the weight of the edge linking them. According to the liter-
ature [30], if a small change in the upper node can induce a
change in the directly linked downstream node, the two nodes
are linked tightly, indicating a large edge weight between
them. Clearly, the edge weight w(eij) is equal to CIij.

V. CHANGE PROPAGATION PATH
OPTIMIZATION ALGORITHM
A change propagation path is described as a finite sequence
of components with dependencies between them [7]. It can
be expressed as

CP = {Ci, x1,C1, x2,C2, x3, . . . ,Cm, xm, . . . ,Cn, xn,Cj},

(10)

where Ci represents the change-inducing component and Cj
denotes the terminating one. Moreover, xn represents the
dependence between two directly connected components.
Note that as iteration is common in a design process, Cm and
Cn may be the same. For the sake of simplicity, an indirect
dependence is beyond the consideration of this study.

This section presents an algorithm to determine the opti-
mal change propagation path from all CPs expressed using
Eq. (10). The algorithm evolves from the famous Dijkstra
algorithm via several modifications to solve the optimal
change propagation path problems.

First, we introduce the Dijkstra algorithm. Considering a
weighted, directed graph G = (V ,E) with a source node s
andweight functionw : E → R, theDijkstra algorithm can be
used to determine the shortest path from a single-source node
by building a set of nodes at a minimum distance from the
source [35]. A set S of nodes containing the final shortest-path
weights from s is estimated and maintained. In other words,

17394 VOLUME 10, 2022

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

for all nodes v ∈ S, dist(v) = δ(s, v) holds. This result is
achieved by initializing three data structures [35].

1) dist: This represents an array of distances from s to other
nodes in the graph. The dist is initialized as dist(s) = 0,
whereas for all other nodes v, dist(v) = ∞. As the algorithm
proceeds, the dist is recalculated and finalized when the
shortest distance to v is; chieved.
2) Q: This represents the queue of all nodes in the graph

at the start. When the algorithm is terminated, Q becomes
empty;period

3) S: This represents an initially empty set. As the algo-
rithm runs, it stores nodes visited by the algorithm. S will
contain all the nodes of the graph when the algorithm ends.

The algorithm proceeds using the following steps.
Step 1: When Q is not empty, insert v with the shortest

distance dist(v) in Q (not already in S). Notice that for dist(s)
initialized as 0, s will be selected in the first run. In further
runs, the node with the smallest dist value will be selected.
Step 2: Insert v in S, indicating that v has been visited and

will never be visited again.
Step 3: Employ the adjacent nodes of the current node v

to repeatedly update the dist values. For each new adjacent
node u of v, if dist(v)+weight(u, v) < dist(u), a newminimal
distance is determined for u and dist(u) is updated according
to the newminimal distance value; otherwise, dist(u) remains
unchanged.
Step 4: Repeat steps 2 and 3 until all nodes in the graph are

visited.
The Dijkstra algorithm can effectively solve single-source

shortest-path problems with non-negative edge weights. For
example, theDijkstra algorithm is terminated at node d in Fig.
6(a) because no child nodes are linked with it and the shortest
path a–b–d can be determined satisfactorily. However, when
this algorithm is used to seek the optimal change propagation
path, modifications are required. Let us consider the case
shown in Fig. 6(b). The algorithmwill seek two paths, a–b–c–
e and a–b–c–d , and the path a–b–c–d will be identified as the
shortest one. However, this is actually not the case. For node
b that is a child of d , a change in d will inevitably propagate
to b, thus forming one propagation loop. After several rounds,
the sum of the costs for the change propagation along the loop
path a–b–c–d–b–c–d–. . . will clearly exceed that along the
path a–b–c–e. However, the Dijkstra algorithm cannot handle
this issue, fundamentally because b has been visited as the
child node of a and has been moved to S. It can never be
visited again even though it is the child node of d and bears
the change propagation from d .

FIGURE 6. Demonstration of determining the optimal path using the
Dijkstra algorithm: (a) satisfactory results;nd (b) unsatisfactory results.

