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ABSTRACT BBR is a promising new congestion control algorithm (CCA) that has been shown to result
in significantly lower latency compared to conventional loss-based CCAs. However, in cellular networks,
where there is a high variability in the available rate, BBR does not perform as well as expected. In such
scenarios, BBR tends to overestimate the available capacity and create queues that cause longer packet
delays. In this work, we propose Receiver-driven BBR (RBBR), a modified version of BBR that uses rate
estimates made at the receiver side rather than at the sender side. We employ a Kalman filter to make a more
accurate estimate of the available bandwidth, and we implement the algorithm in QUIC. An evaluation of
the proposed CCA is done through extensive 4G trace-based emulations, real 4G network tests and mmWave
trace-based emulations representing a 5G scenario. The results show that RBBR is able to achieve an RTT
reduction of up to 80% with a worst-case throughput loss of about 30%. The results also show that in real
4G networks, RBBR flows experience a more predictable and consistent RTT than what BBR flows do.

INDEX TERMS 4G, 5G, BBR, congestion control, Kalman filter, QUIC, RTT, throughput.

I. INTRODUCTION
Transport layer protocols and congestion control algo-
rithms (CCAs) are important components of data commu-
nication over the Internet. These protocols and CCAs can
enable or limit an application frommeeting its throughput and
delay requirements. In fact, an ill-suited protocol or algorithm
can prevent an application from meeting its performance
goals despite the underlying network being able to support
the application’s requirements. QUIC [1] and BBR [2]
(Bottleneck Bandwidth and Round-trip propagation time) are
promising transport solutions for overcoming some of the
limitations of TCP [3] and loss-based CCAs. QUIC is a
transport protocol implemented in user-space that supports
multiple features not present in TCP, for example, fast
connection setup and support for multi-streaming. Since
QUIC is implemented at the user level, it is possible to update
QUIC when updating the application using it, making it an
interesting option for incorporating new features.

BBR is a CCA proposed by Google that operates by
building a model of the network path to control its sending
behavior. BBR builds the network path model by estimating
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the bottleneck bandwidth and the minimum round trip prop-
agation time. However, the bottleneck bandwidth estimation
mechanism of BBR can be prone to overestimation and cause
packets to experience longer delays. This overestimation
is noticeable in current 4G cellular networks, where the
available rate is often highly variable. The variability is also
likely to increase in 5G networks.

In this work we present a novel, latency-aware CCA for
cellular networks – Receiver-driven BBR (RBBR). RBBR is
a modification to BBR that is implemented in QUIC, and that
uses a Kalman-filtered rate feedback loop from the receiver
to more accurately estimate the bottleneck bandwidth. In our
previous work [4], we have illustrated that it is possible
to improve BBR’s delay response in cellular networks
with long-term variations in the available bandwidth. The
long-term variations in the available bandwidth can be
due to signal quality deterioration, extended blockage,
mobility, or steady changes in network load. In this work,
we demonstrate that BBR can also be susceptible to variations
occurring over small time scales. We provide a complete
design for RBBR that incorporates a measured rate filtering
mechanism that makes BBR less vulnerable to short-time
scale rate bursts and dips. The detailed contributions of this
work are:
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• An extension to a selected QUIC framework for
reducing the impact of short-term rate variations that
uses a Kalman filter for available bandwidth estimation
from delivery rate samples at the RBBR receiver.

• A signaling mechanism to notify the RBBR receiver
to suspend the rate estimation when the RBBR sender
reduces its sending rate to probe for the minimum RTT.
The signaling mechanism prevents the use of erroneous
samples in the available bandwidth estimation.

• Extended 4G and mmWave trace emulations, as well as
real 4G network evaluations with results showing that
RBBR achieves a noticeable reduction in RTT compared
to BBR in cellular 4G and 5G scenarios. The evaluations
over real 4G networks also show that RBBR has a more
consistent RTT performance that is less susceptible to
temporal changes.

The remainder of this paper is organized as follows.
Section II gives a brief overview of QUIC, BBR and rate
variability in cellular networks. Next, we give a description
of the components of RBBR in Section III. The evaluation
setup is given in Section IV. In Section V, the results of the
evaluation are presented and discussed. Finally, we conclude
the paper in Section VII.

II. BACKGROUND
In this section, we give a brief background on QUIC and
BBR, which are the transport technologies that this work is
based on. We also present the challenges of dealing with the
high variability in data transfer rate that is present in cellular
networks and that motivated this work.

A. QUIC
QUIC [1] is a transport protocol that is intended to overcome
several of the shortcomings of the Transmission Control
Protocol (TCP) [3]. One of TCP’s main shortcomings,
addressed by QUIC, is Head-of-Line (HOL) blocking.
In TCP, HOL blocking can happen whenmultiple HTTP/2 [5]
streams are being multiplexed over a single TCP connection,
and a loss of a packet from one stream delays the delivery
of packets from a different stream to the application layer.
QUIC solves this problem by creating multiple independent
streams. In addition, QUIC facilitates a fast connection
startup by saving and reusing configurations of frequent
connections and also use transport-layer encryption for
secure communication. Figure 1 shows that QUIC is a
user-level protocol that works on top of the User Datagram
Protocol (UDP) [6]. The fact that QUIC is an encrypted
transport implemented in user-space makes it relatively easy
to upgrade the protocol as new versions of the protocol
appear. It also enables the addition of new features that
are not part of the mainstream specification. Therefore, fast
updates of the QUIC implementation can be made as part of
application updates. This can be particularly advantageous to
self-contained services that are delivered through third-party
applications.

