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ABSTRACT The Coronavirus disease 2019 (COVID-19) is still prevalent in the world. Exercise is important
to maintain our health while dealing with infectious diseases. Social distancing is more important during
exercise because we may not be able to wear masks to avoid breathing problems, heatstroke, etc. To maintain
social distancing during exercise, we develop a close-contact detection system using a single camera
especially for sports in schools and gyms. We rely on a single camera because of the deployment cost.
The system recognizes people from a video and estimates the interpersonal distance for close-contact
detection. The challenge is the occlusion of people, which leads to false negatives in close-contact detection.
To solve the problem, we leverage the observation that most false negatives in human detection are caused
by occlusion owing to other people. This is because there are few obstacles in sports facilities. Based on
the above observation, we assume that a person still exists near the last detected position even when s/he
disappears in the proximity of other people. For evaluation, we recorded 834 videos that were 112 min
long in total including various scenarios with 2724 close-contacts. The results show that the Fl-score of
close-contact detection and tracking are 83.6% and 67.3%, respectively. We also confirmed that the start and

end time errors are within 1 s for more than 80% of the close-contacts.

INDEX TERMS Social distancing, COVID-19, human detection and tracking, distance estimation.

I. INTRODUCTION

The Coronavirus disease 2019 (COVID-19) is still prevalent
in the world. Meanwhile, sports are important to maintain
our health physically and mentally. Social distancing is more
important during sports because we may not be able to wear
masks to avoid breathing problems, heatstroke, etc [1].
Because vision-based human detection and tracking has been
actively evaluated since before the pandemic, vision-based
systems have been developed to support the management of
social distancing [2]-[6]. These systems detect and track the
skeletons or bounding boxes of humans to estimate inter-
personal distance. However, the position error may increase
during sports because the human pose changes frequently.
Moreover, the tracking duration of close-contact is important
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in addition to distance among people because longer contact
leads to higher risk [7]. For the supporting management of
social distancing, the real-time warning of close-contacts is
an effective way to avoid the risk of infection. It is also
important to be able to analyze when and where the risk is
high. This enables managers of sports facilities and teams to
improve their behavior and rules.

To achieve the goal, we have developed a system designed
for sports to detect and track close-contacts. Our system
uses a single camera for low deployment costs and detects
skeletons of people using OpenPose [8]. We select the waist
position estimated by OpenPose to represent the position
of the person for its stability in human detection. We then
detect a close-contact when the distance between two persons
becomes less than 2 m based on the definition of social dis-
tancing in Japan [9]. To improve the position error owing to
the pose variation, we adjust the height of the waist according
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to the pose of the legs. We proposed the basic concept
of human localization with the waist height adjustment in
Ref. [10]. In this work, we further propose the tracking of
people and close-contacts based on the estimated positions
of people. Specifically, for the tracking of close-contacts, the
challenge is occlusion because we rely on a single camera.
To solve the problem, we leverage the observation that most
of the false negatives in human detection are caused by
occlusion owing to other people. This is because there are few
obstacles in sports facilities. Based on the above observation,
we assume that a person still exists near the last detected
position even when s/he disappeared in the proximity of other
people.

To identify people at high risk of infection, it is necessary
to identify the close-contact members. However, person iden-
tification [11]-[13] is another challenging topic which has
been addressed by many researchers. Therefore, we exclude
person identification (and inevitably human tracking) out of
the scope of this paper. Instead, we focus on the tracking
of close-contacts, i.e. measurement of close-contact duration
regardless of involved persons. This is enough for the real
time warning and the analysis of the time and locations with
high risk to improve behavior and rules in sports facilities.

For evaluation, we recorded 834 videos that were 112 min
in total including various scenarios with 2724 close-contacts.
The results show that we achieve an Fl-score of 83.6% for
close-contact detection and an IDF1 [14] of 67.3% for close-
contact tracking.! We also confirmed that the start and end
times of more than 80% of the close-contacts are within 1 s,
indicating that the close-contacts were correctly detected and
tracked spatially and temporally. Additionally, we applied
the system to an actual tennis tournament to support the
management of social distancing. Through feedback on time
and locations with frequent occurrences of close-contacts,
we successfully suppressed the occurrence of close-contacts
by changing the behavior of people.

Our contributions are summarized as below.

o We develop a close-contact detection and tracking sys-
tem using a single camera for sports.

o To reduce the effect of pose variation on the position
estimation, we adjust the position of the waist according
to the pose of the legs.

o« We design a close-contact tracking system, which is
robust to occlusion based on the observation that occlu-
sion in sport facilities is mostly caused by other people.

o To the best of our knowledge, this is the first study to
evaluate the spatio-temporal correctness of close-contact
detection and tracking.

