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ABSTRACT Translating the center of mass (CoM) while fixing the orientation of a rigid body supported by
relatively massless, actuated limbs is a common problem setting in legged robotics. This paper proposes a
hierarchical approach to such maneuvers that decouples CoM task planning from body orientation control
in sagittal-plane models, thereby exposing a well-studied and computationally effective low dimensional
dynamical system that can be used for CoM task planning. The resulting algorithms directly address the
control authority (degree of underactuation) available at a given contact mode, enabling a-priori plans with
these intuitive, robust pendular dynamics to be formally embedded at the (virtual) CoM of planar floating-
torso models, while focusing high gain posture stabilizing feedback upon the body orientation. A series of
numerical and empirical examples address single- and multi-legged leaping— transitional maneuvers where
only a single brief stance mode is available to load energy into the CoM and guide its direction. We compare
our hierarchical method to a model-based model-predictive controller in one of the tasks, demonstrating
similar performance with a significantly smaller computational footprint.

INDEX TERMS Legged locomotion, template-based control.

I. INTRODUCTION
Programming a robot’s work with provably correct and phys-
ically grounded architecture requires an analytically tractable
method of relating abstract behavioral specifications for inde-
pendent low degree of freedom (DoF) body components to
a high degree of freedom, coupled hybrid dynamical system
whose control authority (degree of underactuation) varies
with the contact mode [1]. For legged robots, achieving such
command has been particularly challenging due to the com-
plexity of realizing such abstract task specifications (e.g.,
‘‘leap on to the box’’) in the face of numerous constraints
arising from body design (limited actuator force and power)
and variation of environmental affordance (limited traction at
available footholds). This paper presents theory and experi-
ments that achieve tunable, reliable, highly energetic maneu-
vers in the sagittal plane for legged robots whose ground
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contact modes may severely constrain their actuators’ control
authority.

Specifically, neglecting leg mass, we decompose the
body’s three degree of freedom sagittal plane dynamics
into a virtual mass center and literal orientation in such a
manner that a steady posture can be asserted with as high
control authority as the contact mode and actuator endow-
ment affords. The decomposition formally guarantees that
whatever actuator affordance remains, if any, can be applied
with no cross talk to very well understood models of virtual
pendular dynamics such that the body’s translational motion
can be planned and executed with considerable precision,
even in the face of substantial parametric uncertainty. This
hierarchical approach to planning transitional maneuvers,
with formal sequential composition [2] of appropriate sub-
modules, empirically yields robust and repeatable dynam-
ical ascents and descents on a quadrupedal robot tasked
with leaping between otherwise unreachable handholds and
footholds.
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FIGURE 1. The Minitaur [3] robot executing a ‘‘monkey bars’’ task
(cf. Sec. V-A) using the controller in this paper, with a superimposed
image showing the model used to generate the stance phase reference
dynamics.

A. RELATED WORK
We restrict our focus to a class of planar floating-torso [4]–[6]
models with massless, kinematic-singularity-free legs, and
sticking toe contacts (detailed definition in Assumption 1).
These modeling assumptions place our analysis within the
formal hybrid systems framework of [7]. We also restrict
attention to ‘‘pitch steady’’ locomotion (prioritized control of
body orientation) joining an extensive literature [8]–[10] as
formalized in Def. 1.

1) WHOLE BODY CONTROL (WBC)
Given sufficient control affordance (enough toe contacts
with suitable traction and an adequate number of actua-
tors in poses far from kinematic singularity) whole-body
control (WBC)—specified wrenches applied to the robot’s
full rigid body dynamics—can be achieved via feedback
linearization (FL) [11], [12]. More recent literature has
approached WBC through recourse to quadratic program-
ming (QP)—minimizing, pointwise-in-time, the actuators’
torque-affine deviation from the specified wrenches—to
avoid strict inversion of the dynamics required by FL [5],
[13], [14]. Although somewhat more computationally expen-
sive, QP naturally incorporates traction and torque con-
straints while sidestepping numerical issues in non-invertible
(underactuated) configurations. Of course, poorly struc-
tured or outright infeasible (e.g., underactuated, or slippery)
configurations incur large tracking errors consequent upon
the mismatch between desired and produced wrenches.

One method of mitigating (but not solving) these problems
in small multilegged robots with light limbs is to rapidly
change the contact mode by taking a transient step, or simply

relying on high frequency gaits [15], [16]. Another approach
to mitigating the underactuation issue in WBC is operational
space control or null-space control [5], [13], [14], [17], where
task requirements are prioritized and addressed according to
the affordance at the current configuration.

In general, depending upon the degree of underactuation,
WBC methods cannot guarantee task completion when coor-
dinated control of the body is required. Moreover, even in
modes and configurations with adequate control affordance,
these direct or optimally approximated wrench control meth-
ods rely intimately on accurate robot and environment models
and may not be sufficiently robust for long term operation in
less than perfectly characterized environments.

2) OPTIMAL CONTROL
If the system is not fully actuated, feedback design is possible
for controllable systems and has been pursued in the legged
locomotion literature via optimal control methods such as
LQR or SOS [18]. The imposition of an objective function on
the state space relieves the burden of specifying WBC target
wrenches. Its integration over a specified time horizon can
potentially mitigate the limitations of direct WBC by lever-
aging the improved affordance of favorable contact modes to
relax the passage through impoverished configurations while
making optimal progress.

Model predictive control (MPC) is an increasingly popular
approach to optimal control that can offer both computational
efficacy and formal insight by rewarding reference motion
sequences over a specified finite time horizon [19]. MPC
has been successfully applied to direct WBC by transforming
the control input space from joint torques to toe forces [20],
and it has been used to generate reference wrench sequences
for subsequent WBC by application to a simplified target
dynamical control system [14], [21], [22].

Optimal control methods rely on accurate models due
to their iterated appearance in the horizon-long integrated
objective function. Hence, poorly modeled environments or
imperfectly represented robot properties—inevitable sensori-
motor infidelities and, particularly, sensitive model mismatch
incurred by difficult to measure parameters [23]—can cause
failure [24]. Moreover, all are computationally significantly
more expensive (even MPC with linearized, approximated
dynamics [20]) in comparison to pointwise-in-time WBC
methods.

3) FROM REFERENCE TRAJECTORIES TO ANCHORED
TEMPLATES
In general, optimal control methods are applied to regulate
whole body motion around state space reference trajectories.
These reference signals themselves often arise as optimized
interpolants constrained to respect some simplified approx-
imant of the complete hybrid dynamics [25], or they may
be generated by numerically integrating forward from the
current state some similarly simplified reference dynamical
system [26], [27]. However, in all these approaches, by dint
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of being fixed ahead of time, the models used cannot adapt to
unforeseen contact events.

This paper takes its place in a long tradition of dynamical
model reduction associated with biological observations of
low degree of freedom ‘‘template’’ dynamics emerging from
complicated high degree of animal bodies that ‘‘anchor’’ the
simpler behavior [28]. Their empirical validity and utility in
control of robotic systems has been observed in numerous
instances [29]–[31]. A complete formal account of hierar-
chical composition for classical dynamical systems can be
found in [32] while its formal extension to the hybrid setting
remains a work in progress [33]. In this paper, we use the
terms ‘‘template’’ (reduced-order model that generates the
reference dynamics) and ‘‘anchoring’’ (its embedding via
WBC), as they are defined in Appendix VI. We use the
term ‘‘template planning’’ to refer to the selection of refer-
ence dynamics whose controlled ‘‘anchoring’’ wrenches in
the whole body dynamics will be integrated by the robot’s
physics to directly expose the desired motions in real time.