FIGURE 1. Comparison of the TCP and QUIC stacks.

QUIC payload is carried inside predefined frames, each
containing a frame-type identifier as well as other fields that
vary depending on the frame type. QUIC has gone through
many iterations of development, with features continuously
being added to the protocol. At the time of writing, QUIC
has become an IETF Request for Comment (RFC) with a
proposed standard status. During its evolution, the number
of defined frames in the QUIC RFC has more than doubled
and nowadays the RFC includes frame types that transport
a lot of different types of connection-related data between
the communicating peers. QUIC’s version negotiation phase
allows peers to identify supported features and agree on a
communication format. The frame-based structure of QUIC
packets provides a convenient way for extending QUIC and to
integrate new features that can enable improved performance.
In this work, we take advantage of the frame-based structure
of QUIC and employ it as a way to exchange delivery rate
information between the peers that is relevant for congestion
control.

B. BBR
Loss-based CCAs have been shown to be responsible for
large queuing delays and bufferbloat [7]. The bufferbloat
phenomenon is likely to occur in networks with large
buffers, unless some in-network mechanism is available to
complement the CCA [8]. On the other hand, delay-based
CCAs find it difficult to compete with loss based dittos, and
might fail to fully utilize available capacity. The shortcomings
of loss-based and delay-based CCAs have driven researchers
to look into other types of congestion-control approaches.
One such approach is model-based congestion control.

BBR [2] is arguably the most popular model-based CCA.
The algorithm has managed to achieve wide-scale implemen-
tation and deployment for Google’s services. It has gained
popularity because of it’s ability to achieve equal or higher
throughput than loss-based CCAs with lower self-inflicted
delay [19]. BBR operates by controlling the pacing rate and
the congestion window by building a model of the network
path using estimates of the bottleneck bandwidth (BtlBW)
and the round-trip propagation time (RTT) at the sender.
Figure 2 shows the dynamics of the RTT and delivery rate
as the amount of in flight data increases and the optimal
point that BBR tries to acquire as the model of the network
path.
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FIGURE 2. Optimal network path model.

BBR calculates the receiver’s delivery rate at the sender
for every arriving acknowledgement (ACK), and uses that
in the BtlBW estimation. The algorithm employs a new
delivery-rate estimation mechanism that is proposed together
with the CCA [9]. BBR removes noisy delivery measure-
ments that could lead to an underestimation of the BtlBW by
passing them through a max filter over a prescribed number
of RTTs (10 RTTs). The final BtlBW estimate is computed
as the minimum of the max-filtered delivery rates and the
sending rate. Since the BtlBW and RTT of a connection
can vary throughout the lifetime of the connection, BBR
contains mechanisms that continuously probe for changes in
the path as represented by the BBR model. The original BBR
algorithm probes for available bandwidth in a bandwidth
probing cycle, which is referred as ProbeBW, by increasing
the pacing rate by 25% every 8th RTT. To probe for
the minimum RTT, the algorithm significantly reduces the
amount of in-flight data every RTprop, which is set to
10 seconds, provided a minimum RTT estimate that is lower
than the current estimate has not been detected within this
10-second interval. The CCA is said to be in the ProbeRTT
state when it reduces the in-flight data to detect changes in
the minimum RTT. Another important component of BBR
is the mechanism to counter the effect of ACK aggregation.
This mechanism tries to estimate the level of aggregation
by using the difference between the amount of ACKed data
and the expected amount of data to be ACKed. In a similar
way as in the BtlBw computation, the max filter is applied
over multiple RTTs to give an extra amount of data to
be added to the computed congestion window (CWND).
Therefore, this mechanism is closely tied to the BtlBw
estimation, and it could result in longer packet delays as it
implies injecting possibly excessive amounts of data into the
network.

With the increased use of the more volatile mmWave bands
in cellular networks, and the deployment of a high number
of devices that communicate sporadically (IoT) in those net-
works, the scale of short-term variability observed by a BBR

FIGURE 3. BtlBW estimates and RTT of BBR in a constant rate scenario vs.
a variable rate scenario with a mean rate equal to the constant rate
scenario (minRTT = 30 ms).

CCA used for applications over cellular networks is likely
to increase. In such cases, BBR’s maximum-filter-based,
sender-side rate estimation mechanism could significantly
overestimate the available bottleneck bandwidth. Figure 3
gives the performance of BBR in emulated networks, based
on rate traces collected from a 4G network. The figure gives
the RTT experienced by packets in an emulated network
configured with the highly variable rate trace and with a
constant rate that has the same average rate as the variable
trace. The RTT in the highly variable setup is notably larger
than the RTT in the constant rate configuration. The plot
in Figure 3a shows that the BtlBw estimates of BBR fails
to closely track the highly variable capacity. On the other
hand, BBR does a good job of estimating the available
capacity of the constant rate capacity. This allows BBR
to maintain a lower RTT in such scenario. But Figure 3b
shows that the RTT can increase and become variable when
the available capacity varies. A more detailed look into the
challenge rate variability in cellular networks presents to
making a more practical rate measurement is given in the next
subsection.

C. RATE VARIABILITY IN CELLULAR NETWORKS
The majority of the technological advances introduced in
current cellular networks (4G/5G) are intended to improve
the capability of the access network to accommodate a
large number of users with different throughput and delay
requirements.