Il. RELATED WORK
A. LOCALIZATION

Localization is one of the key technologies for close-contact
detection. Many researchers have proposed various methods

1 IDF1 is the ratio of correctly identified detections over the average
number of ground-truth and computed detections.
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using different types of devices such as radio frequency
(RF) [15], light detection and ranging (LiDAR) [16], [17], and
cameras [18]-[21]. Bluetooth and Wi-Fi are widely used for
close-contact tracing owing to the wide availability of smart-
phones. However, the localization accuracy is typicallyup toa
few meters [22], [23], which is not enough for distance-based
close-contact detection. Recently, the millimeter wave has
attracted the attention of researchers for localization because
it has become available in IEEE 802.11ad and 5G cellular
networks. Although it provides centimeter-level localization
accuracy [15], the deployment cost is still large. Furthermore,
because RF signals are reflected, refracted, and attenuated by
people and walls, there are concerns about vulnerability to
dynamic environment.

Using LiDAR, we can measure the distance to objects and
humans with centimeter accuracy by measuring the time of
flight of laser pulses. Refs. [16], [17] proposed target localiza-
tion using LiDAR fixed in the target environment. However,
we need to deploy LiDAR while incurring deployment cost
although it can localize and track targets accurately.

Many camera-based localization methods have been pro-
posed to detect humans using deep learning [18], [24], [25].
Some of them further detect humans with their skeletons
[19], [20]. For the localization of a detected person, there are
two major approaches: distance measurement using a stereo
camera and homography using a single camera. For a stereo
camera, we can measure the distance from the camera to a
target by triangulation using the parallax between two cam-
eras [21]. For a single camera, if we have four world points
and their corresponding positions on the camera image plane,
we can obtain the positions of any points on the same plane
by homography transformation [26]. Because many people
have camera devices including smartphones, a single camera-
based approach has an advantage in terms of the deployment
cost. Therefore, we design an approach based on a single
camera in this study.

B. INFECTION PREVENTION

To avoid COVID-19 infection, researchers have already pro-
posed several studies on monitoring interpersonal distance
using a single camera [2]-[6]. Many of these studies use a per-
son detector that outputs a bounding box containing a person.
For example, D. Yang et al. [5] and P. Khandelwal et al. [4]
calculated the inter-person distance using homography trans-
formation with the bottom edge of the bounding box as
the position of the person. However, the bottom edge of
the bounding box does not always correspond to the same
body part. For example, if a camera captures a whole body,
the bottom edge of the bounding box corresponds to the
foot position. However, if a camera captures only the upper
body, the bottom edge of the bounding box corresponds to
the waist position, leading to position error. Additionally,
M. Rezaei et al. [2] and R. Keniya et al. [3] did not calcu-
late the actual interpersonal distance but estimated whether
each person violates social distance based on the size of the
bounding box. However, the size of the bounding box varies
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significantly depending on the pose. Therefore, we use a
human skeleton detector and estimate the positions of humans
based on their skeletons. Similarly, M. Aghaei et al. [6] used
a skeleton detector for close-contact detection. However, they
focused on the detection of close-contacts and did not con-
sider the increase of the infection risk with time. Contrary
to the previous work, we track close-contacts in addition to
detection to measure their duration.

lll. SYSTEM OVERVIEW

Figure 1 illustrates the overview of our system. Our target
environment is sports activities in sports schools, gyms, etc.
Our system consists of a single fixed camera and a computer
for video processing. The camera is installed at a high place
such as a ceiling to capture the target area in the angle of
view. We detect and estimate the positions of humans in the
captured image. We then calculate the interpersonal distance
based on the estimated positions to detect the close-contact
in real time. The system notifies a close-contact if detected.
The system also records the positions and time of the detected
close-contacts. By analyzing the records, managers of sports
facilities and teams can find the time and places when and
where close-contacts occur frequently for the improvement
of their behavior and rules.
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FIGURE 1. System overview.
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IV. METHOD

A. OVERVIEW

Figure 2 shows the flow of our method. In each frame, we first
detect persons using a state-of-the-art skeleton detector called
OpenPose-STAF [8]. OpenPose-STAF detects and tracks a
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FIGURE 2. Method overview.
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skeleton of a person in a video. Next, we estimate the position
of the detected person based on the skeleton and the coor-
dinates of four points whose positions are known. The four
points correspond to the scene in the real world and we can
transform coordinates of skeletons in an image into the actual
positions. Finally, we detect a close-contact by calculating the
interpersonal distance based on their positions. To mitigate
the effect of occlusion, we track the detected people using
OpenPose-STAF. We then assume that a person still exists
near the last detected position even if s/he disappears in
the proximity of other people. In this way, we avoid false
negatives in the detection and tracking of close-contacts.

B. LOCALIZATION
1) HOMOGRAPHY TRANSFORMATION
For each frame, we estimate the position of the person whose
skeleton is detected using OpenPose-STAF. For localization,
we use the homography [26], which is a transformation that
projects a plane to another plane, given the four point cor-
respondences between the two planes. Therefore, a homog-
raphy transformation matrix can transform pixel coordinates
in an image into the actual positions, given the distance
between the four points in the real world. This means that it is
necessary to measure the distance between these four points
in advance.

When a coordinate in an image is (u, v)[pixel], the corre-
sponding coordinate (x, y)[m] in the real world is obtained by
the following equation.

