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ABSTRACT This paper proposes a neural 5G traffic generation model and a methodology for calculating
the spectrum requirements of private 5G networks to provide various industrial communication services.
To accurately calculate the spectral requirements, it is necessary to analyze the actual data volume and
traffic type of industrial cases. However, because there is currently no suitable traffic model to test
loads in private 5G networks, we have developed a generative adversarial network (GAN)-based traffic
generator that can generate realistic traffic by learning actual traffic traces collected by mobile network
operators. In addition, in the case of industrial applications, probability-based traffic models were used
in parallel as there were not enough real data to be learned. The proposed 5G traffic generation model
is combined with the proposed 5G spectrum calculation methodology, enabling more accurate spectrum
requirements calculation through traffic simulation similar to a real-life environment. In this paper, the
spectrum requirements are calculated differently according to two types of duplexing, namely frequency
division duplexing (FDD) and time division duplexing (TDD). As a guide for companies aiming to provide
advanced wireless connectivity for a wide variety of vertical industries using 5G networks, eight use
cases defined in the 5G Alliance for Connected Industries and Automation (ACIA) white paper were
simulated. The spectrum requirements were calculated under various simulation conditions considering
varying traffic loads, deployment scenarios, and duplexing types. Various simulation results confirmed that
a bandwidth of at least 22.0 MHz to a maximum of 397.8 MHz is required depending on the deployment
scenario.

INDEX TERMS Generative adversarial network (GAN), deep learning, 5G traffic, real traffic trace, spectrum
requirement calculation, private 5G network, industrial use cases.

I. INTRODUCTION
According to Allied Business Intelligence (ABI) Research’s
announcement in July 2020, the scale of investment in 5G pri-
vate networks is expected to grow rapidly, reaching 24 billion
dollars in 2035 beyond 5G public networks. In the beginning,
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private 5G network services using the carrier’s frequency will
lead to growth, but it is expected that it will gradually shift
towards building private 5G networks with local 5G frequen-
cies. When constructing a private network, it is important to
accurately predict the amount of traffic demand. Since the
frequency requirement or the capacity of the network device
is determined based on the traffic load, traffic source models
or actual traffic measurement data are required to predict the
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load on the network. However, there is currently no traffic
generation model suitable for traffic on private 5G networks,
and there are not enough real traffic trace data. Datasets
measured in real networks are publicly available [1], [2], but
as these were measured under specific circumstances, it is
difficult to use them to determine the spectrum requirements
or equipment capacity of a private 5G network applicable
to various use cases. To estimate the spectral requirements
of a private 5G network, we first determined a deployment
scenario based on actual industrial use cases, and then deter-
mined the traffic models and related parameters to apply
to each use case to generate traffic; finally, the frequency
bandwidth required to accommodate the generated traffic was
calculated.

Existing stochastic traffic source models such as the inter-
rupted Bernoulli process (IBP) and Markov modulated Pois-
son process (MMPP) are not suitable for modeling recent
web-based video traffic such as Netflix streaming service or
Zoom video conferencing. In addition, the traffic model that
simulates the packet generation pattern of a codec (e.g., H.263
and H.264) is suitable as a source model for a video server but
has limitations in simulating the download traffic pattern of a
subscriber network. As the appearance of the download traffic
of the subscriber network varies greatly according to the con-
figuration of the application server of the subscriber network,
load balancer, and firewall, it is more ideal to generate traffic
based on measured data rather than a mathematical traffic
source model. The proposed traffic model is a generative
neural network model capable of generating or synthesizing
traffic similar to real data by learning a real 5G dataset.

Typical spectrum requirements calculation methodologies
predict traffic demand based on market research or traf-
fic models and convert them into spectrum requirements.
Standard recommendations for calculating spectrum require-
ments include ITU-R M.1390 [3] applied to circuit-switched
networks, and ITU-R M.1768-1 [4] applied to a packet-
switched network. The former computes the traffic demand
using a simple Erlang-B formula, whereas the latter com-
putes the traffic demand based on the M/G/1 queuing model,
which can reflect the statistical characteristics of the packet
and priorities of service classes. The authors of [5] calcu-
lated the aeronautical mobile airport communication system
(AeroMACS) spectrum requirements using the methodology
presented in [4]. Kim and Park [6] presented a mathemat-
ical approach for calculating the spectrum requirements of
5G enhanced mobile broadband (eMBB) and ultra-reliable
and low-latency communication (URLLC) based on the
M/G/1 queueingmodel with the same input parameters as [4].
However, both methodologies typically require statistical
characteristics of offered traffic load from market research or
a stochastic model for the packet arrival process. For cellular
networks operated by mobile network operators (MNOs)
with a large number of users worldwide, traffic data can be
obtained through market research, but for some applications
such as smart factories and smart farms, which have relatively
fewer users and limited usage, it is difficult to obtain traffic

data through the same channels. Therefore, in this paper,
we developed a 5G traffic simulator including the existing
probability models and the proposed neural network-based
traffic generation model. In addition, this paper proposes a
new 5G spectrum requirement calculation method that does
not use either the existing standard methodology [3], [4], nor
queueing theory.

The remainder of this paper proceeds as follows. Section II
describes related works. Section III describes the proposed
generative neural network model, the dataset used for train-
ing, and how to train it to generate 5G traffic. Section IV
describes the private 5G spectrum calculation methodology
based on generated traffic. Section V describes use cases and
scenarios for calculating spectrum requirements. Section VI
describes the performance evaluation of the proposed tech-
nique in terms of 5G traffic generation and spectrum estima-
tion. Finally, Section VII concludes this paper.