However, the need for an increased and efficient use of
radio frequency resources has resulted in cellular networks
becoming more complex and dynamic in their behavior.
The complex mechanisms of 4G and 5G technologies can
introduce some difficulties that can become challenging to
handle in higher layers of the Internet protocol stack. Some
of these complications are variability due to sudden resource
reallocations to accommodate services with higher priorities
and/or latency requirements, increased retransmissions from
using sensitive frequency ranges, and variable delays caused
by reconfigurations from frequent handovers between small
cells.

These types of issues can be particularly difficult to
handle for transport-layer CCAs that are used by applications
that require high throughput and low delay. As exemplified
by BBR, there has been an increased interest in CCAs
that rely on estimating the state of the network and that
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use these estimates as a basis for a model of the path.
The increased bandwidth variability experienced in cellular
networks makes the task of network-state estimation and
modeling in these networks a more difficult task, something
which could negatively impact the performance of model-
based CCAs. Therefore, it is important to keep track of the
possible performance pitfalls of CCAs in the increasingly
variable cellular networks, and propose solutions that could
help the CCAs mitigate the issues arising from the highly
variable available bandwidth.

To ensure that a rate-based CCA responds quickly to
changes in the network state, the rate measurements need
to be made at a reasonably high frequency to make a
swift response to changes in the network capacity possible.
In cellular networks, the rate achieved by a user primarily
depends on the signal quality between the user and the
cellular access point, the amount of load in the network, and
the type of scheduler used at the base station. Therefore, it is
reasonable to think that if those conditions are stable then
the rate achieved by a user should remain the same as well.
However, unless we measure the rate over very long time
intervals, it is highly unlikely that we observe the same rate
over successive time intervals. The variations in the measured
rate could happen for a number of reasons, e.g., channel
variations, scheduling, loss, retransmissions, or aggregation.
As a result, two intervals with temporal proximity could
experience vastly different rates without actual, significant
changes in the state of the network.

Since a short-interval rate sample might greatly differ from
the long-term rate of a user, using the unprocessed rate
measurements can lead to an undesired performance, such
as higher RTT or underutilization. This is especially true for
connections with longer RTTs. In such cases, it could take
a while until a rate sample is received by the sender, and in
the mean time the transient rate might have changed a lot.
Using unprocessed, transient rate samples could also affect
the rate samples we get in future measurements. For example,
using a very low transient rate sample as the sending rate at
the sender could limit the rate that can be detected over the
following time intervals. To this end, we need a mechanism
that can identify and remove the transient variations, while
keeping track of the long-term variations of the rate.

III. RBBR DESIGN
The core idea behind RBBR is to replace the sender-
side max-filter based bottleneck bandwidth estimate used
in BBR by a Kalman-filter based rate estimate made at
the receiver. The receiver-side rate estimate is then sent
back to the sender inside a newly defined QUIC feedback
frame (fbk_frame). RBBR builds on the initial proposal for
a receiver and feedback-based BBR in [4], and aims to make
RBBR more robust to small time-scale rate variations. These
variations can occur in cellular networks due to a number
of lower-layer mechanisms. In this section, we describe
the three main components that work together to enable
RBBR. These components are a rate-estimation mechanism

Algorithm 1 Rate Estimation and Feedback at the QUIC
Receiver
Set rate sampling duration 1t
while connection is open do

if Ack scheduled then
Attach rate to packet
Send packet to sender

if Sender limited then
Suspend estimation

else
if interval > 1t then

Reset timer
Sample rate
Filter rate

based on an adaptive Kalman filter, a QUIC extension for
rate feedback, and a reverse (sender-to-receiver) signaling to
inform the receiver to suspend rate estimation when the BBR
sender is in the ProbeRTT state. The adaptive Kalman filter
rate estimation mechanism extracts a viable rate from the
receiver-side rate measurements. The rate feedback through a
newly defined frame extension transports the rate estimation
back to the sender. Algorithm 1 gives a simplified view of the
rate estimation and feedback process at the QUIC receiver.
The reverse signaling helps the receiver avoid using invalid
rate samples in the rate estimation process.

A. ADAPTIVE KALMAN FILTER
The Kalman filter is an optimal-state estimator for a
linear process with Gaussian noise. Given an unreliable
measurement that is corrupted by Gaussian noise with known
co-variance, the basic Kalman filter is able to extract the
correct state of a system that is characterized by a linear
state-space model given in Equation 1. In the equation, xk is
the actual value of the state to be estimated at time k , xk−1 is
the previous value of the state at time k− 1, and A is the state
transition model. The term Buk represents the external input,
and wk is the process noise. In addition to the state-space
model, the Kalman filter also requires a linear measurement
model. The measurement model can be represented as given
in Equation 2, where yk is the measured quantity, xk is the
state of the system, C is the measurement gain, and vk is the
measurement noise.

xk = Axk−1 + Buk + wk (1)

yk = Cxk + vk (2)

The standard Kalman filter goes through two stages to
acquire the final estimate. The first is the prediction stage
that uses the state-space model to make an a priory state
estimate x−k (Equation 3), and update the co-variance, p−,
that determines the uncertainty in the estimate (Equation 4).
The co-variance of the process noise Q should be known to
make the prediction. The second stage updates the prediction
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TABLE 1. The predict and update stages of a standard Kalman filter.

using the measurement value. This is done by first calculating
the Kalman gain K , which requires the co-variance of the
measurement noise R as shown in Equation 5. The Kalman
gain then determines the contribution of the measurement to
the final estimate (Equation 6) and the co-variance of the final
estimate (Equation 7). Table 1 summarizes the predict and
update stages of the standard Kalman filter.