Three modifications are made to the Dijkstra algorithm.
First, when a node is visited, it is flagged instead of being
inserted into S. Thus, a node may be visited several times
if it is the child node of multiple nodes; consequently, loop
cases can be considered. Second, only the downstream nodes
of the current node v will be visited in the next run; hence,
the change propagation paths will always be from the par-
ent nodes to their child nodes. Third, the distance between
the parent node and its child node is replaced by the value
obtained using Eq. (5).

The demonstrative pseudocodes of the modified Dijkstra
algorithm is shown below.
function Dijkstra(Graph, source)
{
dist[source] = 0 // Initially, the distance from source

to source is set to 0
for each vertex v in Graph: // Initializations
dist[v] = infinity //Unknown distance from the

source to each node set to infinity
add v to Q// All nodes initially in Q

end for
while Q is not empty: // Main loop
v = vertex in Q with min dist[v] // In the first run,

this vertex is the source node
mark and remove v from Q
for each child u of v : // Where u has not yet been

removed from Q
if u is marked
store the loop path

else
length(v, u)= value calculated with Eq. (5)

alt = dist[v] + length(v, u)
if alt < dist[u]: //A shorter path to u has been

found
dist[u]= alt // Update distance of u

end for
end while
calculate total cost for each loop path and determine

the minimum one
if the min cost − cost < dist[u]
dist[u] = min cost − cost

return dist[u]
}
end function

The most complicated parts of the modified Dijkstra algo-
rithm are the nested ‘‘while’’ and ‘‘for’’ loops. For a network
with n nodes and m edges, the ‘‘while’’ loop can be executed
up to n times at most and the complexity of the ‘‘for’’ loop
to handle the priority queue is O (log n). Thus, the overall
time complexity of the modified Dijkstra algorithm is O
(n× logm).

VI. CASE STUDY
In this section, we consider an example of an elevator system
design. This example is used to demonstrate the practical
applications of the proposed models and methods. Typically,

VOLUME 10, 2022 17395

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

the core units of an elevator comprise the traction subsystem,
guide subsystem, car and door subsystems, electrical control
subsystem, and safety protection subsystem. Each subsys-
tem includes many functional components interconnected
with one another owing to dependencies. For brevity, only
the safety protection subsystem is introduced in detail to
describe the procedure for determining the optimal change
propagation path. The safety protection subsystem comprises
15 components: traction wheel, traction motor, clutch, gear
box, brake, reducer, rack and guide wheel, strainer, speed
governor, traction machine, safety rope, traction rope, buffer,
rope gripper, and safety gear. Table 1 presents the names and
the corresponding indices of all the 15 components. Note that
the change propagations attributed to indirect dependencies
are neglected for simplicity.

TABLE 1. Components and their corresponding indices.

A numerical DSM [7], [36] illustrates the direct depen-
dency between the 15 components constituting the safety
protection subsystem (Table 2). The information in the DSM
is collected from the design and manufacturing datasheets,
the repair and maintenance databases of the elevator system.
For simplicity, the costs of the changes for each component
are expressed in terms of the design completion time (days)
and are listed in diagonal cells of Table 2. The numerals in
off-diagonal cells denote CPij between i and j, with the row
representing i indexes, while the column listing the j indexes.
In other words, the changes propagate from the components
in rows to those in columns. All indices in Table 2 match
those in Table 1. For example, the first two cells with the
bold numbers indicate that 2.2 days are required to handle
the change in the traction motor (the first diagonal indexed
by 1). Further, a change from the traction motor will cause
a CP of 0.2 in the case of the brake component (the column
indexed by 2).

Similarly, the numerical DSM in Table 3 shows CIij
between Ci and Cj. Elements in the diagonal cells indi-
cate the roles of the components (change carrier, multiplier,
or absorber), and the numerals in the off-diagonal cells reveal
CIij, with the direction from components in the rows indicated
by the i indices to those in the columns denoted by the j
indices. For instance, the first two cells with the bold numbers
indicate that the traction motor (the first diagonal indexed
by 1) is a change multiplier with a CPI of 1.6. Further,
a change from the traction motor will be transmitted into a
change impact of 0.2 with respect to the brake component
(the column indexed by 2).