II. RELATED WORKS
Research on packet traffic source models for audio and video
has been in progress for a long time. After the two-statemodel
with silent and talk spurt state was proposed by Brady [7],
research on packet voice modeling was actively conducted
until the early 2000s. Three major packet traffic source mod-
els (i.e., the MMPP model, semi-Markov process (SMP)
model, and fluid flow model) were analyzed and compared
by Daigle and Langford [8]. In the late 1980s, with the emer-
gence ofmoving picture experts group (MPEG) standards and
asynchronous transfer mode (ATM) networks capable of car-
rying video traffic, several traffic models incorporating codec
characteristics of variable bit rate (VBR) compressed video
were proposed [9]–[11]. A video traffic model is a stochastic
model that generates the size of each successive encoded
video frame. In general, the parameters of the model are
statistically obtained by analyzing a given frame trace. Self-
similar properties that appear in local area network (LAN)
data traffic and transmission control protocol (TCP) traffic
also appear in video traffic [12]. Recently, multiview cod-
ing (MVC) video and three-dimensional (3D) video traffic
models have also been conducted Tanwir et al. [13] proposed
a 3D video traffic model based on a Markov modulated
gamma process (3D-MMG) and compared themodel with the
hidden Markov model (HMM).

The overall discussion of the recent stochastic traffic
source model is summarized in [14]–[16]. Most of the packet
traffic simulators [17], [18] currently used in academia and
industry are based on stochastic traffic source models. These
stochastic models simulate the packet generation pattern of
a codec and are, therefore, suitable as a source model for a
video server but have limitations in simulating the download
traffic pattern of a subscriber network. For example, the
recent web-based video streaming traffic is greatly affected
by the request cycle of the video client, regardless of the
codec’s traffic generation pattern. Fig. 1(a) and 1(b) show
the downlink traffic patterns of Amazon Prime Video and
Netflix, respectively. As shown in Fig. 1, when users watch
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FIGURE 1. Measured downlink video streaming traffic patterns.
(a) Amazon Prime Video. (b) Netflix

the same video content using different over-the-top (OTT)
services, it is evident that the download traffic patterns are
different. This is because clients have different request cycles.
Therefore, it is difficult to simulate downlink traffic similarly
to the actual situation using existing video source models.

Over the last several years, a variety of studies on short-
term prediction models based on measured data have been
conducted. In particular, time series analysis has been widely
used for traffic load prediction. Time series analysis observes
the measured dataset and extracts statistical characteristics
to derive a statistical model suitable for these character-
istics. The most widely used time series traffic predic-
tion model is the autoregressive integrated moving average
(ARIMA) model. Kim et al. [19] performed packet traffic
forecasting using the ARIMA model with various datasets
downloaded from the National Laboratory for Applied Net-
work Research (NLANR) [20] with various traffic sources
and sampling intervals. Otoshi et al. [21] applied seasonal
ARMIA models to predict short- and long-term future traffic
volumes. Guo et al. [22] applied a seasonal multiplication
ARIMA model to predict mobile communication traffic, and
Chen et al. [23] applied a seasonal ARIMA model to predict
IEEE 802.11 traffic. In addition to ARIMA, various time
series analysis models have been applied to network traffic
analysis, and it is possible to express not only one VBR
video source model but also a model in which several sources
are combined. However, the time series analysis method is
limited in that it requires prior analysis of the autocorrelation
function (ACF) and partial autocorrelation function (PACF)
to determine appropriate model parameters. The statistical
model has the advantage of lower computational complex-
ity compared to machine learning (ML) techniques and is
thus, suitable for the short-term prediction of gently changing

traffic based on already analyzed datasets. However, because
5G traffic loads measured by base stations or terminals often
have burstiness and long-term correlation characteristics, it is
difficult to accurately predict the traffic load using statistical
models.

Recently, as ML techniques based on artificial neural net-
works are widely used, studies that predict traffic volume
by learning traffic traces are emerging. The most widely
used ML models for time series forecasting are recurrent
neural network (RNN), long short-term memory (LSTM),
and gated recurrent unit (GRU). Fan et al. [24] proposed a
neural network-based network traffic prediction model that
combines a deep RNN and a GRU applied to predict network
traffic. The results were verified by numerical calculation and
simulation, and the network traffic prediction results of the
model were found to be close to the real values. Xu et al. [25]
proposed a deep neural network for traffic prediction of a
cellular network. They use LSTM with an attention mech-
anism to encode the long-term dependencies of the traffic,
and then decode the obtained state by the time convolutional
network (TCN). They compared the proposed model with
several ML models, including the seasonal ARIMA model.
To predict 5G mobile traffic, the authors of [26] presented a
state-of-the-art ML framework based on graph convolutional
networks (GCNs). They considered practical constraints in
prediction mechanisms such as limited data availability and
lack of recent measurements. Recurrent neural network fam-
ilies, such as GRU and LSTM, show excellent predictive
performance when trained properly while avoiding gradient
vanishing problems and overfitting, but are not suitable for
use as traffic generators because it is difficult to continuously
generate traffic.

Cheng [27] proposed and prototyped a generative adver-
sarial network (GAN) model for generating realistic network
traffic at the Internet protocol (IP) packet level. The use of
GANs for generating network packets is novel compared to
existing flow-based GAN models [28], [29]. A new tech-
nique for encoding network data specifically for use in a
convolutional neural network (CNN)-based generator was
introduced. Shahid et al. [30] proposed combining an autoen-
coder with a GAN to generate sequences of packet sizes
that correspond to bidirectional flows. The autoencoder was
trained to learn a latent representation of the real sequences of
packet sizes and a GAN was then trained on the latent space,
to learn to generate latent vectors that can be decoded into
realistic sequences. This approach generates sequences of
packet sizes that behave closely to real Internet of things (IoT)
bidirectional flows.