To be able to use the Kalman filter, it is necessary to have
knowledge of the co-variances of the process and measure-
ment noise. However, when applying the Kalman filter for
the purpose of estimating the rate of a cellular network, these
values are hard to acquire. In addition, characteristics of the
noise experienced during measurement and prediction might
change with time, as explained in [10]. To overcome this
problem, we apply the adaptive measurement and process
noise co-variance computation method proposed in [11].
Equations 8 and 9 show the computation of the process
and measurement noise co-variances, respectively. In the
equations, εk is the residual and dk is the innovation at time
k , and α determines how fast the co-variances are updated.

Rk = αRk−1 + (1− α)(εkεTk + Cp
−

k C
T ) (8)

Qk = αQk−1 + (1− α)(KkdkdTk K
T ) (9)

In our system, we use a simple state transition xk =
xk−1 + wk and a simple measurement model yk = xk +
vk . The measured sample, yk , is obtained as shown in
Equation 10, where Sk and Sk−1 are the total amount of data
received at successive measurement time instants tk and tk−1,
respectively. The final estimate, xk , of each interval is then
sent in the feedback frame to be used as an estimate of the
bottleneck bandwidth by the RBBR sender.

yk =
Sk − Sk−1

1t
(10)

1t = tk − tk−1 (11)

B. RATE FEEDBACK
The rate estimated in the above steps is sent back to the
sender. To be able to send the estimated rate as feedback
from the receiver to the sender, we extend QUIC by defining
a new frame as described in [4]. We implement the new
frame in themvfstQUIC implementation from Facebook [12]
by adding the necessary code to encode and decode the
frame into a QUIC packet. According to the specification of
a standard QUIC frame, the frame contains an 8-bit frame
identifier and 8 bytes type-dependent field. The rate feedback

FIGURE 4. The QUIC feedback frame.

is located in the type-dependent field of the feedback frame as
shown in Figure 4. The rate feedback frame is scheduled by
default whenever an ACK is scheduled, thus having the same
frequency as the ACKs. However, it is possible to schedule
the feedback frame to be sent every fewACKs, or periodically
with a specified time interval.

C. SIGNALING FOR RATE LIMITED CASES
One of the core parts of BBR is the ProbeRTT phase.
In this phase, the BBR sender reduces its congestion window
to a very low value to allow the sender to get a new
estimate of the minimum RTT. This poses a problem for the
receiver-side delivery rate estimation mechanism of RBBR
since the rate measured in the ProbeRTT (or any other sender-
limited case) is not determined by the available capacity
over the bottleneck. If the receiver does not know about the
reduced sending rate at the sender, then it might take the
sender-limited rate sample as a bandwidth-limited sample and
feed it back to the sender. To prevent that from happening,
we define a signaling frame that is sent from the sender when
the sender is in the ProbeRTT phase.

Every time the CCA goes into the probeRTT phase, we set
a value, suspendRemote, in mvfst that is checked during
feedback frame construction. If suspendRemote is set, the
feedback framewill also serve as a signaling frame, otherwise
the feedback frame will be a standard feedback frame. The
process for signaling the remote receiver to suspend rate
sampling is given in Algorithm 2. At the other side, when
a feedback frame is received, it is checked whether it is
a regular feedback frame or a feedback frame that also
signals a suspension of rate estimation. If it is the latter,
then the rate estimation process is suspended until a regular
feedback frame is received. The process for suspending the
rate sampling and estimation at the receiver is given in
Algorithm 3. By allowing rate feedback in the signaling
frame, we are able to avoid having two different frames for
rate feedback and signaling the sender limited case in the
same packet. This is particularly important for a receiver that
only has ACKs to send in a unidirectional downlink data
transfer, and therefore will never reach the full bottleneck
bandwidth. Therefore, in this case, the sender will avoid
making the rate estimation calculations.

IV. EXPERIMENTAL SETUP
We evaluate the proposed modified CCA through emulation
of 4G and 5G link scenarios as well as through real 4G
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Algorithm 2 Procedure for Notifying Remote Node to
Suspend Rate Estimation

while connection is open do
if RBBR transits to probeRTT or Startup then

set suspendRemote

if RBBR transits to probeBW then
unset suspendRemote

if suspendRemote then
send suspend_fbk_frame

else
send regular_fbk_frame

Algorithm 3 Procedure for Suspending and Resuming
Rate Estimation
while connection is open do

if fbk_frame received then
if fbk_frame_type == suspend_fbk_frame then

set isSuspended
else

unset isSuspended

if isSuspended then
Stop rate sampling
Freeze rate estimation

else
Resume rate sampling and estimation

FIGURE 5. Emulation setup.

network tests. We use the tperf tool that is available in mvfst
with only minor changes to allow for external configuration
of some CCA parameters. The tool provides a client/server
setup for transferring data for a period of time and to report
the throughput. We use the tool by creating a single stream
that continuously sends data from a QUIC server to a QUIC
client using a selected CCA. The tperf tool and the CCAs
used in our experiments are from the May 2020 commit of
mvfst.

A. EMULATION ENVIRONMENT
The emulation environment is composed of two Linux end
nodes that serve as sender and receiver, and a middle node
that connects the two end nodes. We set up the emulation
configuration in CloudLab [13]. Figure 5 illustrates the
emulation environment. The middle node serves as a traffic
shaper to vary the rate available to send data between the
end nodes. The middle node is also used to control the RTT

FIGURE 6. Fine-grained 4G traces.

and bottleneck buffer size. The RTT is set to a minimum of
30ms for all experiments, and we allocate a very large buffer
for the experiments where the impact of the buffer size is
not being tested. We vary the available rate based on cellular
network traces from commercial 4G networks and mmWave
links.We use a hierarchical token bucket (HTB) traffic shaper
to configure the downlink rate, and netem [14] to configure
the delay and buffer size at the appropriate interfaces of the
middle node.