TABLE 2. Numerical DSM for CPij and costs.

TABLE 3. Numerical DSM for CIij and component roles.

Combining the data from Tables 1 and 2, the com-
plex network visualized using Pajek toolkits (a set of tools
for complex network visualization and simulation) [37] is
demonstrated in Fig. 7. The node label corresponds to the
node index, the design completion time (days), and its role
(change carrier, multiplier, or absorber), while the line label
denotes CPij and CIij.

Let us consider nodes 1 and 2 with their links (Fig. 8).
As the arrow directs from node 1 to node 2, a change in the
traction wheel (node 1) can evoke a change in the traction
motor (node 2). However, a change in the traction motor
(node 2) has no impact on the traction wheel (node 1). The
node labeled ‘‘1 (Cost = 2.2, CPI = 1.6)’’ implies that
handling changes in node 1 will cost 2.2 days, and this node
is a change multiplier because its CPI exceeds 1. For node 2,
the cost to handle the change will be 3 days and this node
is a change carrier because its CPI equals 1. The line label
between nodes 1 and 2 is reflected by CP12 and CI12. It indi-
cates that a change in node 1 will propagate to node 2 with a

17396 VOLUME 10, 2022

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

FIGURE 7. Network description for dependencies between the 15 components.

probability of 0.2. Correspondingly, node 2 must be modified
with a probability of 0.2 because of the change propagated
from node 1.

3) ONLY ‘‘OR’’ LOGICAL RELATIONS BETWEEN SIBLING
COMPONENTS
Assume that the initial change occurs in node 1 (Fig. 8).
We employ the modified Dijkstra algorithm to determine the
optimal change propagation path among the 176 paths. If only
‘‘OR’’ logical relations exist between sibling components,
no forks are possible along the path. In this case, the modified
Dijkstra algorithm can be used to determine the optimal path
of 1–2–8–14 (Fig. 9(a)). The total change cost for this path is

FIGURE 8. Detailed examination of nodes 1 and 2 with their links.

Ppc(1–2–8–14) = Ck1 + CPI1 × CP1–2 × CI1–2 × Ck2 +
CPI2 × CP2–8 × CI2–8 × Ck8 + CPI8 × CP8–14 × CI8–14 ×
Ck14 = 2.2+1.6×0.2×0.2×3+1×0.5×0.2×2+0.8×
0.6× 0.6× 1.6 = 2.2+ 0.192+ 0.2+ 0.46 = 3.05 (days).

We investigate the DSM method introduced in [38] the
result is 1–2–12, as shown in (Fig. 9(b)). The total change
cost for this path using the DSM method is
Ppc(1–2–12) = Ck1+CPI1×CP1–2×CI1–2×Ck2+CPI2×

CP2–12×CI2–12×Ck12 = 2.2+0.192+1×0.6×0.4×1.8 =
2.824 (days).
The path along 1–2–12 is preferable because its total

change cost is less than that in the case of 1–2–8–14. How-
ever, an in-depth analysis reveals that a loop propagation path
was neglected in the literature [38], which plays an important
role. After the change propagates several runs along the loop,
the total change cost will eventually surpass that of 1–2–8–14.
Thus, the path 1–2–8–14 is the only optimal one.

4) ‘‘AND’’ LOGICAL RELATIONS BETWEEN
SIBLING COMPONENTS
In this case, at least two sibling nodes of an upstream node
should be simultaneously changed for the change propa-
gated from their common parent node. We divide the optimal
change propagation path search procedure into two steps.
In the first step, the modified Dijkstra algorithm seeks the
optimal paths from the initial node to the simultaneously
changed sibling nodes. In the second step, the algorithm
continues seeking the optimal paths from each individual
changed sibling node to one terminating node that has no
child node anymore.

VOLUME 10, 2022 17397

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

FIGURE 9. (a) Optimal path obtained using the modified Dijkstra
algorithm;nd (b) optimal path obtained using the DSM method.

FIGURE 10. Optimal path depicting the ‘‘AND’’ logical relation.