Currently, two 5G datasets are publicly available [1], [2].
The first dataset [1] is 65 KB in size and was collected for 5G
network slicing research [31], [32]. The second dataset [2] is a
5G trace dataset collected from a major Irish mobile network
operator. The dataset [2] has two mobility patterns (i.e., static
and car) and two application patterns (i.e., video stream-
ing and file download). The dataset is composed of client-
side cellular key performance indicators (KPIs) comprising
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FIGURE 2. (a) The proposed 5G Traffic-GAN model architecture.
(b) Temporal block structure of discriminator.

channel-related metrics, context-related metrics, cell-related
metrics, and throughput information. These metrics were
created using G-NetTrack Pro, a well-known and unrooted
Android network monitoring application.

III. TRAFFIC GENERATION SCHEME
A. RECENT ADVANCES IN GAN
Originally proposed by Goodfellow et al., the GAN [33] is
an unsupervised deep learning machine, where the genera-
tor learns how to mimic the target data distribution, while
the discriminator tries to differentiate between the real data
and the samples coming from the generator. GAN models
are developing rapidly and have achieved remarkable suc-
cess in image and video synthesis. Recent image genera-
tion models have greatly improved the visual fidelity and
resolution of the generated images [34]–[36]. Conditional
GAN [37] allows users to manipulate images. BigGAN [34]
and StyleGAN [35], [36] are powerful image composition
models capable of generating a variety of high-quality images
and have already been adopted by digital artists [38]. GAN
models are rapidly developing and being widely used for text
generation, image generation, video generation, and voice
generation; however, the model structure varies considerably
depending on the application field. The currently disclosed
GANmodels cannot be applied to the generation of 5G packet
traffic without change and, therefore, a separate study is
needed to generate 5G packet traffic with long-range depen-
dency and bustiness characteristics.

COT-GAN [39] is an adversarial algorithm used to train
implicit generative models optimized for the production of
sequential data. The objective function of this algorithm
is formulated using ideas from causal optimal transport
(COT), which combines classic optimal transport meth-
ods with an additional temporal causality constraint. The
COT-GAN algorithm is suitable for generating time series

FIGURE 3. Discriminator network architecture

FIGURE 4. Generator network architecture

data when the real dataset consists of i.i.d. sequences or
stationary time series. Although it opens the door to many
applications that can benefit from time-series synthesis, the
generation of ever-changing nonstationary 5G traffic requires
separate research.

B. THE PROPOSED VIDEO TRAFFIC MODEL
We propose 5G Traffic-GAN, which achieves both higher
computational efficiency and sample quality than auto-
regressive (AR) or stochastic models. The same as the stan-
dard GAN training method, the generative network generates
5G traffic candidates while the discriminative network eval-
uates them. The generator in the proposed GAN formulation
transforms input noise z ∼ pZ , a standard multivariate Gaus-
sian, to the outputG(z) with distribution pg(x). The target data
are sampled from an underlying distribution pd (x) and the
discriminatorD(x) predicts the probability of its input coming
from pd . This is formulated as a two-player minimax game
between the generator and the discriminator with the value
function V (G,D):

min
G

max
D

V (D,G) = Ex∼pd (x)[logD(x)]

+Ez∼pz(z)
[
log (1− D (G (z)))

]
. (1)

The generator and discriminator are the two players and
take turns updating their model weights. In (1), the objective
function of the discriminator is to maximize the likelihood of
distinguishing between real data from the training set and fake
data from the generator. Using cross-entropy to measure loss,
logD(x),D(x) is ideally 1 for labelled real training data x; and
for the fake data z generated from the generator G, its loss is
log (1− D (G (z))).
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As shown in Fig. 2, the 5G Traffic-GAN has two parts.
Both the generator and the discriminator are neural networks.
The generator output is directly connected to the discrimi-
nator input through a hyperbolic tangent activation function.
Through backpropagation, the discriminator’s classification
provides a signal that the generator uses to update its weights.
The generator learns to generate plausible data so that the
generated instances become negative training examples for
the discriminator. The discriminator learns to distinguish the
generator’s fake data from real data. The discriminator penal-
izes the generator for producing implausible results. When
training begins, the generator produces random data, and the
discriminator quickly learns that it is not 5G traffic data.
Finally, if the generator is well trained, the discriminator
will be worse at distinguishing between the real trace and
generated 5G traffic. As it starts to classify the generated
data as real, its accuracy decreases. The discriminator uses
the sigmoid activation function output in the range [0, 1]
to determine a value close to 1 as real and a value close
to 0 as fake, but generator uses the hyperbolic tangent acti-
vation function to normalize the training data to a value in
the range [−1, 1]. In the GAN generator, it is known that
normalizing the training data to a value between−1 and 1 so
that it has polarity can obtain stable model parameters.

As shown in Fig. 3, the discriminator consists of eight
temporal blocks. Each temporal block has a structure inwhich
1 × 20 real traffic and generated traffic are alternately used
as inputs, and the 1D CNN and chomp layers are repeated
twice. The 1D CNN learns the characteristics of the input
traffic, and the chomp layer makes the size of the output
result of the 1D CNN the same as the initial input size so
that it can be used as an input for the next 1D CNN. Stacking
temporal blocks with dilated convolutions enables networks
to have very large receptive fields with only eight layers,
while preserving the input resolution throughout the network
as well as computational efficiency. In this paper, the dilation
is doubled for every layer up to a limit of 128. We use a
fully connected layer and a sigmoid activation function in the
output layer of the neural network to distinguish between the
real trace and generated 5G traffic.