The 4G traces that are used to configure the traffic shaper
are acquired by sending constant bit rate (CBR) UDP traffic
through commercial 4G networks and logging the reception
of each UDP datagram. We collect two types of traces
to evaluate the CCA. The first trace is collected from a
test setup with a static mobile node stationed at an office
in the university, while the second trace is collected by
walking around in the university buildings. To ensure that
the bottleneck is fully utilized when collecting the trace data,
we configure the CBR sender to send at a very high rate. The
UDP receiver will also acknowledge the reception of each
datagram, which we use to compute an estimate of the RTT.
We check the RTT data to confirm that it is kept at a much
higher value throughout the duration of the CBR transfer than
the lowest recorded RTT. From the datagram reception log,
we calculate the rate samples at 1t = 10ms intervals, and
use this rate trace to configure the traffic shaper to exhibit a
similar rate pattern. We believe that by configuring the HTB
traffic shaper in this way, we obtain a realistic emulation
setup that captures the bursty nature of cellular access links,
while at the same time minimize any possible adverse effects
from the frequent rate reconfigurations taking place in these
tests. In Figure 6, we show two representative 4G rate traces
from among the ones used in our evaluations. The traces are
for a static device and a mobility scenario that is created by
walking around the university building. For each scenario,
we plot a 10ms-interval trace and a 200ms-interval trace.
We use the 10ms-interval trace in our experiments since that
trace better emulates the burstiness of the channel, however,
we show the 200ms-interval trace for better visibility of the
general capacity variation.

In addition to the fine-grained (10ms-interval) 4G traces,
we also provide initial evaluations over coarse-grained
mmWave traces that sample a rate about every 250ms. The
coarse-grained mmWave traces are shown in Figure 7. The
mmWave traces are based on the traces from [15], and were
also used in [4]. The coarse-grained mmWave traces might
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FIGURE 7. Coarse-grained mmWave traces.

not give an altogether realistic representation of the amount of
short-term burstiness experienced in real 5G access networks,
but we still think they properly show that the modified CCA
is capable of performing well at the high rates of 5G. We use
the given mmWave traces because we do not have access to
a commercial 5G network for trace collection. Similar to the
4G case, we use both static and mobility mmWave traces in
our evaluations.

B. 4G TEST SETUP
To evaluate the performance of RBBR in 4G networks,
we send QUIC traffic that employ different CCAs to receivers
connected to three different mobile network operators. The
receivers used in the experiments are MONROE nodes [16]
that use a Debian-based Linux operating system. The tperf
client is deployed as a container in the MONROE node,
while the tperf server is located in an office at the university,
and accesses the Internet through a high-speed Ethernet
connection at the university. The 4G test setup is illustrated
in Figure 8. One of the MONROE nodes is connected to
two different operator networks. However, when we perform
tests on one network, we disconnect the node from the other
network.

V. RESULTS
In this section, we present the results from our emulations
and real 4G network tests. We provide throughput and RTT
results comparing RBBR to BBR and CUBIC [17] from
emulation experiments using fine-grained 4G and coarse-
grained 5G traces.We also give results from tests that evaluate
the performance of RBBR by varying the configuration of
some relevant network and algorithm parameters. We also
present real network measurement results from 4G networks
of three different Swedish operators.

A. 4G TRACE RESULTS
The emulation results given here compare the performance
of RBBR with BBR and CUBIC using identical traces
and conditions to test each CCA. We include CUBIC in
some of the experiments to add some perspective for the
performance of a widely used loss-based CCA that is
also the default in Linux [17]. We also use emulations to
evaluate the performance of RBBR for different variables:
filter parameter, sampling interval, buffer size, and loss rate.
We use a middle value of 0.6 for the adaptive Kalman filter

FIGURE 8. 4G test setup.

parameter α for most experiments unless specified otherwise.
The RTT is configured to 30ms to make it comparable
to the minimum RTT we observed in the 4G networks on
which we performed live tests. For each given combination
of CCA, buffer size, and loss rate, we repeat the experiment
at least 10 times on every trace. For RBBR, in addition to the
above, we also perform at least eight iterations for each filter
parameter and sampling interval.

1) THROUGHPUT AND RTT
The throughput and RTT of RBBR, BBR, and CUBIC from
the 4G trace based emulation experiments on a bottleneck
with a large buffer (> 4×BDP) are given in Tables 2 and 3.
Example traces from the tables are also plotted in Figure 9.
In Figure 9b and 9d, it can be seen that RBBR achieves
a significantly lower RTT than standard BBR and CUBIC
without losing much throughput in Figures 9a and 9c. The
longer RTT of BBR is caused by the rate overestimation of
the sender-side mechanism and the extra packets injected
by the aggregation compensation mechanism. From the
RTT results, it is evident that BBR greatly exceeds the
1.5×BDP buffer that it is expected to maintain [18]. With
the minimum RTT configured to be 30ms, BBR’s mean RTT
values of mostly more than 100ms is likely the result of
an average queue that is at least 2×BDP of buffer. On the
other hand, RBBR’s mean RTTs of mostly below 77ms
indicates an average queue that is around or below the target
buffer size.

The figure also gives the throughput and RTT for BBR
with the aggregation compensation mechanism turned off
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FIGURE 9. Throughput and mean RTT of RBBR, BBR, BBRw/oAgg, and CUBIC for 4G static and 4G mobility traces.