Assuming that the initial change occurs in node 1 (Fig. 7),
nodes 2 and 7 exhibit the ‘‘AND’’ logical relation and must
change simultaneously as the child nodes of node 1. In this
case, the modified Dijkstra algorithm is used to determine the
optimal paths of 1–2–8–14 and 1–7–10 (Fig. 10).

The total change cost for this path is the sum of the two
paths 1–2–8–14 and 1–7–10:

Ppc (2 AND 7) = Ppc(1–2–8–14)+Ppc(1–7–10) = 3.05+
3.064 = 6.114 (days).
We performed a comprehensive investigation of past lit-

erature related to the applications of complex networks in
the manufacturing field. We used the Web of Science, Sco-
pus, Springer Link, IEEE Xplore, and other digital platforms
related to the advanced manufacturing field. We found that
the cases of ‘‘AND’’ logical relation between sibling compo-
nents were rarely considered in the literature. The methods
presented in this study were later appraised by the designers
of Shangai Aoan elevator Co. Ltd. They appreciated the
innovation of considering the loop change propagation cases
and ‘‘AND’’ logical relations between sibling components.
They showed satisfaction with the results and deemed the
suggested methodology to be suitable for exploring the opti-
mal change propagation paths during the product design and
manufacturing process.

VII. CONCLUSION
This study introduces an advanced approach based on the
complex network theory to determine the optimal change
propagation path with the minimum cost to implement the
change. Compared with the approaches proposed in previ-
ous studies, the proposed approach uses a modified Dijkstra
algorithm combined with the complex network model to
determine the optimal change propagation path. In addition
to the role of components, such as change absorbers, carriers,
or multipliers, the algorithm fully considers the loop change
propagation paths and ‘‘AND’’ logical relations between
sibling components. The proposed models and methods are
tested by considering an industrial case example of an ele-
vator system design. The results show that unlike the results
obtained in the literature [38], the path 1–2–8–14 is the sole
optimal path when the ‘‘OR’’ logical relation is considered
between sibling components. Similarly, the ‘‘AND’’ logical
relation are taken into account for the components can change
simultaneously as the children of node 1 is 1–2–8–14 and
1–7–10 (Fig. 10). The results were deemed satisfactory by
the elevator designers of Aoan Co. Ltd. The results of this
study can help analyze different change propagation paths
to determine the optimal path with minimum overall costs.
Although the proposed models and methods are proved to be
satisfactory, the future work along this line of research should
include the following two points: (i) more realistic and accu-
rate models, such as networks of networks (NONs), when
depicting components and their dependencies are necessary
and (ii) indirect dependencies that can propagate changes
should be further considered because they are neglected in
this study.

REFERENCES
[1] C. Eckert, P. J. Clarkson, and W. Zanker, ‘‘Change and customisation in

complex engineering domains,’’ Res. Eng. Des., vol. 15, no. 1, pp. 1–21,
Mar. 2004.

[2] H. Cheng and X. Chu, ‘‘A network-based assessment approach for
change impacts on complex product,’’ J. Intell. Manuf., vol. 23, no. 4,
pp. 1419–1431, 2012.

17398 VOLUME 10, 2022

Y. Yin et al.: Complex Network–Based Change Propagation Path Optimization

[3] S. Ma, Z. Jiang, W. Liu, and C. Huang, ‘‘Design property network-based
change propagation prediction approach for mechanical product develop-
ment,’’ Chin. J. Mech. Eng., vol. 30, no. 3, pp. 676–688, May 2017.

[4] C. M. Eckert, W. Zanker, and P. J. Clarkson, ‘‘Aspects of a better under-
standing of changes,’’ in Proc. Int. Conf. Eng. Design (ICED), Glasgow,
U.K., Aug. 2001, pp. 147–154.

[5] P. Shankar, B. Morkos, and J. D. Summers, ‘‘Reasons for change propaga-
tion: A case study in an automotive OEM,’’ Res. Eng. Des., vol. 23, no. 4,
pp. 291–303, Oct. 2012.

[6] T. Hu and Y.-Q. Fan, ‘‘Research on engineering changes based on PDM
in aircraft project,’’ Group Technol. Prod. Mod., vol. 24, no. 1, pp. 19–23,
2007.