From the perspective of robot locomotion, our work fol-
lows a large body of prior walking control literature utiliz-
ing LIP (linear inverted pendulum) and ZMP (zero moment
point)-based methods [9], [34], in that we prioritize the sta-
bilization of body orientation over the regulation of CoM
translation. Specifically, this paper replaces by algorithmic
prescription of templates prior work in which the template
(e.g. linear inverted pendulum [35], SLIP [36]) has been
selected by intuition and domain expertise. Thus, our con-
troller applies the appropriate anchored template composition
in a mode reactive manner in real-time.

B. OUR APPROACH: MODE-REACTIVE TEMPLATES
This paper contributes new theory for sagittal plane control of
legged machines along with empirical demonstrations of its
efficacy for planning and executing highly energetic maneu-
vers requiring multiple hybrid transitions through variously
underactuated modes. We introduce a family of pitch-steady
anchoring controllers for algorithmically selected pendular
templates that govern CoM translational dynamics with as
much remaining control authority as contact mechanics and
actuator endowment allow. We provide formal convergence
guarantees for the both the pitch and the CoM subsystems
assuming perfect traction. We illustrate the utility of these
simply tunable pendular templates for planning transitional
maneuvers by application to two different leap sequences
requiring careful attention to foothold and handhold place-
ments along the way. We demonstrate the resulting closed
loop hybrid systems by implementing them on the Minitaur
quadruped, [3], [15], depicted in Fig. 1, first in their idealized
‘‘pinned toe’’ form and second, a ‘‘traction-aware’’ version,
using a pointwise-in-time QP to relax that naive anchoring
into a WBC which is feasible relative to the available model
of substrate coulomb friction. Both these empirically demon-
strated versions are computationally-efficient enough to run
in real time at 1KHz control rates on the embedded micro-
controller on the robot. The anchorability of the embedded

open-loop template controller in this paper (the accuracy of
which is sensitive to modeling errors), as well as success
in other applications as discussed in Sec. VI, are evidence
toward the robustness of our proposed anchoring scheme.

We also implement (in simulation) an MPC-based WBC
for one of the tasks as a representative state-of-the-art alter-
native, for comparison and to illustrate the benefits of our
modular hierarchical controller composition. Our numerical
experience is that such a conventional approach will often
fail in that highly energetic underacatuated setting if the
reference trajectory is chosen naively. Hence, we accord
this MPC-based anchoring the benefit of our algorithmi-
cally chosen mode-reactive template as its infinitesimal ref-
erence trajectory generator. In other words, we present the
‘‘best case’’ alternative comparison performance by explicitly
accounting for underactuation issues in a manner that has not
been reported in the prior WBC approaches described above.
As we report in our results (Sec. IV-B2.b), the state-of-the-art
MPC-based WBC alternative yields performance similar to
our proposed hierarchical anchoring but incurs a significantly
more burdensome computational footprint.

In sum, this paper presents for the first time a direct cor-
respondence between arbitrary configurations of a class of
sagittal plane locomotion models, and dynamical template
models that can accurately capture the available affordance
as well as be utilized for computationally tractable template
planning. The formal correspondence ensures that task execu-
tion plans created with these simplified models can be effec-
tively anchored into the floating torso, and the simplicity of
the models ensures that computationally-constrained legged
robots can execute dynamically challenging behaviors as we
demonstrate experimentally. Moreover, since these template
models resemble well-studied dynamical systems like point
particles and inverted pendula, template controllers leverag-
ing momentum- or energy-based methods can be utilized
directly (as we show in our empirical demonstrations). Lastly,
The combinatorial explosion in the number of dynamics
modes that need to be considered has motivated ‘‘contact-
implicit’’ trajectory optimization techniques [26], and we
hope that the computational tractability of the presented
approach can pave the way for an online reactive analogue.

In Sec. II, we introduce a general class of floating-torso
locomotion models for consideration, and proceed to then
subdivide this class according to the type of anchoring the
differing control affordances allow (Fig. 2, Prop. 2). We dis-
cuss the resulting behavior under these types of anchoring in
Sec. III and summarize our results in Fig. 2C. In Sec. IV,
we demonstrate template-based control of dynamic leaping
behaviors on a simulated monoped with offset torso, and the
physical Minitaur robot.

II. MODELING A CLASS OF PLANAR MECHANISMS
We introduce a general class of planar models (depicted in
Fig. 2B) to which our analytical results apply. The joint
configuration θ = (θ1, . . . , θk ) includes all the limbs, where
θj is the configuration of limb j. While normally we would
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expect a subset of legs to be in contact, the focus of this paper
is on the stance dynamics of a single contact mode, and so
without making any assumptions about k ∈ N (i.e., it could
one or greater), we assume all k contacts are active.
We use the notation Dx f (x) to indicate the Jacobian (matrix

of partial derivatives of the function f evaluated at state x),
and sometimes omit the first subscript if it is the only
argument for the function. To disambiguate, where possible,
we use bold lowercase symbols to denote vectors, lowercase
symbols to denote scalars, and uppercase symbols to denote
matrices.
Assumption 1 Floating Torso Model: The model has
1) a single massive rigid body, and all other links are

massless;
2) no kinematic singularity (Dgj are full rank);
3) all contacts are sticking contacts;
4) the body orientation φ ∈ S1 is a cyclic variable in the

Lagrangian, i.e. ∂L
∂φ
= 0, though it has kinetic energy,

∂L
∂φ̇
6= 0. The physical interpretation is that the body

has its mass distributed uniformly, so that there is no
net moment due to gravity about the CoM.

Based on Assumption 12, since each Dgj(θj) is full rank,
each θj ∈ 2j has dimension at least 2, and could be composed
of revolute or prismatic joints. All of these conditions hold
for (among others) the models depicted in Fig. 2B. For the
physical robots shown, the massless leg assumption (Def. 11)
relies on published evidence [37]–[39] and our conjecture of
its effectiveness; the sticking contact assumption (Def. 13)
relies on the specific operating conditions.

The full configuration space includes joints and body
coordinates as in [40], such that the configuration space is
the product of, respectively, joint and body configurations,
(
∏

j2j) × SE(2). Let n denote the total number of joints
(adding up sizes for each θj), and letm denote the total number
of actuated joints.

A. BACKGROUND: FLOATING TORSO KINEMATICS AND
DYNAMICS
Let R : S1 → R2×2 be a function that maps an angle on to a
rotation matrix. Each toe creates a contact constraint, written
in the (inertial) world frame as

aj(q) = p+ R(φ)(dj + gj(θj)), (1)

where aj remains constant during stance (Assumption 13),
and we denote by a(q) a stacked version with all the contacts
j ∈ {1, . . . , k} in the contact set. The contact Jacobian is

ȧ = [Aθ ,Ax]q̇, (2)

where we define the matrices

Aθ := blockdiagj(R(φ)Dgj)

Ax :=

I2 JR(φ)(d1 + g(θ1))
...

...

I2 JR(φ)(dk + g(θk ))

 , with J =
[
0 −1
1 0

]
.

(3)

TABLE 1. Table of symbols.

For a single massive rigid body with massless legs
(Assumption 11), the unconstrained dynamics can be derived
using a simple Lagrangian,

L =
mb
2
ṗT ṗ+

ib
2
φ̇2 − γ (q), (4)

where potential terms γ include gravity and compliance.
Define Gθ := Dθγ,Gx := Dxγ .