TABLE 2. Throughput and RTT of CCAs for different traces collected in static scenario from three different operators.

TABLE 3. Throughput and RTT of CCAs for different mobility traces from a
walking pace.

(BBRw/oAgg). We can see the advantage offered by the
estimation mechanism of RBBR by making comparisons
with BBRw/oAgg, where the overestimation of BBR’s
sender side mechanism is the main culprit for the observed
longer RTTs. It should be stated that BBR’s aggregation
compensation mechanism plays an important role in some
networks like WiFi, where the level of ACK aggregation
is very high. The aggregation compensation mechanism of
BBR is closely tied to the sender-side estimation mechanism,
therefore it would have behaved unpredictably if it had been
used in RBBR. To use RBBR in networks with high level
of ACK aggregation, a different aggregation compensation
mechanism must be applied.

In the figures, BBR and BBRw/oAgg experience a
noticeably higher RTT in the mobility scenario compared to
the static scenario. From the trace in Figure 6b, it can be seen
that the rate in the mobility scenario is most of the times lower
than in the static scenario, however, it can also be seen that it
exhibits large increases from time to time. These sudden rate
increases are interpreted as the long-term, available rate by
BBR’s max filter, which causes BBR to oversend resulting
in larger queues and longer RTTs. In contrast, RBBR avoids
the increase in RTT in the mobility scenario that is observed
for BBR. Particularly, RBBR is able to filter out the transient

FIGURE 10. Throughput and mean RTT of RBBR, BBR and BBRw/oAgg in a
bottleneck with different buffer sizes (around 1BDP to >> 4BDP).

rate bursts and follow a more accurate progression of the
steady-state rate.

The extra queue accumulated from the overestimation
and aggregation compensation mechanism could explain the
slightly higher throughput of BBR as shown in Figure 9. The
accumulated packets could be available for instances where
the capacity increases instantly and significantly, allowing
BBR to achieve a slightly better throughput. We use multiple
traces to evaluate RBBR. As can be seen from Tables 2 and 3,
the sometimes slightly lower throughput obtainedwith RBBR
is more than compensated for by a significantly lower RTT
than BBR. The 95 percent confidence intervals for the mean
values given in the tables are omitted as they are small and
similar to the values shown in Figure 9.

2) LOW BUFFER SCENARIO
RBBR is intended to reduce the delay caused by BBR in
cellular networks with a highly variable rate and large bottle-
neck buffers. Still, we also need to know the performance of
RBRR outside of its target scenarios. In Figure 10b, we show
the evaluation results of RBBR, BBR and CUBIC over a
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FIGURE 11. Throughput and mean RTT of RBBR without filter
(RBBR-nofilter), RBBR with EWMA filter (RBBR-ewma), and RBBR with
Kalman filter (RBBR-kalman) in a small buffer (1 BDP).

variable rate bottleneck with different buffer sizes. It can be
seen that the reduction in RTT compared to BBR experienced
with RBBR disappears as the buffer size becomes 65 packets
(around 1×BDP) or lower. The throughput obtained with
the evaluated CCAs for different buffer sizes is given in
Figure 10a. As shown, a decrease of the buffer size below
2×BDP results in RBBR’s throughput becoming much lower
than that of BBR. However, it also follows that with such
small buffers, BBR’s throughput falls below the available
capacity.

The low throughput of RBBR when the buffers are small is
likely due to the limit the buffer puts on the range of rates that
could be sampled. The rate estimation mechanism will only
get proper rate samples that reflect the available rate when
the available rate is low. When the available rate increases
beyond what is supported by the buffer, the receiver will
not be able to get the proper rate samples, thus biasing the
estimate to a lower rate than the actual available capacity.
As a solution to this problem, a Kalman filter that is adjusted
for biased samples can be used or one can compensate for
the underestimation of the available capacity with additional
packets when the buffer size is low. In general, obtaining
an accurate sample of the available rate is a challenging
task since a small buffer will bias the rate sampling towards
lower samples. This is not just a problem experienced by
RBBR, but by any system that relies on rate measurements
in variable networks such as BBR, which evidently also
underutilizes the variable bottleneck when the buffer is
small.

3) ALTERNATIVE FILTERING
In this part, we compare the performance of the Kalman
filter-based estimation mechanism with unfiltered rates
and an exponentially weighted moving average (EWMA),
an alternative filtering mechanism that is routinely used to
remove the effect of transient variations. Figure 11 compares
the throughput and RTT of the three receiver-side rate
estimation mechanisms.

In our previous work [4], it was shown that replacing
BBR’s sender-side rate estimation with unfiltered rate
feedback from the receiver can result in an improved RTT
performance. The evaluations were done on traces that only
emulate the long-term variation experienced in 5G networks.

FIGURE 12. RRBR throughput for different ACK loss rates and rate
sampling intervals.

However, through follow-up experiments, we have confirmed
that in addition to worsening the RTT performance of BBR,
short-term variation also tend to cause a decrease in the
throughput achieved by the unfiltered rate feedback. This can
be caused by the system being locked in to a low-sending-
rate interval until the next probing occurs after detecting
a few successive low rate samples. Figure 11 shows that
this happens in small-buffer scenarios, with the unfiltered
mechanism being particularly more sensitive in small buffer
scenarios. This throughput performance degradation is the
main motivation behind applying filtering. It should be
noted that the filter parameter has no role in the results
for the unfiltered rate feedback. In the figure, the results
for the unfiltered rate feedback are repeated for different
filter parameters along with results of methods that employ
filtering to allow convenient comparison.