(x,y) = H(u,v) ey

H is the homography transformation matrix represented by
the following equation.

hoo  hot  hoz
H=|ho hu ho 2)
hy  ha 1

For each point with a given coordinate, we obtain two
equations. Because H has eight variables, we can solve H,
given the actual positions of the four points in the image.

Our method uses the key point of the waist for the reference
key point whose position is regarded as the position of the
person. This is because the waist key point is stably detected
even during movement compared with other key points such
as the legs.

We conducted a preliminary experiment to see how the
height of each key point changes during movement. A subject
moved across the front of a camera deployed at the height of
3m. We asked the subject to follow one of the three types
of movements: walking, jogging, and running. The standard
deviations of the key point heights for each movement type
are shown in Table 1. From this result, we see that the waist
height is more stable than the other key points. The height of
the head fluctuated slightly less than the waist in walking and
jogging. However, we see that the fluctuation becomes larger
with the increase of movement intensity (i.e. running).
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TABLE 1. Standard deviation of key points height during movement [cm].

KeyPoint | waist Head Right Ankle Left Ankle
Type
Walking 3.32 2.94 11.89 5.88
Jogging 453 3.78 14.89 7.96
Running 451 8.55 37.54 24.26
Average 4.12 5.27 19.86 12.30

Therefore, the height of the four points for the homography
transformation matrix is set to 0.9 m, which is the average
waist height for adults.

2) WAIST HEIGHT CORRECTION
While walking and running, the height of the waist does
not change significantly. However, it can change signifi-
cantly depending on poses such as sitting on a chair or the
ground. Because the height error leads to a position error
after the transformation, we mitigate the effect by mapping
the position of the waist onto the plane with the height of
0.9 m. The correction is performed before the homography
transformation.

The overview of the correction is shown in Figure 3. We let
a coordinate of key point k be J¥ = [uF, vF]. The length
I(p, q) between key points p and ¢ is defined as below.

1(p, q) = V(WP — ud)? + (W — v)? 3)

Jwaist  Jwaist

d(right)
o

X

I d(left)
< leg(left)
Ve

leg(right) |} ¢ —y
\

N
min(d(right),d(left))

FIGURE 3. Waist height correction.

For each leg, OpenPose-STAF outputs three key points,
which are the hip, knee, and ankle. The length |leg| of the
leg is obtained by combining the lengths between these joints
as follows.

|leg| = l(hip, knee) + [(knee, ankle) “4)

We refer to the difference between the ankle-to-hip height
and |leg| as the correction distance d. The correction distance
is defined as below.

d= |l€g| _ (vhip _ Vankle) (5)

If the leg angle against the ground decreases, d increases.
This means that the height of the reference key point (i.e. the
waist) in the image is less than the assumed average waist
height (i.e. 0.9 m). Therefore, we correct the hip height by
adding d to the original hip height. However, there are some
cases where the leg is not on the ground because of jumping,
balancing, etc. For the waist height correction, we need to
use d of the grounded leg because d is calculated assuming
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that the pose of the grounded leg lowers the waist height.
If both legs are not on the ground, its duration is usually short.
Therefore, we simply ignore such cases. However, when
only one of the left and right legs is not on the ground, the
vertical ankle-to-hip distance of the ungrounded leg becomes
shorter than that of the grounded leg. In other words, d of the
ungrounded leg is larger than the other because the lengths of
the left and right legs should be almost the same. Therefore,
we use either the left or right leg with the smaller correction
distance. The coordinate of the waist J"%" after correction

Paist is given below.

Vwaist + min(d (left), d(right)) (6)

awaist
\% =

We note that, if either of the legs is not detected, we do not
perform the correction because we cannot determine whether
the detected leg is on the ground.

C. HUMAN TRACKING
We use Openpose-STAF for human tracking. As mentioned
earlier, occlusion is a major challenge in a single camera
setting. We leverage the observation that most of the false
negatives in human detection are caused by occlusion owing
to other people in sports facilities. Therefore, we assume that
a person still exists near the last detected position even when
s/he disappeared in the proximity of other people.
Specifically, suppose ID* is the set of IDs of humans
detected in frame k. The IDs are given by OpenPose-STAF.
For person i satisfying the following equation, the coordinate
S yi.‘_l) in frame k — 1 is defined as a missing point.

1
ie D" Ai¢ IDF @)

When a person is temporarily not detected because of occlu-
sion, the corresponding missing point is defined. If we detect
a person with a new ID within 6;[m] from the missing point,
we consider that the occlusion is resolved and delete the
missing point. Meanwhile, a person may move during the
occlusion, e.g. when multiple people are walking in a line.
To deal with such cases, we delete a missing point if we do
not detect any person with a new ID within 6;[m] from the
missing point for more than 6;s. In this paper, we empirically
set 8; = 2.0[m] and 6; = 1/3[sec].