In the planar setting (unlike the spatial setting), the
R(n+3)×(n+3) unconstrained inertia tensor is constant and so
there is no Coriolis matrix. The dynamics can be derived
using a constrained Lagrangian as in [40],

Gθ + ATθ λ = Bτ ,

Mxẍ+ Gx + ATx λ = 0, (5)

where the upper n rows of the inertia tensor corresponding to
the massless legs are zero, and the lower diagonal 3×3 block
(corresponding to the ‘‘body’’ DoFs x) is

Mx =

[
mbI2 0
0 ib

]
∈ R3×3. (6)

The dimensions of various matrices are

a ∈ R2k , Aθ ∈ R2k×n, Ax ∈ R2k×3, B ∈ Rn×m. (7)

The columns of Ax correspond to the SE(2) body configura-
tion. In (5), B represents the mapping of actuator torques to
the generalized coordinates,

Bτ =

[ B1
. . .

Bk

][
τ1
...
τk

]
,

stacking the contribution from each limb. We observe in (5)
that Assumption 11 allows us to impose a sort of ‘‘decou-
pling’’ of the reaction forces λ from the dynamical effects
(terms dependent on q̇, q̈).
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B. CoM AND PITCH DYNAMICS
Based on Assumption 12, Aθ (3) is full rank, and so we can
solve 1 for λ from the top row of (5). From (3), we can find a
left pseudo-inverse of ATθ ,

A†Tθ := blockdiag(RDg†Tj ), (8)

where Dg†j is a standard pseudo-inverse; applying this to (5),

Mxẍ+ G(x) = −ATx A
†T
θ (Bτ − Gθ ). (9)

In case Dgj is square (the limb kinematics are not redundant),
Dg†j = Dg−1j , and if true for all the limbs A†θ = A−1θ .

The top two rows of ATx A
†T
θ in (9) simply contain the

diagonal blocks of A†Tθ horizontally stacked. The last row
of (9) picks up the last row of ATx from (3), which can be
simplified further by cancellations of R and Dg: define the
pitch affordance vector

cφ(p) :=
(
c1(p)T , · · · , ck (p)T

)T
,

where cj(p) := J (aj − p). (10)

We emphasize that when the contacts are active (and the
contact locations aj are fixed), cj (the vector connecting the
toe location to the CoM) does not vary with φ, but rather only
with p, a fact we shall exploit in Prop. 1. Using (3) and (1),
we see that the jth block column of the lower row of ATx is

(dj + gj)TRT JT = (aj − p)TRRT JT = (aj − p)T JT .

Using this in (10) together with (9), we get

Mxẍ+ Gx = −

[
Ī

cφ(p)T

]
A†Tθ (Bτ − Gθ ). (11)

where Ī :=
[
I · · · I

]
(horizontally stacked for each leg).

III. INPUT-DECOUPLED ANCHORING: CoM TEMPLATES
In currently-practiced template-based control, the target ref-
erence dynamics are typically corrupted by high-gain anchor-
ing forces during transient operation down to the attracting
submanifold.2 These perturbations make it particularly diffi-
cult to directly deploy template controllers, especially in the
context of the energetic non-steady transitional maneuvers
targeted in this paper. To address this issue, we propose a new
type of anchoring, where we explicitly develop (Prop. 1) a
template coordinate change for isolating the template (task-
related) dynamics (both on T as well as along the anchoring

1In the case of kinematic singularities, while this is not possible, we can
still get λ = A†

θ
τ + K†ν, where A†

θ
:= Aθ (A

T
θ
Aθ )
−1, AT

θ
A†
θ
= I , and

where K† spans the null space of A†
θ
(i.e., it is some array with the property

AT
θ
K†
= 0). This ensures that (in the equation above), AT

θ
λ = τ as required

by (5). ν cannot be determined from (5) if Aθ is not invertible, and would
need the additional equation Aq̈+ Ȧq̇ = 0 to be simultaneously solved with
(5) to find. Thus, ν will appear as a ‘‘noise’’ term on the right hand side
of (11). Addressing kinematic and configuration-dependent singularities is
planned future work.

2For example, note the appearance of x (not z) through u∗ in [42, (5.36)],
and in the second row of [43, (5)].

transients down to it) from perturbations due to the (poten-
tially high-gain) control effort required to anchor it:
Definition 1 (Input-Decoupled Anchoring): Controlled

anchoring where the anchoring forces [44, Appendix A] do
not appear in the reduced dynamics.

In addition to putting forward a procedure for input-
decoupled anchoring, we provide a closed-form expression
for the reduced (restriction or zero) dynamics on T that
has not been possible before in the literature other than in
isolated cases [45]–[47] (in the first two examples of which,
attraction down to the template submanifold was also not
guaranteed). 3 These advances in concert make it possible
to attach some guarantees of success to template-based con-
trollers anchored on floating-torso bodies. To underscore the
value of exposing an uncorrupted template model to the
higher level task in this manner, we empirically demonstrate
the input-decoupled anchoring of non-asymptotically stable
templates in transitional leaping tasks (such as in Fig. 1).
These targeted Hamiltonian systems are particularly sensitive
to perturbations generated by the anchoring process.

We exclusively examine (the ubiquitous set of) tasks prior-
itizing orientation stabilization:
Definition 1 Pitch-steady behavior: In the behavior, the

body pitch stably tracks φ to φ∗ (desired body orientation).
Specifically, the closed loop dynamics admit the orientation
error function 4 ζ (φ) := (φ − φ∗)2 → 0 as a LaSalle
function. The anchoring posture that embeds the template is
the submanifold of the state space, T = ζ−1[0].
Wefirst define the ‘‘virtual leg’’ coordinate projection from

the coordinates of the physical system (p, physical CoM, and
φ, orientation) into r ∈ R2 as

r(q) := h(p, φ)− 1
k6jaj(q), (12)

where h(p, φ), a correction term, is defined abstractly in
(37) and constructed by successive approximants given in
(41). This correction reduces to the literal mass-center pro-
jection (p, φ) 7→ p on the pitch-steady submanifold, T
(Def. 1). In the text below, we use the term ‘‘virtual CoM’’
in world-frame to refer to r + 1

k6jaj(q) = h(p, φ). This
expression exhibits the template coordinates as describing the
configuration of the classical notion of a ‘‘virtual leg’’ joining
the torso’s mass center to the centroid of the toe contact loca-
tions [29], while corrupted by correction terms that disappear
along with the orientation error. Before we construct h (in the
proof of Prop. 1 and Appendix VI), we need some additional
definitions and computations:

3For instance, in [42, Sec. 5.2.2] the power contained in the virtual
constraints are observed to corrupt the hypothesized inverted pendulum zero
dynamics, and x cannot be removed from the ż dynamics in [43, (5)]. In [47],
the restriction dynamics (on the zero manifold) are shown to be conjugate to
SLIP, but it is not possible to make any general conclusion about the behavior
off this submanifold (where the template coordinates may suffer significant
perturbations from the anchoring control).

4Notwithstanding the non-Euclidean state space, φ ∈ S1, we focus in
this paper on local regulation, hence express error in local quadratic form
to support our analysis in (13); we use the fact that d2

dt2
(∇ζ ) = φ̈ for uφ

cancellation.
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FIGURE 2. A Templates, and B Classes of anchoring models as enumerated in Prop. 2, with actuated DoFs denoted by red arrows (straight arrows
indicate shank retraction/extension, curved arrows indicate hip flexion/extension). Since the conditions are configuration-dependent, we also list what
joint configurations θ the conditions are satisfied in (see Sec. VI). The arrows along the bottom depict the membership of these models in the various
classes of Prop. 2, and the details of these models are summarized on the right.

Define c†φ(p) :=
cφ (p)
‖cφ (p)‖2

such that c†φ(p) is the

right-pseudoinverse of cTφ (p). Note that the conventional
usage of the ·† notation would dictate that x† be the pseu-
doinverse of x, but in this case we define c†φ as stated here to
avoid repeating the cumbersome xT† notation.