[7] I. Ullah, D. Tang, Q. Wang, and L. Yin, ‘‘Least risky change propaga-
tion path analysis in product design process,’’ Syst. Eng., vol. 20, no. 4,
pp. 379–391, Jul. 2017.

[8] T. R. Browning, ‘‘Design structure matrix extensions and innovations: A
survey and new opportunities,’’ IEEE Trans. Eng. Manag., vol. 63, no. 1,
pp. 27–52, Feb. 2016.

[9] I. Gunawan, ‘‘Analysis of design structure matrix methods in design pro-
cess improvement,’’ Int. J. Model. Simul., vol. 32, no. 2, pp. 95–103, 2012.

[10] B. Wang, F. Madani, X. Wang, L. Wang, and C. White, Design Structure
Matrix (Innovation, Technology, and Knowledge Management). Cham,
Switzerland: Springer, 2014.

[11] T. W. Simpson, ‘‘Product platform design and customization: Status and
promise,’’ Artif. Intell. Eng. Des., Anal. Manuf., vol. 18, no. 1, pp. 3–20,
Feb. 2004.

[12] N. P. Suh, Axiomatic Design: Advances and Applications. Oxford, U.K.:
Oxford Univ. Press, 2001.

[13] M. F. Amro, ‘‘An engineering systems introduction to axiomatic design,’’
in Axiomatic Design in Large Systems. Cham, Switzerland: Springer, 2016.

[14] X. Deng and W. Jiang, ‘‘An evidential axiomatic design approach for
decision making using the evaluation of belief structure satisfaction to
uncertain target values,’’ Int. J. Intell. Syst., vol. 33, no. 1, pp. 15–32, 2018.

[15] W. Fazar, ‘‘Program evaluation and review technique,’’ Amer. Statistician,
vol. 13, no. 2, pp. 646–669, 1959.

[16] R. J. Luttman, G. L. Laffel, and S. D. Pearson, ‘‘Using PERT/CPM
(program evaluation and review technique/critical path method) to design
and improve clinical processes,’’Qual. Manage. Health Care, vol. 3, no. 2,
pp. 1–13, 1995.

[17] L. Mei, ‘‘Program evaluation and review technique (PERT) in construc-
tion risk analysis,’’ Appl. Mech. Mater., vols. 357–360, pp. 2334–2337,
Aug. 2013.

[18] J. R. van Dorp, ‘‘A dependent project evaluation and review technique:
A Bayesian network approach,’’ Eur. J. Oper. Res., vol. 280, no. 2,
pp. 689–706, Jan. 2020.

[19] S. Sackey and B.-S. Kim, ‘‘Schedule risk analysis using a proposed mod-
ified variance and mean of the original program evaluation and review
technique model,’’ KSCE J. Civil Eng., vol. 23, no. 4, pp. 1484–1492,
Apr. 2019.

[20] G. A. Ollinger and T. F. Stahovich, ‘‘RedesignIT—A model-based tool for
managing design changes,’’ J. Mech. Des., vol. 126, no. 2, pp. 208–216,
Mar. 2004.

[21] J. C.-Y. Su, S.-J.-G. Chen, and L. Lin, ‘‘A structured approach to measuring
functional dependency and sequencing of coupled tasks in engineering
design,’’ Comput. Ind. Eng., vol. 45, no. 1, pp. 195–214, Jun. 2003.

[22] S. Li and L. Chen, ‘‘Identification of clusters and interfaces for supporting
the implementation of change requests,’’ IEEETrans. Eng.Manag., vol. 61,
no. 2, pp. 323–335, May 2014.

[23] H. Lee, H. Seol, N. Sung, Y. S. Hong, and Y. Park, ‘‘An analytic network
process approach to measuring design change impacts in modular prod-
ucts,’’ J. Eng. Des., vol. 21, no. 1, pp. 75–91, Feb. 2010.

[24] E. Pastor, J. Cortadella, and O. Roig, ‘‘Symbolic analysis of bounded Petri
nets,’’ IEEE Trans. Comput., vol. 50, no. 5, pp. 432–448, May 2001.