One method that can be used to remove transient rate
variations is the EWMA filter, which is given in Equation 12,
where rt is the rate measured at time t , α is the EWMA
filtering parameter, and Rt and Rt−1 are the rate estimates
at time t and t − 1 respectively. EWMA is a simple and
widely used method for smoothing out a range of variable
quantities. Therefore, it is reasonable to ask why the more
complicated adaptive Kalman filter is to be preferred over
EWMA. The figure shows that for lower values of α, the
EWMA mechanism results in a performance that is similar
to the Kalman-filter-based system. However, as the α value
increases the performance of EWMA becomes more similar
to the low throughput results observed with the unfiltered
mechanism. This is to be expected since as α increases the
contribution of the previous estimate to the next estimate
disappears while the contribution of the current measurement
is increased. The Kalman-filter, on the other hand, produces
a more consistent and predictable performance as the α value
changes. This can make filter parameter selection easier with
lower chance of misconfiguration.

Rt = α × rt + (1− α)× Rt−1 (12)

Based on the results given in Figure 11, one might opt
to choose to use a more efficient EWMA filter with a
lower α instead of the adaptive Kalman-filter, which requires
more computations per estimate. However, a lower EWMA
parameter value would mean a higher level of filtering, which
might be good for a highly variable network but might make
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FIGURE 13. Throughput and mean RTT of RBBR, BBR, BBRw/oAgg and CUBIC in three different operators.

FIGURE 14. RTT CDFs for RBBR, BBR and BBRw/oAgg in three diffrerent operators.

the system slow to adapt if the bottleneck should change to
less variable links.

4) ACK LOSS AND SAMPLING INTERVAL
Beyond the buffer size and filter parameter α, there are
other variables that could potentially affect the performance
of RBBR. In this part, we explore the impact of variables
like uplink loss rate and rate sampling interval. The
default implementation of RBBR sends the rate feedback
frame whenever an ACK is scheduled. Therefore, it would
be good to know how robust the algorithm is to ACK
losses, i.e., losses of the rate feedback. We evaluate this
scenario and present the results in Figure 12a. From the
figure, it can be seen that RBBR’s performance does not
show much difference between different uplink loss rates.
In our evaluations, we also evaluate the robustness of the
algorithm for different sampling rates and present the results
in Figure 12b. The results show that the CCA achieves
consistent throughput performance for different rate sampling
intervals. However, using smaller sampling intervals could
be a better option in access networks with a more variable
available rate than the one given in the trace used in this
experiment.

B. 4G NETWORK RESULTS
Here we present results from our experiments done in the 4G
networks of three mobile network operators. In Figure 13,
we present the throughput and RTT achieved by RBBR, BBR
and BBR without aggregation compensation. We performed
40 iterations with each CCA through four experiment
campaigns carried out on different days and at different times.

We also added a few CUBIC results for comparison. Each
data transfer over a specific operator’s network with one
of the evaluated CCAs is done for a period of 60 seconds.
We perform an RBBR data transfer between a data transfer
using BBR without aggregation compensation and a data
transfer using standard BBR.

The results of the 4G experiments show that RBBR is
able to maintain a much lower and consistent average RTT
than BBR and BBR without aggregation compensation. The
impact of the RBBR rate estimation mechanism can be
observed from the RTT difference between RBBR and BBR
without aggregation compensation. An interesting general
trend is that the difference in RTT seems to increase as the
throughput decreases. Most of the experiments that resulted
in the highest throughput for BBR andRBBRwere performed
at night time when there is less competition and a user is
most likely to be given consistently the maximum amount of
resources that it could get for its signal quality. At other times
of the day, the throughput was lower as the number of users
was larger, and the scheduling was likely to be more bursty,
which increased the risk of BBR doing an overestimation of
the bandwidth.

In most cases, BBR and BBR without aggregation
compensation achieve a slightly better throughput, while
RBBR’s throughput can be seen to be close to the BBR
throughput and better than the throughput achieved by
CUBIC in all operators. In all three operators, it can be seen
that there is a considerable difference in the RTT of BBR
and BBR without aggregation compensation without much
gain in throughput. This indicates that BBR’s aggregation
compensation mechanism could be further improved. The
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FIGURE 15. Throughput and mean RTT of RBBR, BBR and BBR w/o agg and CUBIC for a coarse-grained mmWave static and mmWave mobility and
blocking traces.

CDF of the RTT of the CCAs is given in Figure 14 for
each operator. From the CDF figures it can be seen that the
RTT improvement for operator two and three is noticeably
higher than the improvement in operator one. Based on the
results of the CUBIC transfers over operator one, we deduce
that the bottleneck for the connections through operator
one is likely on a link with a lower buffer than the other
operators. This in turn reduces the amount of accumulated
queue and the RTT experienced by the CCAs. Figure 14
also shows that the slope of the CDF for RBBR is steeper
than the slope of the CDF of BBR and BBR without
aggregation compensation, suggesting flows with RBBR
could experience less jitter.

C. mmWave TRACE RESULTS
Millimeter wave (mmWave) is a crucial part of 5G that
uses the high frequency spectrum (30GHz and 300GHz)
for wireless data transfer. mmWave is one of the core
technologies for achieving the high data rates delivered by
5G. The use of mmWave, however, introduces complications,
such as signal attenuation and increased rate variability. Thus,
we also tested the system on the coarse-grained mmWave
traces. Figure 15 gives the results of the mmWave trace
evaluations. The figure shows that there is a noticeable
improvement in the RTT and the throughput loss is negligible.
It can also be seen that the RTT improvement is bigger
for the mobility case (Figure 15d). RBBR achieves a more
consistent RTT between the static and the mobility scenarios
(63.2ms for static and 63.53ms for mobility). That means
that the improvement in RTT for the mobility case comes
from the slight increase in the RTT of BBR in the mobility
scenario (89.37ms for BBR and 79.57ms for BBRw/oAgg)
when compared to the static scenario (79.74ms for BBR and
72.4ms for BBRw/oAgg).