A. PINNED-TOE VERSION
Proposition 1 Input-Decoupled Anchoring: If the condi-

tion ATθ cφ ∈ B := Im(B) is satisfied, we can define
1) an input coordinate change Bτ = ATθ Eu, where E :=

[eφ,ET ] and u = [uφ,uTT ]
T correspond to the anchor-

ing and template components respectively, eφ := c†φ ,
and

2) a near-identity diffeomorphism (p, φ) 7→ (r, φ) relat-
ing the virtual (12) and physical CoM, which satisfies
the following properties:
a) the pitch-steady T submanifold (Def. 1) can be

rendered attracting and invariant using uφ , with
the φ dynamics decoupled from r,

b) the virtual CoM coincides with the physical CoM
on the pitch-steady submanifold, and

c) the virtual CoM dynamics,

mbr̈+ Gp − ĪA
†T
θ Gθ = −ĪETuT + O(φ, φ̇),

(13)

are decoupled from uφ .
The specific form of ET (which affects the virtual CoM affor-
fance) depends on the system, and is explored in Prop. 2. The
remainder term in (13) asymptotically approaches zero with
orientation error, and is detailed further in Appendix VI.

Proof: We propose a control strategy that recruits a
single dimension of τ as the anchoring (pitch-steadying)
torque for orientation control, leaving the remaining inputs

free. Since ATθ cφ ∈ B, we can choose τ such that

Bτ = ATθ (c
†
φuφ + ETuT ), where ET ⊥ cφ(p), (14)

uφ = kp∇ζ (φ)+ kd φ̇ + cTφA
†T
θ Gθ . (15)

In (14), we used the condition eTφET = 0, and we remind
the readers that ζ in (15) is the orientation error as defined in
Definition 1.
Note that as long as cφ(p) 6= 0, this is well-defined.

The (rightmost) cancellation term in (15) is only required for
cases where there is joint compliance (Gθ 6= 0) in order to
drive the orientation error to 0 (as we will see in the next
subsection). When omitted, the Lyapunov argument in (18)
shows that the orientation error will be driven down to a
ball outside which the quadratic error Kd φ̇2 dominates the
noise due to the Gθ term. We leave uT as a free input for
now and define it where we use it for template control in
Prop. 2.
We utilize a fast (high gain) pitch control strategy of the

form (15) for anchoring the pitch-steady behavior. Note that
the last row of (11) is

ibφ̈ = −cTφA
†T
θ (Bτ − Gθ ),

where we observe that there are no gravity-like terms in
this row due to Assumption 14. Substituting (14) in the
above,

ibφ̈ = −uφ + cTφA
†T
θ Gθ , (16)

where we can see that the orientation dynamics have been
decoupled from uT . Using (15), the closed loop dynamics
take the form

ibφ̈ = −kp∇ζ (φ)− kd φ̇. (17)
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Using a quadratic Lyapunov function

ηφ(φ, φ̇) :=
1
2
ibφ̇2 +

1
2
kpζ (φ), note that

η̇φ = φ̇(ibφ̈ + kp∇ζ )
(16)
= −kd φ̇2 ≤ 0. (18)

This shows that theT submanifold of the state space (Def. 1)
is not only attracting, but also invariant (since the closed-loop
orientation dynamics (16) are decoupled from other dynam-
ics). This satisfies property 2a.
Lemma 1 (stated and proved in Appendix VI) reveals that

the first few terms of r (12) are

r = (p− 1
k6jaj)−∇ζ c̃(p)+ O(ζ (φ)), (19)

where due to our definition of ζ (Def. 1), O(∇ζ 2) = O(ζ ),
and the remainder terms are observed to disappear with the
orientation error ζ (φ), satisfying property 2b. Lemma 1 also
shows that we get the template restriction dynamics (13), and
that they are appropriately decoupled from uφ , as claimed in
property 2c. �
For purposes of comparison, we also briefly describe a

naive non-input-decoupled anchoring procedure, and also its
relation to input-decoupled anchoring, in Appendix VI.
Remark 1 (Input-Decoupled-Anchorable System Exam-

ples):To convey an intuitive idea of the conditions for Prop. 1,
in Fig. 2, we depict a number of familiar sagittal plane
abstractions and existing physical robots to exemplify the
variety of systems covered by Prop. 1. For concreteness and
without loss of generality (since any kinematic-singularity-
free design can be mapped via an appropriate kinematics
coordinate change), in this subsection we assume a revolute-
prismatic (RP) kinematics for the leg,

gj(θ ) = θj1
(
− sin θj2,− cos θj2

)
, (20)

where the notation θji denotes joint angle i of leg j. We solve
for

ATθ c
†
φ

(8)
=

1
‖cφ‖2

 . . . DgjRT

. . .


 ...
J (aj−p)
...

 .
The jth block row of the above simplifies to DgTj J (dj + gj)
using (1). Using (20), letting dj = (dxj,dzj) and cj2, sj2 be the
cosine and sine of the relative leg angle θj2,

DgTj J (dj + gj) =
[

−dxjcj2 + dzjsj2
θj1(−θj1 + dzjcj2 + dxjsj2)

]
. (21)

Consider the special case in (21) where dj = 0, so that

DgTj J (dj + gj) = (0,−θ2j1)
T
∈ Span{(0, 1)T },

satisfying the condition of Prop. 1. So for a single leg attached
at the CoM (dj = 0), actuation of only the θj2 joint (hip angle)
is required for decoupled orientation control. This design cor-
responds to a version of Raibert’s planar hopper [29] with an
unactuated compliant leg shank (middle of Fig. 2). Raibert’s
simple three-part controller [29] made this choice as well.
However, when dj 6= 0, a decoupled orientation controller

needs contributions from the shank extension actuator as
well. Our construction (14) can be used to generalize the
orientation controller to this case, where Raibert’s decoupled
control strategy cannot be directly applied [48].
Proposition 2 Template Behavior: For systems satisfying

Prop. 1, the template control signal contribution in (13) can
be further decomposed using columns of ET ,

ET = [ec,Ef ], where ec =
1
k

[ p−a1
...

p−ak

]
, (22)

ec ∈ R2k , and the columns of Ef are orthogonal to both
eφ, ec. The reduced dynamics (13) admits a re-expression of
the leading right hand side term as

−ĪETuT = ucec + ĪEf uf
= ucr+ ĪEf uf + O(φ, φ̇), (23)

where uf ∈ Rm−2 is a ‘‘free’’ virtual input that can be utilized
for template control. In (7) if
1) m = 1, then ec = 0,Ef = 0, and the template is

unactuated (UA),
2) ATθ ec ∈ B, or B is full-rank and m = 2, then

ec 6= 0,Ef = 0, up to the orientation error, the
direction of uc is alignedwith the direction of the virtual
leg (12), i.e. it is a central force, and the template is
central-force-actuated (CFA), and

3) ATθ Ef ∈ B, or B is full-rank and m > 2, then
ec 6= 0,Ef 6= 0 and the template is fully-actuated
(FA).
Proof: First, note that from (10), eTφ ec = 0, i.e. ec satis-

fies the condition to be in the column span of e⊥φ , as required
by the condition in Prop. 2. Next, the first term on the right
hand side of (13) is