D. CLOSE-CONTACT DETECTION AND TRACKING

We perform the close-contact detection and tracking based
on the result of human tracking and estimated skeletons with
the waist height correction. First, we calculate the distance
between each pair of persons including the missing points.
We denote the position of a person with ID i as P;. We then
calculate the distance d(P;, P;) between persons i and j. If the
following condition is satisfied, we detect a close-contact and
define the midpoint between P; and P; as the point of the
close-contact occurrence.

d(P;, Pj) < 2.0[m] ®)

To obtain the duration and trajectory of the close-contact,
we also track the close-contacts. For this purpose, it is
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necessary to associate the close-contacts detected in the pre-
vious frame and those detected in the current frame. Because
the close-contacts with a longer duration have a higher risk,
we associate the close-contact with the longest duration in the
previous frame with the nearest close-contact in the current
frame within a distance 6;. Our association algorithm is
shown in Algorithm 1.

Algorithm 1 Tracking Close-contacts

Require: C? = {c], &, ..., L}k =0)
C =A{c],c5,....c;}(n=0)

1: sort(CP) // sort descending order of duration

2: for each & € C? do

3 NearestID < 0

4:  NearestDistance < g

5. for each CJ’? € Cdo

6

7

8

9

if l(cf , c]‘-') < NearestDistance then
NearestID < j
NearestDistance < 1 (cé7 , cl?

: end if
10:  end for
11:  if NearestID # O then
12: Associate(cf, CNearestiD)
13: sub (Cjpgresupn) from C¢
14:  end if
15: end for

V. EVALUATION

A. EVALUATION SETTING

We conducted four types of experiments to evaluate the per-
formance of our system in terms of 1) the effect of waist
height correction in localization, 2) the effect of human ori-
entation in localization, 3) localization comparison with other
methods, and 4) the accuracy of close-contact detection and
tracking. The details of each experiment are as below.

1) EFFECT OF WAIST HEIGHT CORRECTION IN
LOCALIZATION

For the evaluation of the effect of the waist height correction
in the human localization, we collected images from one
participant. We regard the position on the surface of the floor
which is straight down from the waist as the actual position
of the subject. Please note that we have not obtained the
ground truth of the waist positions directly due to its diffi-
culty. Instead, the subject located at one of the lattice points
in Figure 4 with his waist straightly above the lattice points.
He took five types of poses except one-leg-up as shown in
Figure 5. The poses are standing, sitting (ground), sitting
(chair), half-sitting, and crouching. For each pose (Figure 5)
and location in the scenario (Figure 4), we obtained images
in which all key points of the lower body were detected.
For this purpose, we recorded videos of the subject facing
the camera with the height of 2.5m. Finally, we collected
80 images.
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FIGURE 4. Evaluation area (Effect of waist height correction in
localization).
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FIGURE 5. Poses used in evaluation.

2) EFFECT OF HUMAN ORIENTATION IN LOCALIZATION

For the evaluation of the robustness, we conducted evalua-
tion in different camera positions and human orientations.
One participant was located at one of the lattice points in
Figure 6, and took six types of poses as shown in Figure 5.
The poses are standing, sitting (ground), sitting (chair), half-
sitting, crouching, and one-leg-up. There were two types of
camera heights: 3.0m and 4.5m, and the participant faced four
orientations: 0°, 90°, 180°, and 270°. The degree increases
clockwise with 0° as the orientation when the person’s body
is facing the camera. Finally, we collected 2536 images.

3) LOCALIZATION COMPARISON WITH OTHER METHODS
Next, we compared our system with other methods using
the same data as in Section V-A2. In many related works of
close-contact detection, homography transformation is used
for human localization. Therefore, we use other coordinates
instead of the waist coordinates in homography transforma-
tion and compare the localization performance. We use the
following two types of coordinates: the midpoint of the coor-
dinates of both ankles [6], the bottom of the bounding box [2],
[4], [5]. There is also a method for detecting close-contacts
based on the size of the overlapping area of the bound-
ing boxes [3]. However, since the distance between people
is not calculated, we cannot compare our system with it.
As the human detector that outputs bounding boxes, we used
YOLOV4 [24] as in the Ref. [2] and [5].

4) CLOSE-CONTACT DETECTION AND TRACKING
PERFORMANCE

For the evaluation of the close-contact detection and tracking
performance, we collected data where the participants moved
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according to a predefined scenario. The participants moved in
an area of 4.0 m x 8.0 m as shown in Figure 7. To determine
the effect of the orientation of the person and the orientation
of the occlusion, the images were taken from three different
angles. To eliminate the effect of persons out of the target
area, we pre-processed the images by manually specifying the
target area.

There are three types of scenarios: (1) conversation,
(2) passing each other, and (3) passing through. In all sce-
narios, each group consisting of one or two subjects moved
according to the specified trajectories. In the case of two
subjects, the distance between them was always kept within
2.0 m. The movement in each scenario is shown in Figure 8.
In scenario (1), two groups walked from different starting
positions toward the other group’s starting position, stopped
near the center, turned around, and walked back to their
original positions. In scenario (2), two groups walked from
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different starting positions to the other group’s starting posi-
tion. In scenario (3), one group was stationary at a position,
and the other group passed in front of or behind the other
group. The stationary group was in one of three poses which
are standing, sitting, and crouching. For each combination of
a scenario, the number of subjects, and a pose, we recorded
videos more than 10 times by randomly changing the sub-
jects. Finally, we collected 278 videos. Because we used three
cameras, the total number of videos was 834. Details of the
data are listed in Tables 2 and 3.