As shown in Fig. 4, the generator consists of LSTM net-
works that can remember past information. It generates traffic
similar to real traffic by using the characteristics of remem-
bering past information. A latent space sized 20 × 100 is
used as the input of the LSTM and the number of LSTM
hidden cells is 256. The output of the LSTM is serialized
into a vector and used as the input of the fully connected
layer, and a 1× 20 traffic is generated. The generated traffic
then passes through the hyperbolic tangent activation func-
tion. Latent space refers to an abstract multi-dimensional
space containing feature values that cannot be interpreted
directly, but which encodes a meaningful internal represen-
tation of externally observed events. In this paper, it is a
20× 100-dimensional hypersphere with each variable drawn
from a Gaussian distribution with a mean of zero and a
standard deviation of one. Through training, the generator

FIGURE 5. Data volume for each application of the dataset used for 5G
Traffic-GAN training. (a) Amazon Prime downlink, driving. (b) Amazon
Prime uplink, driving. (c) Amazon Prime downlink, static. (d) Amazon
Prime uplink, static. (e) Netflix downlink, driving. (f) Netflix uplink,
driving. (g) Netflix downlink, static. (h) Netflix uplink, static. (i) FTP
downlink, driving. (j) FTP uplink, driving. (k) FTP downlink, static.
(l) FTP uplink, static.

learns to map points into the latent space with specific output
vectors and thismappingwill be different each time themodel
is trained.

C. DATASET
The dataset used is a 5G trace dataset collected from a major
Irish mobile operator [2]. It is generated from two mobility
patterns (i.e., static and car) and across two application pat-
terns (i.e., video streaming and file download). The video
streaming dataset is a direct measurement of Netflix and
Amazon Prime, which are representative OTT services, while
watching on a mobile terminal. The dataset is composed of
client-side cellular key performance indicators (KPIs) com-
prising channel-related metrics, context-related metrics, cell-
related metrics, and throughput information. These metrics
are generated from a well-known Android network moni-
toring application, G-NetTrack Pro. Fig. 5 shows the data
volume over time for each application of the dataset in Kbps.
Details of the training are described in Section IV.

D. OTHER TRAFFIC MODELS
The 5G Traffic-GAN is used to model the data traffic
gener-ated when streaming videos are downloaded from a
server to a user equipment (UE). However, because the video
stream-ing data transmitted from the camera mounted on
the mobile robot to the controller is transmitted through the
uplink, it is not appropriate to generate such uplink traffic
using the 5G Traffic-GAN model. Thus, we generate uplink
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video traffic using the existing stochastic video traffic model,
the near real-time (NRT) video streaming model. In the
NRT video streaming model, the packet sizes and packet
inter-arrival time in a frame follow a truncated Pareto dis-
tribution. The parameter types and their specific values of
the probability distribution are presented in [40] and [41].
As in [40], the inter-arrival time between the beginning of
each frame is deterministic with 100 ms. The number of
packets in a frame is also deterministic with eight packets per
frame. The distribution of packet sizes is a truncated Pareto
distribution with an average of 100 bytes. The probability
density function (PDF) of the packet size for this model is
as follows:

fx =


αkα

xα+1
, k ≤ x < m(

k
m

)α
, x = m

(2)

where α denotes the shape parameter known as the tail index,
and k and m denote the minimum and maximum values in
bytes, respectively. The inter-arrival time between packets has
the same distribution as in (2) with different parameters.

Additionally, in this paper, a periodic traffic model and
an aperiodic traffic model are used to simulate the traffic
generated by the devices in the factory. The periodic traffic
model is a simple model in which packets are continuously
generated at regular intervals, given the packet length and
transfer interval. The aperiodic traffic model generates pack-
ets with a given packet length with random inter-arrival times.
In traffic simulation, this model is used differently to generate
traffic for individual use cases in the simulation, as shown in
Table 5 of Section VI.

E. 5G NR MAC FRAME SIMULATION
Because the 5G traffic generated by the proposed 5G Traffic-
GAN model is generated by learning the dataset directly
collected by the 5G mobile terminal, the distribution of the
generated packets is very similar to the actual traffic. How-
ever, because the traffic generated using a stochastic model
such as a truncated Pareto distribution model simulates the
packet generation pattern of the application layer or the net-
work layer, the 5G new radio (NR) media access control
address (MAC) frame encapsulation process must be added
to simulate the traffic shape during 5G transmission. In this
paper, to convert IP packets generated by the probabilistic
model into MAC frames, IP packets are collected as much
as the MAC slot length (i.e., 0.5 ms) to create a 5G NR
transport block (TB). The length of service data adaption
protocol (SDAP), packet data convergence protocol (PDCP),
radio link control (RLC), andMAC headers are added to each
TB to simulate 5G NR frame transmission.

IV. SPECTRUM CALCULATION RELATED WORKS
One of the main characteristics of 5G vertical services is the
strict latency requirement. For example, the communication
delay requirements between remote controllers for process

TABLE 1. Notations Related to Spectrum Calculation.

automation in smart factories are very strict. On the other
hand, file transfers using the file transfer protocol (FTP), such
as log file transfers, have loose latency requirements. The
system capacity to handle the same amount of traffic is larger
when there is a strict delay requirement than when there is a
loose delay requirement. The queuing theory can be used to
calculate the system capacity considering the delay require-
ment; however, prior knowledge of the packet arrival process
is required. A representative spectral requirement calculation
recommendation to which the queuing theory is applied is [4].
In the absence of an appropriate stochastic traffic model, it is
difficult to determine the system capacity using the queuing
theory. In this paper, we propose a method for calculating
the system capacity without stochastic model parameters of
packet traffic whilst reflecting the delay constraints required
by each application. By dividing the calculated system capac-
ity by spectral efficiency, the required spectrum for the private
5G network is obtained.

A. SYSTEM CAPACITY CALCULATION
The notations used in Section IV are listed in Table 1. The
basic concept of the proposed method is that the minimum
required data rate satisfying the delay constraints is defined
as the system capacity. The system capacity is time-varying
because various services are processed in the system, and
the required data transmission rate changes accordingly.
The mathematical representation of the time-varying system
capacity can be expressed as the sum of the minimum data
transmission rates given in (3):

C(t) =
∑
k

rk [u (t − tk)− u (t − tk − τk)] , (3)

where the unit step function u (t) is defined as

u (t) =

{
0, x < 0
1, x > 0.