−ĪETuT
(22)
= Īecuc − ĪEf uf
(19)
= ucr− ĪEf uf + O(φ),

agreeing with (23). If Ef 6= 0, since we are assured that Ef
is orthogonal to ec, some component of the template control
signal acts along a direction tangential to r, thus affording full
2DoF control of the virtual CoM. �
Remark 2 (Definition of UA, CFA, FA Templates): We

depict these template models in Fig. 2 along the top row.
Each template has two DoFs r ∈ R2 (translation of the virtual
mass center relative to the virtual toe), but they differ in the
actuator affordance, and, hence, the span of accelerations that
can be imparted to the virtual CoM. The unactuated (UA)
model has no available actuators and cannot be controlled,
the central-force-actuated (CFA) model can be accelerated
along the direction of the (virtual) leg like the spring loaded
inverted pendulum (SLIP) model [49], and the fully-actuated
(FA) model can be completely controlled in its (physical as
well as virtual) sagittal plane.
Remark 3 (Resulting Template Behavior; Intuitive Mean-

ing of the ATθ ec ∈ B Condition): This geometric condition
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in Prop. 22 is merely informing us when some of the actu-
ator inputs can accelerate the virtual CoM after orientation
stabilization. The example configuration in the middle col-
umn of Fig. 2A fails this condition, meaning that while the
orientation can be stabilized, no remaining actuator input can
affect the translation of the CoM. Though the virtual CoM
translational dynamics are unactuated, it can be accelerated
by various potential terms inGx,Gθ . Below, in Remark III-A,
we present a nearly ubiquitious example where due to joint
compliance Gθ , the reduced dynamics are closely approxi-
mate to those of an inverted pendulum (IP) subject to gravi-
tational and compliance forces (Fig. 2A).
When one actuator is added and we can use Prop. 22,

we have shown that the remaining input acts as a cen-
tral force. Long years of experience with approximations
(e.g. [50], [51], etc.) suggest that even when cancellation
of the gravity-like terms is not possible or ill-advised (due
to model or sensor noise, etc.) the central force model can
be leveraged to gain productive insight into the dynamical
behavior, as leveraged in the template controllers devised in
Sec. IV-A, IV-B, and V-A.
When additional actuation is available and we can use

Prop. 23, we have shown that the virtual CoM can be con-
trolled as a fully-actuated point mass, agreeing with the feed-
back linearizability of these models.
Remark 4 (Anchoring Preserves Natural Dynamics: Raib-

ert Hopper Example): The remaining terms on the right side
of the CoM template dynamics (23) preserve any natural
compliance from the full dynamics (5) on the invariant pitch-
steady manifold. We demonstrate this next using the Raibert
hopper with parallel shank compliance (center column of
Fig. 2), which satisfies Prop. 21. Since we are restricting our
attention to ζ = 0, with the toe location a(q) = 0 (without
loss of generality), in (19) we have r = p. We assume
the leg has the RP kinematics of (20), and gravitational and
compliance terms in the potential energy of the form

γ (q) = mbgz+
1
2
k(θj1 − ρ0)2, (24)

where ρ0 is the nominal leg extension. For the radial joint
compliance Gθ , we use the constraint equation (1) to get

p = −R(φ)g(θ ) = θj1

[
sin(θj2 − φ)
cos(θj2 − φ)

]
. (25)

Using (8) and substituting in (24), we can note that θj1 = ‖p‖
and simplify the expression to

A†Tθ Gθ = A†Tθ

[
k(θj1 − ρ0)

0

]
(24)
= k(θj1 − ρ0)

[
sin(θj2 − φ)
cos(θj2 − φ)

]
(25)
=

k(θj1 − ρ)
θj1

p = k(‖p‖ − ρ0)p̂.

Since there is only one leg, the Ī in (23) is just the
identity matrix. Additionally, using (24) in (5), we get

Gp = [0,mbg]T . Putting these together in (23), we get the
reduced dynamics

mbp̈+
[

0
mbg

]
+ k(‖p‖ − ρ0)p̂ = 0, (26)

the dynamics of a SLIP model.
Remark 5 (Examples of Systems Satisfying the Conditions

of Prop. 2): In Remark III-A we provided an example of a
system satisfying Prop. 21. B being full rank is a sufficient
condition for Prop. 22. For example, adding back shank actu-
ation to the system fromRemark III-A satisfies this condition.
However, B being full rank is not necessary for Prop. 22.
When the number of leg joints exceeds two (kinematically
redundant in the planar case), a rank-deficient B (such as
two actuators for a 3DoF planar leg) may satisfy Prop. 22.
However, for 2DoF legs, it becomes necessary for B to have
full rank.

Even if the monopedal model of Remark III-A has an actu-
ated shank, it does not satisfy Prop. 23. A suitable example
satisfying this last condition is the sagittal plane biped of
Fig. 2 with m = 4 inputs, resulting in uf ∈ R2. The full input
decomposition is a set of orthogonal columns [eφ, ec,Ef ], the
first two of which (eφ (10) and ec (22)) have been defined.

B. TRACTION-AWARE VERSION
The anchoring in the prior subsection does not account for
crucial traction constraints conventionally incorporated in
WBC. In this section we focus on our usage in a sagittal-plane
biped, such asMinitaur (Fig. 5), with fully-actuated rigid legs,
i.e. B = I ,Gθ = 0. We implement a QP that utilizes the
results of Prop. 1 with arbitrary desired template dynamics
mbr̈+Gp =: vdes, where we use the ·des superscript notation
to denote the desired control signal. Using the controller (14)
with decision variable (to be minimized by the optimization)
u = (uφ, ṽ), where ṽ := ETuT in (13), we can formulate a
pointwise-in-time optimization problem

min
u
ϕ(u) := Qφ(uφ − udesφ )2 + ‖vdes + Ī ṽ‖2Qv

, (27)

s.t. cφ(p) ⊥ ṽ, (28)

F(µ)fj ≤ 0, where F(µ) :=
[

1 −µ
−1 −µ

]
, (29)

where fj ∈ R2 are stance toe forces for each stance leg j.
The objective (27) includes the anchoring and template

control terms respectively, where for the latter, (13) allows
us to relate −Ī ṽ to the desired right-hand-side vdes.

In the constraint (28), we include the orthogonality require-
ment of (14). We observe that the solution of (27)–(28) (with-
out including (29)) would be uφ = udesφ , Īv = vdes, which is
exactly (14).

However, next we additionally incorporate a traction con-
straint (29). Note that[

cφ(p) I
]
u = cφ(p)uφ + ṽ

(14)
= A−Tθ τ

(8)
= [fT1 · · · ]

T

is a stacked vector of applied toe forces fj. For each of these fj,
we use a friction cone approximation, |fjx | ≤ µfjz, and
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FIGURE 3. Snapshots (top; frames sequenced from left to right; body motion swings from right to left) of a numerical
simulation of a UA planar hopper (Fig. 2 center column, Prop. 21) with a passively-compliant leg anchored to the CoM
using (14), (15) from Prop. 1. Traces comparing the behavior of the virtual CoM (19) when controlled by our proposed
controller (14) (blue) to the behavior of the literal CoM (red) as well as to a SLIP model (dashed magenta). Note that
the ‘‘CoM p’’ and ‘‘SLIP’’ models do not have any body orientation DoF, and are thus missing from the first plot. See
Sec. IV-A for details.

require (29). Thus the constraints are linear in u, and the
objective is quadratic in it.

Torque constraints are straightforward to add to this opti-
mization problem (since the leg Jacobian linearly relates
the toe force fi to the joint torques). However, the direct
drive (hence offering greater power density at the expense
of reduced force density [15]) nature of Minitaur made these
constraints overly conservative in our application, and so we
left them off in our empirical trials.

We observe that a zero toe force fj = 0 is always
feasible for (28)–(29), and so in configurations where the
pitch-steadying control cannot be supported by the available
traction, the requested toe forces diminish to zero, resulting
in the robot collapsing to the ground.

IV. NUMERICAL RESULTS
We now apply the analytical results above to design con-
trollers for hopping and leaping tasks, using the templates of
Fig. 2.