TABLE 2. Details of data collection scenarios.

Scenario Participants Moves | Videos
1-1 10 30
1 1-2 10 30
2-2 10 30
1-1 10 30
2 1-2 10 30
2-2 10 30
(walking)1-1(stationary) 54 162
3 1-2 54 162
2-1 56 168
2-2 54 162
Total | - [ 278 | 834
TABLE 3. Details of data collection in scenario (3).
Participants .
(Walking-S[t’ationary) Pose Moves | Videos
standing 18 54
1-1 sitting 18 54
crouching 18 54
standing 18 54
1-2 sitting 18 54
crouching 18 54
standing 18 54
2-1 sitting 20 60
crouching 18 54
standing 18 54
2-2 sitting 20 60
crouching 16 48
Total [ - [ 218 | 654

Each subject was asked to move at a constant speed on
the trajectory specified in the scenario. However, the speed
was slightly different for each participant and each trial.
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Therefore, we recorded the start and end times of the move-
ment as well as the time at the moment of crossing the red
lines which are 1.0 m away from the center line as shown
in Figure 7. The ground truth of the trajectories were then
obtained by linear interpolation. We also obtained the ground
truth of the close-contact occurrences from the ground truth
of the trajectories.

B. RESULTS

1) EFFECT OF WAIST HEIGHT CORRECTION

IN LOCALIZATION

First, we evaluated the localization performance. Table 4 lists
the mean absolute error distance for each pose. From the
results, we observe that we can estimate the position of the
standing person with a low error. However, the error increases
as the waist height gets closer to the ground. Additionally,
we successfully decreased the error by an average of 23 cm.

TABLE 4. Mean absolute error for each pose [m].

Pose Corrected  Original ~ Effect of correction
Standing 0.056 0.064 -0.008
Sitting (ground) 0.729 1.338 -0.609
Sitting (chair) 0.716 0.779 -0.063
Half-sitting 0.370 0.641 -0.271
Crouching 0.712 0.915 -0.203
Average 0.517 0.747 -0.231

However, we could not observe significant improvement
for the pose of sitting on a chair. This is because the elevation
angle of the camera and the angle of the leg were almost
equal. When the relative angle of the leg (thigh and lower
leg) to the camera is 0°, the leg length appears the shortest in
the image while it appears the longest if the relative angle is
90°. In this experiment, the relative angle of the thigh to the
camera was close to 0°, which means the appearance of the
leg length in the image is shorter than the actual length.

To address this problem, we may need to obtain a more
accurate leg length using a technique of estimating a 3D pose
from a skeleton, for example.

2) EFFECT OF HUMAN ORIENTATION IN LOCALIZATION
Table 5 shows the localization performance for different body
orientations and poses. As a result, when facing backwards
(180°), the error was large in the poses such as sitting and
crouching where the legs were hidden by the chair or the
person’s body itself because there were many false positives
of the skeleton of the legs. In the standing pose, there are
little difference of error in all orientations since there is no
occlusion. This is due to the relationship between the camera
and the legs as discussed in Section V-B1. Table 6 shows
the localization error without the waist height correction.
From this result, we see that the correction is effective in any
orientation and pose. Even if the legs are bent, if they are
facing to the side (90° or 270°), the whole lengths of the legs
are visible in the image. Therefore, the performance greatly
improves by the waist height correction.
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TABLE 5. Mean absolute error [m] for different poses and orientations
(with waist height correction).

Pose Orientation
s 0° 90° 180° 270°
Standing 0.214 0.183  0.144 0.182

Sitting(ground) | 1.867 0.819 2.523  0.491
Sitting(chair) 1.342  1.096 1.640 1.527
Half-sitting 0.474  0.589 0.553 0.648
Crouching 0960 0413 1.170  0.969
One-leg-up 0316  0.287 0.200 0.310

TABLE 6. Mean absolute error [m] for different poses and orientations
(w/o waist height correction).

P Orientation
ose 0° 90°  180°  270°
Standing 0219 0.189 0.146 0.186

Sitting(ground) | 1.990 2.240 2.247 2292
Sitting(chair) 1.701 1.882 1.859 1.851
Half-sitting 0.743 0.885 1.002 0.894
Crouching 0983 1.323  1.228  1.406
One-leg-up 0313 0.217 0.188 0.248

3) LOCALIZATION COMPARISON WITH OTHER METHODS
Table 7 shows the localization error compared with the other
methods. Since the data was collected in an unobstructed
environment, the ground contact part of the body was visible
without occlusion. Therefore, in poses such as sitting (chair)
and half-sitting where the ankles are clearly visible, using the
midpoint of the ankles shows the best result. The bottom of
the bounding box showed the best results in poses such as
sitting (ground) and crouching where the legs may be invis-
ible depending on the orientation of the person. However,
when using the midpoint of the ankles, the error increases
significantly in a pose in which one leg is floating in the
air. This is important because such a pose occurs frequently
during exercise.