[25] S. Balsamo, A. Marin, and I. Stojic, ‘‘Perfect sampling in stochastic Petri
nets using decision diagrams,’’ in Proc. IEEE 23rd Int. Symp. Modeling,
Anal., Simulation Comput. Telecommun. Syst., Oct. 2015, pp. 126–135.

[26] Y. Guodong, Y. Yu, Z. Xuefeng, and L. Chi, ‘‘Network-based analysis of
requirement change in customized complex product development,’’ Int. J.
Inf. Technol. Decis. Making, vol. 16, no. 4, pp. 1125–1149, 2017.

[27] Z. W. Gong, H. C. Yang, R. Mo, and T. Chen, ‘‘Analysis of engineer-
ing change based on product development network,’’ Adv. Mater. Res.,
vols. 314–316, pp. 1607–1611, Aug. 2011.

[28] S. Ma, Z. Jiang, and W. Liu, ‘‘Evaluation of a design property network-
based change propagation routing approach for mechanical product devel-
opment,’’ Adv. Eng. Informat., vol. 30, no. 4, pp. 633–642, Oct. 2016.

[29] Y. Qin, L. Zhao, Y. Yao, and D. Xu, ‘‘Multistage machining processes
variation propagation analysis based on machining processes weighted
network performance,’’ Int. J. Adv. Manuf. Technol., vol. 55, nos. 5–8,
pp. 487–499, 2011.

[30] M. V. Martin and K. Ishii, ‘‘Design for variety: Developing standardized
and modularized product platform architectures,’’ Res. Eng. Des., vol. 13,
no. 4, pp. 213–235, Nov. 2002.

[31] M. C. Pasqual and O. L. de Weck, ‘‘Multilayer network model for analysis
and management of change propagation,’’ Res. Eng. Des., vol. 23, no. 4,
pp. 305–328, Oct. 2012.

[32] D. Tang, I. Ullah, and L. Yin, Matrix-Based Product Design and Change
Management. Singapore: Springer, 2018.

[33] M. Giffin, ‘‘Change propagation in large technical systems,’’ in System
Design and Management Program. Cambridge, MA, USA: MIT Press,
2007.

[34] E. S. Suh, O. L. de Weck, and D. Chang, ‘‘Flexible product platforms:
Framework and case study,’’ Res. Eng. Des., vol. 18, no. 2, pp. 67–89,
Aug. 2007.

[35] N. Abdullah and T. K. Hua, ‘‘Weighted methods of multi-criteria via
Dijkstra’s algorithm in network graph for less congestion, shorter distance
and time travel in road traffic network,’’ Global J. Eng. Sci. Res., vol. 5,
no. 7, pp. 46–57, 2018.

[36] Y. Li, W. Zhao, and X. Shao, ‘‘A process simulation based method for
scheduling product design change propagation,’’Adv. Eng. Inform., vol. 26,
no. 3, pp. 529–538, 2012.

[37] A. Mrvar and V. Batagelj, ‘‘Analysis and visualization of large networks
with program package Pajek,’’ Complex Adapt. Syst. Model., vol. 4, no. 1,
pp. 1–8, Dec. 2016.

[38] D. Tang, R. Xu, J. Tang, and R. He, ‘‘Analysis of engineering change
impacts based on design structure matrix,’’ J. Mech. Eng., vol. 46,
pp. 154–161, 2010.

YONG YIN is currently a Professor with the
Key Laboratory of Fiber Optic Sensing Tech-
nology and Information Processing, Ministry of
Education, Wuhan University of Technology. His
research interests include intelligent manufactur-
ing, machine vision, and complex systems.

SHUXIN WANG is currently a Professor with
the School of Intelligent Manufacturing and Elec-
tronic Engineering, Wenzhou University of Tech-
nology. His research interests include intelligent
manufacturing, embedded control, and complex
systems.

JIAN ZHOU is currently a Professor with the Key
Laboratory of Fiber Optic Sensing Technology and
Information Processing, Ministry of Education,
Wuhan University of Technology. His research
interests include intelligent manufacturing, com-
puter communication, and complex systems.

VOLUME 10, 2022 17399