A. PITCH-STEADY RAIBERT HOPPER
First, we present a numerical simulation of a planar hop-
per with a passively-compliant leg attached to the CoM
(Fig. 3), which satisfies Prop. 21. As we have discussed in
Remark III-A, the application of the controller (14) to this
model produces dynamical behavior of the virtual CoM (19)
closely reflecting SLIP (26). We simulate this model with
our reduction controller tasked with steadying the pitch to
φ∗ = −1 rad, and compare the resulting behavior of the
physical CoM (in red) as well as the virtual CoM (13) (in
blue) to the ideal SLIP behavior (in magenta, dashed). The
SLIP model is initialized with the same initial conditions as
the virtual CoM.

We make the following observations from Fig. 3:
(a) the orientation is stabilized and displays the exponential

attraction of the decoupled stable anchoring dynamics pre-
scribed in (15); (b) the virtual CoM behavior closely resem-
bles that of SLIP (especially in the angular momentum
about the virtual toe); (c) the radial dynamics of the vir-
tual CoM, a UA template (Fig. 2), closely resemble the
passively-compliant SLIP leg.

In the following section, we examine a model with an
added actuator in the leg that enables actuation of the radial
component of the virtual CoM for template-based control of
a leaping task.

B. PITCH-STEADY LEAPING WITH OFFSET-HIP MONOPED
We apply our results to a leaping task on a sagittal-plane
monoped with offset hip, as shown in Fig. 4. The task is to
correct the body orientation to a desired φ∗ while attaining
a desired ṙ∗LO liftoff CoM velocity. For this task, we first
develop a template controller using the configuration-reactive
template selection of Prop. 2. To anchor these reference
dynamics, we compare two methods: the hierarchical con-
troller we have presented here (15) and a model-predictive
WBC, as we now detail.

1) TEMPLATE CONTROLLER
Using the results in this paper, we devise a controller for a
CFA template for an underactuated monopedal leaping task
(Fig. 2) to (a) anchor the template model to the posture
φ = φ∗ in the physical robot using the control component
uφ (15), and (b) control the template dynamics to accomplish
the leaping task using the component uT (22).

Since we find it convenient to work in virtual-leg polar
coordinates, we define ρ = ‖r‖, ψ = 6 r as functions of the
virtual leg position r (12). We use a template control input,
uc, (acting as a central force (23)) which performs propor-
tional velocity control of the radial component ρ around an
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FIGURE 4. Comparison of input-decoupled anchoring and MPC-based WBC, both with mode-reactive template
reference dynamics: Snapshots of a leaping simulation with the template controller (30) anchored by (15), showing the
virtual leg r (12) superimposed in blue on the physical model. While the frames are sequenced from left to right, the
direction of travel of the CoM is right-to-left, and the snapshots are evenly spaced in time between t = 0.1s (touchdown)
and the liftoff time. Along the bottom rows, we plot various template states using our proposed controller (blue) as well
as when the reference dynamics are tracked by an MPC-based WBC, applying the same template controller (30) to the
full body dynamics (magenta). Note that the behavior with the two implementations is very similar.

event-sequenced pair of setpoints as follows

uc = (1− χp)w(0)+ χpw(ρ̇p),

where w(ρ̇des) := kv(ρ̇des − ρ̇),

χp := 1/2+ 1/π arctan(k(ψ − ψp)), (30)

where ρ̇p, ψp are constant controller parameters whose values
are obtained from the task and initial condition as described
below, and ρ̇des is a placeholder for the argument of the
function w. Here χp is an analytic switching function that
transitions from 0 to 1 on the event that ψ crosses ψp.

The key insights underlying this controller exploit the
dynamical properties of the CFA template, in particular
(a) the angular momentum about the virtual toe [50], [51],
i.e.,

α(q, q̇) = ρ2ψ̇ = (Jr)T ṙ, (31)

is only perturbed by gravity in stance α(q, q̇) ≡ α, and
(b) the radial DoF can be velocity-controlled so as to impart
the kinetic energy needed for the leap without disturbing the
angular DoF.

Next, we give a computational prescription for the task
parameters, ρ̇p, ψp, of (30) and an intuitive account of their
meaning. Under the assumed template behavior described
above, note that ψ̇ = α/ρ2 is sign-definite through the
behavior, and so ψ can be used as a monotonic ‘‘phase-like’’

variable. Thus, the controller (30) drives the system sequen-
tially through the ‘‘wait’’ (χp = 0) and ‘‘push’’ (χp = 1)
phases, and takeoff is controlled (by releasing the leg) when
‖r‖ = ρLO. In the following, we use the notation r̂ = r/‖r‖.
Define v∗ := ‖ṙ∗LO‖. Conservation of (31) in the push phase
implies

α = rTLOJ
T ṙ∗LO = ρLOr̂

T
LOJ

T ṙ∗LO

H⇒
α

ρLOv∗
=

r̂LO · (JT ṙ∗LO)
‖ṙ∗LO‖

= cos 6 (r̂LO, JT ṙ∗LO) (32)

Here we know the left hand side, and JT ṙ∗LO, and can use the
equation above to calculate 6 r̂LO =: ψLO.
Next, in the push phase, we can integrate both sides of

ψ̇ = α/ρ2 (31):

ψLO − ψp =

∫ ψLO

ψp

dψ = α
∫ ρLO

ρp

dρ
ρ2
·

1
dρ/dt

.

Under our assumed template behavior, the radial velocity is
controlled to (constant) ρ̇p in the push phase, so we pull it out
of the integral to get

ψp = ψLO −
α

ρ̇p

(
1
ρp
−

1
ρLO

)
. (33)
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Lastly, to find the value of ρ̇p necessary to ensure the takeoff
velocity of the assumed velocity-controlled CFA template
matches the desired value ṙ∗LO, note that the polar transfor-
mation follows

r = ρr̂ H⇒ ṙ = ρ̇r̂+ ρJ r̂ψ̇.

Applying to the desired liftoff state, where ψLO, ρLO, and
ṙLO = ṙ∗LO are known, we can calculate

ρ̇p = ρ̇LO = ‖ṙ∗LO − α/ρLOJ r̂LO‖. (34)

Now (33), (34) together completely define the necessary
terms in the controller (30).

2) NUMERICAL SIMULATION
In the task shown in Fig. 4, the simulated robot is launched
just before touching down (this event is marked by the light
gray vertical line in the plots) initial pitch φ approximately
horizontal, and initial horizontal velocity ẋ = −1.5 m/s.
The target orientation is φ∗ = −1 rad (w.r.t. vertical), and
the target takeoff velocity is ṙ∗LO = (−2, 2) m/s. The plots
along the bottom row show various template states, and in the
second-from-right plot, we also display the soft switch signal
χp (22) with dashed lines.

a: INPUT-DECOUPLED ANCHORING
From the closeness of the traces in the top two plot panes
of Fig. 4 to their commanded counterparts in dashed grey,
we can conclude that the task is completed successfully by the
naive template controller above. We consider its successful
anchoring (which relies very heavily on the conservation of
(31), a dynamical property of the mode-reactive template
selection) evidence to the utility of input-decoupled anchor-
ing. Since the template controller relies on an assumption
of constant angular momentum (31), we use a low-passed
filtered version of the measured angular momentum. As visi-
ble in the bottom left plot, α remains roughly constant and
almost unaffected by the switch to the push phase in the
case of our proposed controller (blue), and ultimately this
results in the template CoM velocity closely matching the
commanded values. In addition, we can observe the following
from Fig. 4: (a) the orientation can be effectively controlled
while controlling the template (φ after controller engagement,
bottom right); (b) the template CoM velocity can be altered
drastically in the push phase as evidenced by ż (second from
left) with no coupling to the φ dynamics in the case of our
proposed control (blue).

b: COMPARISON TO AN MPC-BASED WBC
For comparison, we present results from an implementation
of an MPC-based whole-body controller for tracking the
desired accelerations output by the template controller. Note
that by using the mode-reactive template (contribution of
this paper) to generate the reference dynamics, we avoid
underactuation issues that would plague a conventional MPC
implementation with naive reference dynamics. The MPC

uses as its dynamics model a discretized linearization of the
floating torso dynamics (11) along with a first-order integra-
tion scheme.We have described the details of the formulation
of the MPC in Appendix VI. With access to a complete and
accurate model of the system dynamics (note the presence
of Mx and G(x) in the equations of Appendix VI, and their
absence in (15), (23)) and a dynamically feasible reference,
the MPC successfully stabilizes the body pitch and can drive
the CoM velocity to the desired quantity.