TABLE 7. Comparison of localization mean absolute error [m] with other
methods.

Pose Ours Midpoint of ~ Bottom of

(waist) ankles [6] box [2], [5]
Standing 0.181 0.211 0.286
Standing(0.3) 0.244 0.352 0.721
Standing(0.5) 0.210 0.333 1.344
Sitting(ground) 1.504 0.700 0.515
Sitting(chair) 1.475 0.318 0.393
Half-sitting 0.577 0.211 0.402
Crouching 0.931 0.289 0.436
One-leg-up 0.280 0.692 0.230

In addition, to evaluate the effect of occlusion, we virtually
placed a wall at the feet by image processing when the
participant takes a standing pose. The values in parentheses
in Table 7 are the heights of the walls. In the method using
the bottom of the bounding box, because the skeleton of the
person is not estimated, it is not possible to determine whether
the legs are hidden. The error thus increases significantly as
the height of the virtual wall increases. In these cases, the
increase of the error is mitigated by our method. However,
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TABLE 8. Human detection result by scenarios.

#of Scenario 5 #of Scenario 5

participants ! standing  sitting  crouching participants ! standing  sitting  crouching
1-1 724 825 91.8 69.4 79.9 1-1 98.6  99.0 94.9 81.7 94.3
1-2 87.1 89.6 88.0 61.6 86.6 1-2 974 98.5 96.6 70.7 97.3
2-1 90.5 75.2 854 2-1 97.6 85.2 96.6
2-2 90.8 89.8 95.4 82.7 94.6 2-2 96.9 954 95.4 84.5 96.1

(a) Precision [%] (b) Recall [%]
TABLE 9. Close-contact detection result by scenarios.

#of Scenario 5 #of Scenario 5

participants ! standing  sitting  crouching participants ! standing  sitting  crouching
1-1 57.6 555 83.3 82.6 72.2 1-1 89.0 88.9 93.3 90.9 71.7
1-2 784  80.4 92.9 91.5 75.8 1-2 85.7 873 92.9 90.6 72.8
2-1 - - 84.8 85.5 71.5 2-1 - - 90.5 88.9 82.1
2-2 85.1 83.8 85.8 88.4 83.2 2-2 86.9 86.2 81.0 78.1 73.9

(a) Precision [%]

our method has a larger error in sitting and crouching poses
than the result in Section V-B1. This is due to false negatives
of legs caused by the human detection. Especially, the pattern
on the ground increased false positives in leg detection in a
larger environment. This problem is due to the accuracy of
the skeleton detector, which can be improved by properly
using the detected skeletons depending on the situations. For
example, we may use the waist key points when standing
or moving, while we use the leg key points when sitting or
stationary. Therefore, as future work, we leverage the poses
of the person from the time-series data of the skeleton.

4) CLOSE-CONTACT DETECTION AND TRACKING
PERFORMANCE

a: HUMAN DETECTION

For the evaluation of the human detection, we use precision
and recall. For all results, the basic data to calculate precision,
recall, and Fl-score (i.e. the number of true positives, false
positives, and false negatives) is shown in Table 13. If the
distance between the ground truth and the estimated position
is within 1.0 m, we regard the detection result as a true
positive.

As a result, the precision and recall are 84.6% and 92.3%,
respectively. The F1 score is 88.5%, indicating that many
close-contacts are correctly detected spatially and temporally.
The precision and recall for each scenario are listed in Table 8.
From these results, we observe that there are almost no false
negatives in any scenario. However, there are many false
positives despite the scenarios with only two participants.
This is because the marker lines on the floor were wrongly
recognized as persons. In the scenarios with more people,
the floor was hidden by them, leading to less false positives
(i.e., increase of precision). To avoid the problem, we may
consider the use of a high-resolution camera that can clearly
capture the boundary between the floor and a person, or back-
ground subtraction to remove the effect of the floor pattern.

15464

(b) Recall [%]

In scenario 3, when there is a sitting participant, both pre-
cision and recall are lower than the other scenarios. This is
because the waist height correction did not work well due to
the wrong detection of legs. The skeleton detector wrongly
recognized the chair as the legs of the person, leading to larger
position error.

b: CLOSE-CONTACT DETECTION

For the evaluation of the close-contact detection, we use pre-
cision and recall. If the distance between the ground truth and
estimated position is within 1.0 m, we regard the detection
result as a true positive. As a result, the precision and recall
are 83.9% and 83.4%, respectively. The F1 score is 83.6%,
indicating that many close-contacts are correctly detected
spatially and temporally. The precision and recall for each
scenario are listed in Table 9. From these results, we observe
that there are almost no false negatives in any scenario. Espe-
cially in the simple scenarios with a small number of people,
we could detect close-contacts with higher recall.