The RTT and throughput difference between RBBR and
BBR in the coarse-grained mmWave traces is, however, not
as big as the difference observed in the fine-grained 4G traces
and live network results. When using coarse-grained traces,
BBR is less likely to experience frequent sporadic bursts of
rate, while RBBRwill be better at converging to a new steady
state rate. Thus, we anticipate bigger differences in RTT
and throughput in future experiments with more fine-grained
mmWave traces.

VI. RELATED WORK
At the time of writing, the first version of BBR has been
around for about six years. Following it’s initial release,
several performance studies have been performed and a
number of evaluations and proposals have also discovered
scenarios where the algorithm seems to underperform.
The performance of BBR was compared with CUBIC’s
performance on the highway in [19]. The paper found
that BBR can achieve comparable throughput to CUBIC
with lower self-inflicted delay. Wang et al. [20] evaluate
the performance of TCP in high-speed rails (HSR) and
found out that BBR is more handover-agnostic and carrier-
agnostic. The paper also revealed that BBR can experience
suboptimal throughput performance due to an inflexible
and conservative round-trip propagation time estimation
mechanism. In addition to evaluating BBR, a number
of works have also proposed modifications to improve
throughput [20], [21]. Grazia et al. [21] target to improve the
throughput performance of BBR in high-aggregation WLAN
networks by increasing the 25% probing pacing gain of BBR
to a higher value. The BBR modification for HSR in [20]
alters the pacing gain values for the BBR ProbeBW cycle for
more frequent probing and uses a dynamic RTprop interval.
There have also been a few proposals focusing on BBR’s
fairness [22], [23]. BBRv2 [24], a second version of BBR has
also been released by Google. However, the second version is
mainly concerned with BBR’s fairness and response to high
loss, and keeps the bottleneck bandwidth estimation method
used in the first version of BBR largely unchanged.

On the other hand, queuing delay resulting from rate
overestimation is the main focus of a few recent papers [4],
[25]–[27]. Su et al. [26] suggest a method of avoiding
spurious rate bursts by delaying the rate update until the
rate is found to be consistent. Their method was evaluated
over a simulated link with a constant rate. Vargas et al. [25]
found that router burstiness can cause BBR to overestimate
the bottleneck rate and cause poor QoE for DASH by build-
ing long queues. A history-based solution, BBR-sampled
(BBR-S), that collects samples over a period of time and takes
the rate at the 85th percentile is proposed. This approach is
tested on both LANs and WANs, however, it’s performance
in a variable and bursty cellular environment is yet to be
tested. Another BBR modification, which incidentally is
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also called BBR-S, has been proposed in [27]. This BBR-S
modification replaces the max filter of standard BBR with
an adaptive Kalman filter. However, in contrast to our work,
for BBR-S, the rate samples are calculated at the sender from
RTT information and the performance of this modification
is evaluated through ns-3 simulations. The work in [4] is
a precursor to this work showing the advantage of using
receiver side rate feedback for BBR in QUIC. Our work
builds on that to produce a more robust CCA by integrating
a Kalman filter for rate estimation and signaling for sender
limited cased. This work also provides a more extended
evaluation with multiple traces and in real 4G networks.

VII. CONCLUSION
In this work, we propose RBBR, a modified version of BBR
for QUIC that uses filtered, receiver-side rate measurements
as estimates of the bottleneck bandwidth, and which let its
sending rate and congestion window be governed by these
measurements. The receiver-side estimates replace BBR’s
sender-side estimates that tend to overestimate the available
rate in cellular networks. The rate estimates are made at
the receiver by applying a Kalman filter to raw delivery
rate measurements to remove temporary fluctuations. The
receiver-side rate estimates are transmitted to the sender
through a feedback frame that is an extension to standard
QUIC.

Our evaluations of RBBR on fine-grained 4G and
course-grained mmWave traces show a notable improvement
in RTT with a limited loss in throughput. We also test RBBR
on static nodes in multiple 4G networks, and our observations
show that RBBR is robust and consistent in 4G networks. Our
observations also show that the delay experienced by BBR
can vary depending on the trace used for emulation, time of
real 4G network test, and location and mobility of the mobile
device. In general, the RTT performance of BBR becomes
worse when the overall rate becomes low, and in indoor
mobility scenarios. Our performance results show that RBBR
is able to maintain a lower and more consistent RTT in real
4G networks, with only a very small penalty in throughput
compared to standard BBR, a penalty that is eclipsed by the
reduction in RTT.

There still exists multiple avenues for future work.
The Kalman filter employed by RBBR operates on the
assumption of system linearity. We intend to extensively
test the performance of RBBR in situations where the
linearity assumption does not hold. The results from the
coarse-grained mmWave traces are promising. But we also
intend to perform more evaluations using fine-grained 5G
traces, as well as live measurement campaigns in actual
5G networks. Intra and inter CCA fairness analysis and
evaluations can also be done to assess RBBR’s friendliness.
RBBR can also be vulnerable to greedy-receiver attacks.
Future works can explore for ways to prevent these types of
attacks for receiver-driven algorithms.
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