(4)

The minimum data rate for transmitting the kth frame
within the delay constraint τk is denoted by rk , and the starting
time of the kth frame is denoted as tk . If the size of the
kth frame is Vk bytes, the minimum data rate at which it is
transmitted within τk s is calculated by dividing the traffic
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FIGURE 6. Example of FDD spectrum calculation process. (a) Generated
5G NR Frames. (b) Minimum data rates to meet each latency requirement.

volume by the latency as rk = 8Vk/τk bps. For the system
to satisfy all delay constraints, the system capacity should be
selected as the maximum value of the time-varying system
capacity given in (4), which is given as:

C = max {C (t)} . (5)

The duplexing type should be considered when calcu-
lating the spectrum requirements based on traffic volume.
Frequency division duplexing (FDD) is implemented on a
paired spectrumwhere downlink and uplink transmissions are
sent on separate frequencies, whereas time division duplexing
(TDD) is implemented on an unpaired spectrum, implying the
usage of the same frequency for both downlink and uplink
transmissions. Therefore, the spectrum requirement calcula-
tion is performed differently according to the duplexing type.

B. SPECTRUM REQUIREMENT: FDD
In FDD, the downlink and uplink frames are separated in the
frequency domain and thus, the link capacity is calculated for
each link. Assuming that in downlink, threeMAC frameswith
V1,V2, andV3 bytes have slot start times t1, t2, and t3 as shown
in Fig. 6(a), where Ts denotes the MAC frame slot duration;
if each frame contains different service data that require
different delay requirements τ1, τ2, and τ3, the minimum
required data rates for transmitting each frame within the
delay requirements are r1 = 8V1/τ1bps, r2 = 8V 2/τ2 bps,
and r3 = 8V3/τ3 bps, respectively. For the link to transmit
the corresponding MAC frame within the delay constraints,
the system must maintain the minimum required data rate
from the slot start time to the required delay value. Let us
define this minimum required data rate as the system capacity
considering the delay requirement. If t2− t1 < τ1, the system

FIGURE 7. Example of TDD spectrum calculation process. (a) Generated
5G NR Frames. (b) Minimum data rates to meet each latency requirement.

transmits the second frame before the data transmission for
the first frame is completed. In this case, the system capacity
is r1 + r2, so that two frames can be transmitted within the
delay requirements. This is depicted in Fig. 6(b). In Fig. 6(b),
if r2 + r3 is the largest data rate value in the vertical axis, the
system capacity is r2 + r3. The spectrum requirement of the
downlink can be obtained by dividing the value by the spectral
efficiency η as FDL = (r2 + r3)

/
η. If the downlink and

uplink spectrum requirements are FDL and FUL , respectively,
the final spectrum requirement is given by (6):

FFDD = 2×max (FDL ,FUL) . (6)

C. SPECTRUM REQUIREMENT: TDD
In TDD, as the downlink and uplink frames use the same
frequency band, they are recognized in their time slots. The
process of calculating the spectrum requirement in the TDD
system is depicted in Fig. 7. Two downlink frames and one
uplink frame are in a given time period, as shown in Fig. 7(a).
Let the transmission time ratio of the downlink and uplink
be 4:1; for convenience, the delay requirement of all frames is
the same as τ = Ts/5. As the frame starting at time t1 needs
to transmit data volume V1 within the required delay τ , the
minimum required transmission rate is r ′1 = 8V1/(τ × 4/5),
which is 5/4 times larger than that of FDD. The minimum
required transmission rate r ′3 = 8V3/(τ × 4/5) can be calcu-
lated in the samemanner. In Fig. 7(b), if r ′3 > r ′1, the downlink
capacity is r ′3. The second frame is the uplink frame with the
data volume V2 should be transmitted within a slot allocated
to the uplink in the required delay. This process is illustrated
in Fig. 7(b). If r ′2 is the maximum value among the minimum
required data rates of the uplink frame, the uplink spectrum
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FIGURE 8. 5G industrial use cases. (a) Use Case 1: Motion Control, Mobile Controller. (b) Use Case 2: Closed Loop Control, Mobile I/O Gateway. (c) Use
Case 3: Process Monitoring. (d) Use Case 4: Mobile Robot. (e) Use Case 5: Human-Machine Interface. (f) Use Case 6: Closed Loop Control for Process
Automation. (g) Use Case 7: Control-to-Control (100 Mbps Link). (h) Use Case 8: Control-to-Control (1 Gbps Link).

requirement is a value obtained by dividing r ′2 by the spectrum
efficiency. The downlink spectrum requirement is calculated
for the downlink in the same manner. Finally, the spec-
trum requirement for the TDD system FTDD is determined
by (7):

FTDD = max (FDL ,FUL). (7)

V. USE CASE AND SCENARIO
5G wireless systems are expanding mobile communication
services beyond mobile phones and broadband data services
into new application areas, so-called vertical areas, including
smart factories, smart cars, smart grids, and smart cities.
Ho et al. [42] provided a survey of related research dedicated
to automation in vertical domains. Reference [43] described
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new use cases and potential requirements applicable to
5G systems for a 3GPP network operator to support
5G LAN-type services over the 5G system.

Applications in industrial automation systems have
stringent requirements for latency and reliability. These
requirements have already been met by current wired com-
munication systems. To determine whether a wired system
can be replaced by a wireless 5G system, it is necessary to
analyze the actual data volumes and traffic types of industrial
use cases. To accurately predict the network load, a realistic
traffic model is required to enable the performance evaluation
and design of the corresponding communications systems.
5G traffic models for industrial use cases are outlined in [44]
and [45]. We performed simulations on eight use cases
illustrated in Fig. 8. The descriptions of the individual use
cases below summarize the white paper [45].