We believe that the most important contribution here is
the algorithmic mode-reactive template selection, and have
demonstrated its effectiveness with a new anchoring con-
troller (Sec. VI) as well as an MPC-based WBC here. Based
on the comparison in Fig. 4, we can conclude that our simple
template controller based aroundmomentum can be anchored
by both methods with similar performance. However, the
traction-aware version of the proposed Sec. III controller is
less reliant on an accurate model, and is significantly more
computationally-efficient than the MPC, facilitating imple-
mentation onboard Minitaur (Fig. 1).
The modular architecture of the controller allows not just

the same template controller (22) to be used with differ-
ent anchoring strategies (as discussed above), but also for
different template control strategies to be utilized with the
same anchoring. For example, the hierarchical pitch-steady
anchoring procedure (Sec. III-B) could be utilized with
the output of a trajectory optimization solution to the
leaping task above via its output vdes, as an alternative
to (22).

As a very approximate estimate of the relative complexity
of the traction-aware QP (Sec. III-B) and the MPC here,
the total number of nonzeros in the objective and constraint
matrices in the QP of Sec. III-B is 11, whereas the num-
ber of nonzeros in H (44) in the MPC is approximately
70000. The former is also solved onboard Minitaur’s embed-
ded 180MHz Cortex-M4 microcontroller in a few hundred
microseconds, while the latter takes about 120ms on a desk-
top processor. The former is implemented in C and solved
using OSQP [52], while the latter is solved via MATLAB’s
solvers. Note that a well-optimized MPC implementation for
dynamically simpler tasks can run onboard in millisecond
timescales on a laptop-class processor [20], but would likely
require longer horizons for a task like the one simulated
here.

V. EMPIRICAL RESULTS
For empirical trials we used the Minitaur robot [3], [15], a
6kg 8DoF direct-drive quadrupedal platform.

A. UNDERACTUATED MONOPEDAL MONKEY BARS TASK
Many useful leaping tasks such as achieving a foothold on
a high ledge [53] or door opening [54] require the ability to
reach objects or handholds outside of a platform’s quasi-static
workspace. To showcase the effectiveness of this controller
in such problem settings, we devise a representative task
(Fig. 1) which requires the robot to swing from a handhold,
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FIGURE 5. Monopedal leaps (Sec. V-A): A monopedal ‘‘monkey bars’’ task snapshots. A Time-traces of various states in the experiments of Sec. V-A
whose snapshots are in Fig. 1, showing the convergence of the body to the desired pitch and pitch velocity, (top two plots) as well as the relative
consistency of angular momentum throughout stance (bottom plot, corresponding with only the green wait and blue push modes). Note that the traces
are plotted such that the end of the ‘‘wait’’ phase is at t = 0.25 s in all trials, and the time at which the shortest wait mode begins is denoted by ‘‘Latest
TD time.’’ We cut the horizontal axis off at t = 0.4 s since the latest takeoff time is earlier than that. Each trial is displayed with a different color in the
bottom plot, and they are only drawn when the leg is in contact, as calculated from (31). B Position and velocity of CoM in the trials of Sec. V-A show
resemblance to a SLIP (26) simulation (dashed magenta).

release it, and then upon landing perform a single stance leap
that enables a reach toward and grasp of a second handhold.
The handholds are placed sufficiently high and far apart
that they will be reachable only if (a) the body pitch is
maintained near vertical, and (b) the trajectory of the CoM
maintains its forward velocity, and achieves a sufficient ver-
tical velocity to allow the upper legs to reach the target
handhold.

This task is similar to the one in Sec. IV-B, but while
in Sec. IV-B the task requires control of the takeoff veloc-
ity vector precisely, this one requires less precise control
of the velocity. The properties of the CFA template are
used predominantly for stance control in Sec. IV-B, and
for selecting an appropriate landing leg angle here. The
rapid stabilization of body orientation (Def. 1) is critical
in both tasks, thus motivating a pitch-steady anchoring in
either case.

We construct a sequential composition of three template
controllers defining a hybrid system as in [55] whose mode
transitions are triggered by guards sensitive only to the tem-
plate states. The first (a brachiating template [46] which
executes swing-up to excite the leap-down from the bar) and
the third (a point particle manipulator to position the aerial
mode toes to grasp the bar [55]) lie outside the scope of this
paper, hence we will only provide the briefest description that
permits interpreting the data presented in Fig. 5. During the
middle stance mode, we implement input-decoupled anchor-
ing (Prop. 1) to ensure that the body pitch is stabilized to
a desired φ∗ and that the reduced virtual CoM behaves in
a SLIP-like fashion (Prop. 2). For our experiments we used
both the pinned-toe version (14) as well as the traction-aware
version of Sec. III-B.

The construction of the template controller,

uc =

{
−kp(ρdes − ρ) wait mode,
ur,max push mode,

(35)

G (wait) := {(q, q̇) : (ζ (φ), φ̇) ∈ Bε(0)},

takes the form of a conventional sequential composition [2] of
the ‘‘wait’’ and ‘‘push’’ controllers, and G (wait) denotes the
goal set of the wait controller. This closely resembles the tem-
plate controller of Sec. IV-B1, with the following differences:
(a) we replace the piecewise-constant velocity command (30)
in the wait mode with a SLIP-like virtual spring control in
the wait mode (to minimize the required peak torque at the
switching instants); (b) we replace the analytic switch χp
with a discrete switch from wait to push mode when the
orientation error state enters an -ball around the origin and
(c) in the push phase, we replace the velocity controller (30)
in the push mode a constant command, ur,max, saturating the
actuators’ torque outputs in the fashion of [53], launching
the aerial ascent to the targeted next monkey bar. Leveraging
the input-decoupled template behavior (23) and prior work
on monopedal hopping, we select the initial leg angle before
landing using Raibert’s neutral point approximation

ψ = arcsin
(
ẋTs
2ρ
+
kẋ(ẋ − ẋd )

ρ

)
, (36)

where ẋ is the horizontal velocity of the CoM, Ts is the
stance duration, ρ is the nominal leg extension, ẋd is the
desired horizontal CoM velocity, and kẋ is a control gain.
The unreliable nature of velocity estimates makes it prudent
to pre-select an estimate of ẋ during the descent. Since the
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FIGURE 6. Bipedal leaps (V-B): Traces from 20 trials; servo target states denoted by dotted lines and hybrid guard sets by shaded regions of the
same color. (Left) Pitch initially unlevel. Plots show composite of 10 trials, all of which start with an initially level pitch, but with the front and
back legs starting at different extensions. The level pitch is maintained while the CoM velocities are servoed to pre-chosen targets, (−0.5, 1.75)
m/s for uphill, (−0.5, 1.25) m/s for downhill. (Right) Pitch initially level but uneven footing. Plots show a composite of 10 trials, 5 of which start
with the body pitched uphill, and 5 with it pitched downhill. In all cases, the pitch is corrected to level while the CoM velocities are servoed to
pre-chosen targets, (−0.75, 1.65) m/s for uphill, (−0.5, 1.25) m/s for downhill.

virtual leg extension ρ is held constant in flight, the expres-
sion becomes the constant ψ̃ = 0.21 radians.
We first directly implement the pinned-toe version of the

analytical controller (14), and test across 20 trials. Of these
trials, the task is successfully completed 9 times, with the vast
majority of failures caused by traction loss events.We observe
successful task completion in 9 out of 10 trials using the
traction-aware version of Sec. III-B, and the single failure in
this implementation was one related to traction: the required
motor torques needed to stabilize the body could not satisfy
the friction constraints (1), and so the objective (27) could not
be sufficiently minimized, resulting in the body collapsing
and falling over.