However, there are many false positives in the simple
scenarios. This is because there are many false positives
in human detection in these scenarios. The precision of
close-contact detection is lower than that of human detection.
This happens when there are multiple people in close proxim-
ity. For example, if two true positives and one false positive
are close to each other, the close-contact is detected between
each pair. This means three close-contacts are detected. How-
ever, one of these is the correct close-contact while the other
two are the wrong close-contacts. Therefore, in such a case,
the number of false positives increases.

c: CLOSE-CONTACT TRACKING

Finally, we evaluated the close-contact tracking performance.
We used the Identification Precision (IDP), Identification
Recall (IDR) and Identification F1 (IDF1) proposed in
Ref. [14] for the evaluation metrics to focus on the length of

VOLUME 10, 2022



R. Hasegawa et al.: Close-Contact Detection Using Single Camera for Sports Considering Occlusion

IEEE Access

TABLE 10. Close-contact tracking result by scenarios.

#of Scenario 5 #of Scenario 5
participants ! standing  sitting  crouching participants ! standing  sitting  crouching
1-1 54.8 53.6 81.5 76.1 66.2 1-1 84.5 85.8 91.3 83.8 71.3
1-2 744 778 74.8 71.5 58.9 1-2 81.3 84.5 74.8 76.7 56.5
2-1 - - 77.4 76.2 70.8 2-1 - - 82.6 79.2 75.0
2-2 65.5 61.1 64.2 59.5 58.2 2-2 66.9 62.8 60.6 52.6 51.7
(a) IDP [%] (b) IDR [%]
TABLE 11. Close-contact tracking result by scenarios w/o missing point.
#of Scenario 5 #of Scenario X
participants ! standing  sitting  crouching participants ! standing  sitting  crouching
1-1 56.4 44.6 60.1 54.6 54.1 1-1 62.1 624 50.1 41.6 42.4
1-2 67.7 69.5 64.2 53.5 62.3 1-2 67.1 68.0 57.6 40.0 54.4
2-1 - - 64.1 60.9 62.0 2-1 - - 60.2 54.1 56.2
2-2 546 57.8 58.2 51.8 53.8 2-2 46.6 532 48.0 35.6 41.3
(a) IDP [%] (b) IDR [%]

correct tracking. This is reasonable because the duration of
close-contacts is important for the assessment of the infection
risk.

From the results, we confirmed that IDP, IDR, and IDF1
are 67.6%, 67.1%, and 67.3%, respectively. The precision
and recall of each scenario are listed in Table 10. The IDP
decreases in the scenario with a small number of subjects
because of the false positives by the line markers on the
floor as mentioned in Section V-B4.b. However, the IDR
decreases with the increase of the number of subjects. This
is because an ID frequently switched with another ID when
multiple close-contacts occurred at the same time. One of
the solutions to solve the problem is a Kalman filter for
close-contact tracking to predict human and close-contact
movement.

Next, Table 11 shows the precision and recall when
occlusion is not considered (i.e. without the missing point).
The best results in each scenario are shown in bold type.
From these results, we have achieved significant performance
improvements in many scenarios for both IDP and IDR by
continuing to track hidden persons. Therefore, regardless of
the frequency of occlusion, considering occlusions has a large
effect. It is because the evaluation metrics IDP and IDR
consider matching between close-contact IDs of the ground
truth and the estimated result. For example, if ID switching
occurs, all subsequent ground truth tracks and estimation
tracks are considered as false negatives and false positives,
respectively. Therefore, IDP and IDR become better if we
keep the same close-contact IDs for each close-contact track
for a longer time. This means that, regardless of the fre-
quency of occlusion, even one occlusion may cause a large
decrease in the tracking performance. Therefore, in many
scenarios, the performance was improved by considering
occlusion.

We also evaluated the start and end times of the
close-contacts. Figure 9 shows the cumulative distribution
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FIGURE 9. Time error in close-contact tracking.

TABLE 12. Close-contact occurrence during tennis tournament.

Close-contact
Day Time over 4sec. All
Quantity ~ Frequency | Quantity  Frequency

1 5:39:41 184 32.5 806 142.4
2 6:17:45 208 33.0 940 149.2
3 1:51:18 29 15.6 147 79.2
3(Final) 1:23:42 34 24.4 158 113.3
All [ 15:12:26 | 455 29.9 [ 2051 1349

function (CDF) of the absolute time error. The result shows
that 85.1% of the start time error for all the close-contacts
were within 30 frames (i.e., 1 s). 84.7% of the end time
errors were also within 30 frames. Moreover, 71.0% of the
elapsed time error were within 30 frames,whereas 86.0% of
the elapsed time errors were within 60 frames (i.e., 2 s). This
is reasonable because both of the start and end time errors
are less than 1 s for more than 84.7% of the close-contacts.
We also note that there is a little uncertainty in the ground
truth of the subject positions (i.e., close-contact positions as
well) owing to the manual labeling and linear interpolation.
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TABLE 13. The basic data to calculate precision, recall, and F1-score (True positives, false positives, false negatives).