In Use Case 1, a controller with a wireless network con-
nection communicates with two remote sensors (links 1 and
2) and a remote actuator (link 3). The two sensors send a
small-sized message to the controller every 1 ms. The con-
troller sends a command to the actuator every 10 ms and
receives a response. It is assumed that they are transmitted
as L2 frames over the reference interface with 64 bytes as the
minimum size.

In Use Case 2, a mobile I/O gateway with a wireless
network connection connects locally to two sensors and an
actuator and communicates with a remote controller. The two
sensors send a small-sized message to the remote controller
every 1 ms through the I/O gateway. These messages are not
acknowledged by the remote controller. The actuator receives
a medium-sized message from the remote controller every
1 ms and acknowledges it with a small-sized message.

In Use Case 3, a mobile I/O gateway with radio network
connectivity connects locally to two sensors and communi-
cates with a remote computing entity such as a controller or
a supervisory control and data acquisition (SCADA) system.
The two sensors are polled by the remote computing entity
and respond to that poll with their captured values; polling is
performed every 20 ms on average.

In Use Case 4, a mobile I/O gateway with a wireless
network connection mounted on amobile robot has local con-
nections to two high-definition cameras and two actuators.
The camera on link 1 sends a continuous video stream to
the remote controller at a data rate of 8 Mbps and receives
its acknowledgment. The second camera only sends a video
stream when the mobile robot reaches a defined location.
This second camera has the same resolution and the same
peak data rate as the first camera but has a lower average
data rate as it only transfers images intermittently. Actuators
communicating via link 3 receive a command from the remote
controller every 10ms and send a corresponding acknowledg-
ment. The actuator using link 4 does the same every 1 ms.

In Use Case 5, mobile human-machine interface (HMI)
devices with a wireless network connection have an emer-
gency button system that communicates with the remote
controller and sends a watchdog message every 5 ms that

the remote controller acknowledges. The HMI also receives
a high-definition video stream.

In Use Case 6, a mobile I/O gateway with radio network
connectivity connects locally to two groups of sensors and
one group of actuators and communicates with a remote
controller. The I/O gateway captures a value from each sensor
in the first group and sends a message with the combined
values of medium size every 200 ms and sends a smaller-
sized message with the values from the other group every
500 ms via the I/O gateway to the remote controller. These
messages are not acknowledged by the remote controller. The
I/O gateway receives a message with the values from the
group of actuators every 200 ms from the remote controller
and sends back an acknowledgement message of the same
size.

Use Cases 7 and 8 are control-to-control scenarios where
two or more machines collaborate in modular production
environments. Each machine communicates with every other
machine, with similar traffic across all links. In traditional,
non-flexible scenarios, 100 Mbps and 1 Gbps wired links are
used (e.g., 1 Gbps links for video streaming and 100 Mbps
links for motion control). In Use Case 7, for the 100 Mbps
link, 50%periodic and 25% aperiodic traffic is assumed. Each
machine sends and receives 6.25 KB of periodic data per 1 ms
interval via link 1 from the collaboratingmachines. Aperiodic
data can vary between 0 and 3.125 KB per 1 ms interval via
link 2. In Use Case 8, for the 1 Gbps link, 25% periodic and
50% aperiodic traffic is assumed. Each machine sends and
receives 31.25KB of periodic data per 1ms interval via link 1.
Aperiodic data can vary between 0 and 62.5 KB per 1 ms
interval via link 1.

Three deployment scenarios were considered in [45],
namely small-scale, large-scale deployment, and inbound
logistics. Among the three examples, small-scale deploy-
ment and large-scale deployment are considered in this study.
Tables 2 and 3 present the two deployment scenarios and the
corresponding 5G traffic.

TABLE 2. Scenario – Small scale deployment scenario.

VI. IMPLEMENTATION AND SIMULATION STUDY
A. 5G TRAFFIC-GAN RESULTS
The dataset [2] is a collection of 216,000 s (i.e., 60 h) of
video streaming traffic generated while watching representa-
tive OTT services (e.g., Netflix and Amazon Prime) using the
Android application, G-NetTrack Pro. Only data measured
in the stationary state were used for model training, and
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TABLE 3. Scenario – Large scale deployment scenario.

only Timestamp, UL_bitrate, and DL_bitrate among more
than 20 fields were used as inputs to the model. Given the
dataset [2], Netflix has a longer data request cycle than Ama-
zon Prime and requests a large number of video chunks at
a time. As shown in Fig. 1, there is a clear difference in the
pattern of downlink traffic. Unlike Netflix, Amazon Prime
tends to constantly generate small amounts of data.

Of the 60-hour dataset, 58 hours were used for training and
validation, and the remaining two hours were used for testing.
The hyperparameters used to train the model are as follows:
In the generator model, Adam was used as an optimizer
to learn 4098 parameters of the generator network, and the
learning rate was set to 0.01. Dropout is not used, and the
number of hidden LSTM cells is 256. In the discriminator
model, the same optimizer and learning rate as the generator
were used to learn 502 parameters of the discriminator net-
work, and dropout was not applied. The total number of time
blocks is 8, and the input data were trained using the extended
causal convolution technique [46].

The computing environment in which 5G Traffic-GAN
learned the dataset of [2] was a personal computer equipped
with an AMD Ryzen 7-1700 8-core CPU, 16GB RAM, and
NVIDIA GTX 1070ti 6GB GPU, which took 565 s to learn
the entire dataset once. The 5G Traffic-GAN was trained for
a total of 650 epochs, so the total time spent on training
corresponds to 102 hours (565 s × 650 = 367,250 s). In the
same environment, when the 5G Traffic-GAN generates traf-
fic, it varies depending on the scenario, but in most cases,
an inference time of 60 s was required. In other words, traffic
begins to be generated after 60 s, and in this experiment,
traffic simulation was performed for 15 minutes to obtain
sufficient traffic.

Fig. 9 shows the pattern of traffic volume over time gen-
erated by the 5G Traffic-GAN overlaid with the actual traffic
in the dataset. It can be seen that both the generated Netflix
shown in Fig. 9(a) and Amazon Prime shown in Fig. 9(b)
traffics are generated similarly to the actual traces with the
occurrence cycle and pattern.

To compare the generated video streaming traffic with the
traffic given in the dataset, a cumulative distribution func-
tion (CDF) was observed. Fig. 10 shows an overlay of the
CDF to visualize how similar the generated traffic is to real
traffic. In particular, it shows data between 0-20 Kbps, where
there is a significant change in the rate of traffic. It can be seen
that bothNetflix in Fig. 10(a) andAmazon Prime in Fig. 10(b)
have very similar CDFs of generated traffic and actual traffic.

FIGURE 9. An overlapping representation of the generated downlink
packet traffic and real packet traffic. (a) Netflix. (b) Amazon Prime.

FIGURE 10. CDF comparison of generated and real downlink packet
traffic. (a) Netflix. (b) Amazon Prime.

To evaluate the performance of the proposed traffic gen-
eration model more accurately, we observed Jensen-Shannon
divergence (JSD) and maximum mean discrepancy (MMD).
Jensen-Shannon divergence is a method of measuring the
similarity between two probability distributions P and Q.
Here, P is the probability distribution generated by the pro-
posed model, and Q is the probability distribution of the
actual dataset. The Jensen-Shannon divergence is a sym-
metrized and smoothed version of the Kullback–Leibler (KL)
divergence D(P||Q). It is defined by

JSD(P||Q =
1
2
KL(P||M )+

1
2
KL(Q||M ), (8)
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whereM = 0.5(P+Q). The maximummean discrepancy is a
kernel-based statistical test used to determinewhether the two
distributions P and Q are the same. MMD is defined as [47]

MMD (P,Q)

=
[
Ex,x ′

(
k
(
x, x ′

))
+ Ey,y′

(
k
(
y, y′

))
− 2Ex,y (k (x, y))

] 1
2 ,

(9)

where x and x ′ are independent random variable drawn
according to probability distribution P, y and y′ are indepen-
dent random variables drawn according to the distribution Q,
and x is independent of y.
We evaluated the performance by changing the structure

of the generator and discriminator models. Table 4 shows
the applied models and the performance evaluation results.
The first column of Table 4 shows the generator and dis-
criminator structures of the proposed 5GTraffic-GANmodel.
For example, in the LSTM-TCN model in the third row, the
generator is the LSTM structure, and the discriminator is the
TCN structure.

TABLE 4. Comparison of performance of ML models.

The first model, TCN-TCN is the case where both the
generator and the discriminator have a TCN structure, the
second model, LSTM-TCN is the case where the discrimi-
nator is the same as the first model and the LSTM structure is
applied to the generator. The third model, 2LSTM-TCN is the
case where the LSTM layer is doubled in the second model.
The fourth model, WGAN-GP is a case of generating traf-
fic using Wasserstein GAN-gradient penalty (WGAN-GP)
model. As shown in Table 4, the model applying LSTM to
the generator model showed small values of Jensen-Shannon
divergence and maximum mean discrepancy, so it seems that
the time series features and patterns of the given measured
data were effectively trained. The model composed of both
the generator and discriminator with TCN generated simi-
lar data patterns, but failed to properly express time series
characteristics, which were measured with higher Jensen-
Shannon divergence and a maximum mean discrepancy than
LSTM-TCN, as shown in Table 4. When the LSTM layer was
doubled, the time series characteristics were well expressed,
but the data distribution was not accurately learned. Overall,
theWGAN-GPmodel showed a relatively lower performance
than the model using TCN and LSTM.

B. SPECTRUM CALCULATION RESULTS
The proposed 5G spectrum calculator is implemented based
on Python 3.8.2 and provides a user-friendly interface.
It includes a traffic generation function that can simulate
various 5G traffic such as periodic packet data, aperiodic
packet data, stochastic traffic (e.g., NRT video streaming),
and traffic that mimics real traces. The spectrum calculator
developed in this study allows users to choose the deployment
scenarios given in Tables 2 and 3 and set the parameters for
each of the eight use cases presented in Table 5. Although
the user cannot set it in the user interface, there are MAC
frame durations and spectral efficiencies, which are important
parameters for calculating spectrum requirements. In this
simulation, the MAC frame duration was set to 0.5 ms, and
the spectral efficiency was 13.9 b/s/Hz for downlink and
7.7 b/s/Hz for uplink [48]. After completing the parameter
setting and pressing the Run button, 5G traffic is generated
for the scenario, and the amount of spectrum that can accom-
modate the generated 5G traffic is estimated. As shown in
Fig. 11, the user inputs the following information:
• Choose a ‘‘Scenario’’. There are four selectable sce-
narios, which are ‘‘Small scale deployment scenario’’,
‘‘Large scale deployment scenario’’, ‘‘Inbound logistics
deployment scenario’’, and ‘‘User-created scenario’’.

• Select duplexing type. Users can choose either a TDD or
FDD. If the TDD is selected, the ratio of the downlink
and uplink in the time axis must also be entered.

• Enter traffic simulation-related parameters for each use
case in the Attributes pane. The parameters related to the
traffic simulation to be entered are the number of links,
number of devices, and latency requirements.

• You can create traffic suitable for the scenario by click-
ing the Run button in the upper right corner. Traffic is
generated using the parameters listed in Table 5.

After the traffic simulation, the uplink and downlink traffic
demand appear in the ‘‘Results’’ window on the right, and
the spectrum requirement is calculated and displayed in the
lower window of Fig. 11. The traffic simulation results gen-
erated for each use case can be viewed in separate window.
Fig. 12 shows a portion of the generated traffic for each use
case.