Close-contact Tracking

# of . Human Detection Close-contact Detection Close-contact Tracking . -
participants Scenario w/o Missing Point
TP FP FN TP FN TP FP FN TP FP FN
1 17179 6534 245 1831 1347 230 1740 1438 347 1279 989 787
2 16638 3530 162 1747 1399 267 1686 1460 329 1226 1521 789
1-1 3(standing) 25326 2265 1356 5280 1061 394 5168 1173 507 2837 1882 2822

21859 9641 4901 5309
25709 6486 1567 4393

3(sitting)
3(crouching)

1121 540 4895 1535 949 2477 2100 3449
1694 1245 4031 2056 1631 2352 1952 3329

1 25975 3832 692 11150 3069 2004 10586 3633 2634 8728 4164 4708
2 22462 2603 335 9170 2234 1369 8876 2528 1680 7146 3129 3454
1-2 3(standing) | 36326 4940 1294 | 20755 1587 1824 | 16716 5626 5882 | 12867 7161 9659
3(sitting) 25806 16082 10689 | 19616 1819 2023 16602 4833 5047 11769 7118 9713
3(crouching) | 35934 5579 1002 15704 5001 5652 12190 8515 9127 8578 7456 12864
3(standing) 36394 3839 902 19834 3554 2099 18099 5289 3860 13209 7383 8804
2-1 3(sitting) 30403 10047 5291 20984 3565 2707 18707 5842 5062 13282 8131 10608
3(crouching) | 38739 6597 1356 17414 5070 3811 15909 6575 5340 11472 7367 9723
1 33610 3412 1058 22124 3876 3179 17027 8973 8182 11866 9872 13093
2 29078 3312 1414 18005 3485 2814 13124 8366 7677 11117 8118 9669
2-2 3(standing) 46789 2248 2231 34000 5636 8074 25442 14194 1658 20160 14493 21845
3(sitting) 37961 7965 6967 36321 4768 29264 | 24449 16640 57671 | 19225 16500 77854
3(crouching) | 52650 3022 2118 | 28118 5679 9883 | 19665 14132 18475 | 13560 12593 24513
Nevertheless, our system could detect more than 80% of —10
. . . . >
close-contacts with the start and end time errors within 0.83 s. 8°r, ‘\y | Al | 1
o3 TR I T P 0 PO Y IOV I8 Y S O PO P 1T T A J
o 50 100 150 200 250 300 350 400
6 T T T 1 T
c et s LI L
. . . L Al il o I L fl]
We used our system in a professional tennis tourna- SHEIE SRS R L
. 0 50 100 150 200 250 300 350 400
ment for safety management against COVID-19. We used o6 k : =
. . . >4 | I 1
close-contacts longer than 4 s in the following analysis 82t A "\ I A
because the normal interval between breaths is approximately R 20 40 60 80 100 120
4 s. The results are listed in Table 12. In the table, the %; Iy I | I ‘ .|\ ]
frequency refers to the number of close-contacts per hour. 8?00' - = 5 : T

Because the number of staff (ball persons and line persons)
was different in the final match on the third day, we analyzed
the final match and other matches separately on the last day.

On the third day, the frequency of the close-contacts was
lower than that of the first and second days. This is because
we reported to the tournament management team on the
situations (i.e., locations and timing) where close-contacts
frequently occurred at the end of the second day. We noted
that the frequency slightly increased in the final match owing
to the increase of the number of staff. Overall, the frequency
of the close-contacts decreased significantly after the report
based on our system, highlighting its usefulness for safety
management against COVID-19.

Additionally, we analyzed the time and locations of the
close-contacts. First, the number of close-contacts over time
is shown in Figure 10. Based on the analysis, we found that
many close-contacts occurred not during the game but in
between the games. Next, Figure 11 shows a heat map of
the close-contact locations. From this result, we can observe
that close-contacts occurred mostly in the center of the court
and near the referee chair. As a result of checking the video,
we found that players often moved around the referee chair
at the changes of the ends and new balls were placed behind
the referee chair, which is the cause of the frequent close-
contacts. Additionally, some ball persons did not maintain a
sufficient distance when they waited between games at the
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FIGURE 10. Time vs. Number of close-contacts.

FIGURE 11. Place of occurrence.

center of the court. Our system can support such analysis by
providing spatial and temporal trends of close-contacts for
safer risk management against COVID-19.
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VI.

CONCLUSION

In this study, we proposed a close-contact detection and track-
ing system using a single camera during sports. We reduced
the effect of the pose variation on the position estimation by
adjusting the position of the detected person according to the
pose of the legs. The evaluation results showed that our sys-
tem achieved F1 scores of 83.6% and 67.3% for close-contact
detection and tracking, respectively. Additionally, we con-
firmed that the start and end time errors were within 1 for
more than 80% of the close-contacts.

One of our future works is to evaluate a method using
the upper body skeleton for more robust position estimation.
We also plan to deploy our system in various sports schools
and gyms for our new lifestyle with COVID-19.
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