In the experiment, use cases applied to the factory layout
given in [45] were assumed. The layout is a typical factory
for discrete production and assembly. It comprises a pro-
duction area, assembly areas, a warehouse, a commissioning
space, and office cubicles, spanning a total of approximately
15,000 square meters with a ceiling 30 m high. A large-scale
deployment scenario in which sensors and other 5G devices
are densely placed in the space and a small-scale deployment
scenario in which the density is low were simulated.

First, the experimental results for the large-scale deploy-
ment scenario are examined. As shown in Fig. 11, traffic
simulations for large deployment scenario, including six use
cases, resulted in a total of 625.7 Mb/s on the uplink and an
average of 741.4 Mb/s on downlink. This is the sum of all
the traffic from the six use cases that constitute the scenario.
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TABLE 5. Traffic simulation parameters of eight use cases.

FIGURE 11. Parameter setting and simulation results for each use case. This is the result of selecting a
large-scale deployment scenario and FDD.

When using FDD duplex, the spectrum was calculated in
consideration of packet traffic delay requirements. It was
calculated that a spectrum of 145.2 MHz was required for
uplink and 69.4 MHz for downlink.

When TDD was selected, a large-scale deployment sce-
nario traffic simulation with six use cases resulted in an aver-
age of 625.4 Mb/s traffic generated on uplink and 741.3 Mb/s
traffic generated on downlink. This is very similar to the
results shown in the sum window at the bottom right of
Fig. 11. Similar traffic loads are generated because they are
generated using the same parameters. When selecting TDD
duplex, the DL:UL ratio should be set. The default value
is 4:1, but this can be changed. In the simulation of this
paper, the default value was used. Through the simulation, the

spectrum was calculated in consideration of packet traffic
delay requirements. It was calculated that a spectrum of
397.8 MHz was required for uplink and 70.5 MHz for down-
link. In this paper, the traffic simulation and spectrum require-
ment calculation results of the TDD large-scale deployment
scenario are not shown in a figure. The reason that the uplink
spectrum requirement is calculated to be large despite the
small traffic volume is because the DL:UL ratio is 4:1. Since
the uplink is allocated a shorter time than the downlink,
a wide spectrum is required to process the generated traffic
within given delay requirements.

Next, the experimental results for the small-scale deploy-
ment scenario are examined. As a result of performing a
small-scale deployment scenario simulation including six use
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FIGURE 12. Traffic simulation results for each use case. This is the result of selecting a large-scale deployment scenario.

FIGURE 13. Parameter setting and simulation results for each use case. This is the result of selecting a
small-scale deployment scenario and TDD.

cases, an average of 121.2Mb/s of traffic was generated in the
uplink and an average of 298.9 Mb/s of traffic was generated
in the downlink. In case of using FDD duplex, as a result
of calculating the spectrum requirements considering the
delay of packet traffic generated through traffic simulation,
it was calculated that 31.0 MHz of spectrum is required for
uplink and 22.0 MHz of spectrum is required for downlink.
In the case of the small-scale deployment scenario, since the
amount of traffic generated is smaller than that in the large-
scale deployment scenario, it can be seen that the amount of
spectrum required is also small.

When TDD is used, the traffic parameters used for each
use case of the small-scale deployment scenario and the
calculated spectrum requirements are shown in Fig. 13. Also,
the traffic simulation results for each use case are shown
in Fig. 14. When selecting TDD, the DL:UL ratio should
be set. The default value is 4:1, but this can be changed.
In the simulation of this paper, the default value was used.

As shown in Fig. 13, traffic simulations for the small-scale
deployment scenario, including six use cases, resulted in a
total of 121.3 Mb/s on uplink and an average of 299.0 Mb/s
on the downlink. This is the sum of all the traffic from the
six use cases that constitute the scenario. This is the sum
of all the traffic from the six use cases that make up the
scenario. In the case of using the TDD duplex, because of
calculating the spectrum requirements considering the delay
of packet traffic generated through traffic simulation, it was
calculated that 121.0 MHz of spectrum is required for uplink
and 25.8MHz of spectrum is required for downlink. The gen-
erated traffic volume and spectrum requirements are shown
at the bottom of Fig. 13. The reason that the uplink spectrum
requirement is calculated to be large despite the small traffic
volume is because the DL:UL ratio is 4:1. Since the uplink is
allocated a shorter time than the downlink, a wide spectrum
is required to process the generated traffic within given delay
requirements.
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FIGURE 14. Traffic simulation results for each use case. This is the result of selecting a small-scale deployment scenario.

In addition, inbound logistics deployment scenarios and
user-created scenarios can be configured for both TDD and
FDD, but the simulation results are not included in this paper.

VII. CONCLUSION
In this paper, we proposed a neural network-based 5G traf-
fic generation model and a methodology for calculating the
necessary spectrum requirements of private 5G networks.
To accurately estimate the spectral requirements, an analysis
of the actual data volume and traffic type of the place where
the network is to be built is necessary. However, there is
currently no suitable traffic generation model to test the load
on a private 5G network, we developed a GAN-based traffic
generationmodel that can generate realistic traffic by learning
the real traffic traces collected from a major mobile network
operator. In the case of industrial applications, probability-
based traffic models were also used in parallel because there
were not enough datasets to learn. To estimate the spec-
trum requirements, the proposed 5G traffic generation model
was combined with the proposed 5G spectrum calculator.
In this paper, spectrum calculation was performed differently
according to the two duplexing types, FDD and TDD. As a
guide for companies that implement actual industrial use
cases with 5G networks, we simulated eight use cases defined
in the 5G ACIA white paper. Spectrum requirements were
observed while changing traffic loads, deployment scenar-
ios, and duplexing schemes. Various experiments have con-
firmed that a bandwidth of at least 22.0 MHz to a maximum
of 397.8 MHz is required depending on the deployment
scenario.
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