Fig. 1 superimposes snapshots of task execution, accom-
panied in Fig. 5A by state trajectory traces of all 10 of the
traction-aware trials as well as one each of a success and
failure using the pinned-toe version. The plots reveal that φ
is effectively stabilized to the target range, and the virtual
leg angular momentum remains roughly constant through
the energetic behavior. This figure also presents an overview
of the ability of the controller presented here to decouple
the complex leaping problem into two lower-dimensional
control problems: the behavior designer works within
the CoM behavior depicted in Fig. 5B, which reveals a
phase-portrait and CoM trajectory resembling the SLIP

template (26), while the controller isolates the behavior of the
orientation DoF.

B. BIPEDAL LEAP: IMPOSING HORIZONTAL CONTROL
Our past experience [55] with leaping on to objects—as part
of a suite of pedipulation behaviors—with Minitaur provides
a backdrop against which to compare advances with the pro-
posed controller. In such problem settings, due to the number
of possible unwanted collisions between the body or legs and
object to be manipulated, it is crucial that the body be able to
stabilize to a desired orientation while the CoM is energized
for the leap.

In the double stance case, using the FA template (per
Prop. 2), we can utilize a control input uT for direct control
over the vertical and horizontal components of the CoM in the
sagittal plane, while stabilizing the body pitch. We execute
the leap with the FA template by simply servoing to a desired
takeoff velocity, as in [55].

Fig. 6 (left) presents data from two sets of 5 trials to
demonstrate the ability of the controller to quickly correct
the pitch to a desired value (level in this case), as seen in
the left and center of the figure, while accelerating the CoM
to a desired velocity trajectory, as seen in the bottom two
subplots. Fig. 6 (right) presents data from two more sets of
5 trials each, this time with the pitch initially level, but with
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the front and back legs at different extensions to maintain
this attitude. We see that the controller successfully main-
tains the orientation while imparting significant acceleration
to the CoM.

VI. CONCLUSION
In this paper, we presented an algorithmic and formal
mode-reactive template selection procedure that facilitates
the online construction of feasible reference dynamics.
We anticipate that using these templates in a mode-reactive
template planner preceding the anchoring step (as we have
demonstrated here) can enable better behaviors than a con-
ventional approach of assuming a FA template model (suf-
fer from underactuation) or prior trajectory optimization
(computationally too demanding to run reactively), followed
by WBC. We also presented an accompanying hierarchical
‘‘pitch-steady’’ prioritized anchoring strategy that is com-
putationally very efficient, and utilized it to demonstrate
dynamically challenging leaping behaviors with (CFA and
FA) template-based controllers on a quadrupedal robot. These
two components are connected in a modular fashion, where
either the template controller could be replaced by trajectory
optimization, or the anchoring controller could be replaced
by a different whole-body controller (Sec. IV-B2.b). Both
applications illustrated the value of input-decoupled anchor-
ing, whereby the strong control authority required to stabilize
pitch within the short available stance mode preceding the
leaps could barely be detected in the state trajectories when
projected onto the virtual template coordinates. We remind
the reader that the guaranteed dynamically-feasible reference
dynamics frommode-reactive templates can enhance the per-
formance of any WBC approach, including (but not limited
to) the two we compared in Sec. IV-B2.b. Additionally, the
dynamical simplicity of the template models enables reac-
tive template (re)planning, which is crucial if the behavior
includes combinations of single- and double-contact intervals
and potentially unintended contact [55].

There are a number of avenues of future extension. First,
in terms of the model, though our limited focus on a massive
torso and massless legs results in a simple expression for
the angular kinetic energy, this idea could be generalized to
settings with distributed mass—such as flexible spines [56],
inertial appendages such as tails [57] and flails—by control-
ling centroidal angular momentum [10], or the net angular
momentum about the CoM. Second, here we restricted our
attention to planar models, but an extension to the spatial
case does not present any conceptual obstacles. Lastly, work
currently underway by the second author is investigating the
application of this strategy to the control of steady-state gaits,
as well as tasks that include non-point-attractor orientation
dynamics such as bounding [37].

APPENDIX A
BACKGROUND: TEMPLATES AND ANCHORS
Hierarchical control structures and reduced-order models
have been studied in the literature with the language

of ‘‘templates’’ (reduced dynamics residing on an invari-
ant ‘‘template submanifold’’ T ) and anchoring dynamics
that render T attracting [28], [44], or ‘‘zero dynamics’’
(restriction dynamics on T ) and ‘‘virtual constraints’’ that
render T attracting and invariant [42]. The benefits of hier-
archy include modularity in the control design [29], [58],
[59] allowing control designers to pull back [44] template
controllers on to the anchoring body (‘‘template-based con-
trol’’), and its empirical usage in robotics has a long tradition
stretching back to Raibert’s hoppers [29]. There is a long
and continuing tradition of using such reduced locomotion
models, in turn, as control targets to be exposed to higher
level task controllers [30], [45], [60], [61], as well as in
optimization-based WBC [35], [36].

APPENDIX B
INPUT-DECOUPLED ANCHORING VIRTUAL LEG
PROJECTION
First, we define the notation Dph =: Hp,Dφh =: hφ .
Lemma 1: r̈ does not depend on uφ if we can find h (12)

such that

hφ + ib
mb
Hp
[
I · · · I

]
c†φ = 0. (37)

Proof: Taking derivatives of (12),

ṙ = Hpṗ+ φ̇hφ
r̈ = Ḣpṗ+ Hpp̈+ φ̈hφ + φ̇ḣφ
= Hpp̈+ φ̈hφ + (Ḣpṗ+ φ̇ḣφ) (38)

Now all the uφ terms must appear in p̈, φ̈; they cannot in the
last parenthesized terms (until further derivatives are taken).
From (6), (11), the first two terms from above that are affected
by the input torque τ are

Hpp̈+ φ̈hφ

=
−1
mb

(
Hp
[
I · · · I

]
+

mb
ib
hφcT

)
A†Tθ Bτ + O(τ 0), (39)

whereO(τ 0) refers to termswithout any τ -dependence. Thus,
from (12), we need that

1) The matrix Hp
[
I · · · I

]
+

mb
ib
hφcTφ has a non-trivial

nullspace.
2) The anchoring control uφ points in that nullspace direc-

tion.
Next, we show that (37) is a sufficient condition for the
former:

Using (37) to rewrite hφ in the parenthesizedmatrix in (39),

Hp
[
I · · · I

]
+

mb
ib
hφcTφ = Hp

[
I · · · I

]
(I − c†φc

T
φ ), (40)

which clearly has cφ itself as a nullspace vector.
Using (14) in (11) and (39)–(40), but now looking only at

the first two rows and denoting Gp as the projection of Gx on
to the first two rows, we see that (up to O(φ, φ̇)),

mbr̈+ Gp

= −Hp Ī (I − c†φc
T
φ )A

†T
θ (Bτ − Gθ )
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(14)
= −Hp Ī (I − c†φc

T
φ )(c

†
φuφ + ETuT − A

†T
θ Gθ )

= −Hp Ī (ETuT−A
†T
θ Gθ ).

So we see that uφ does not appear in this expression. Addi-
tionally, from (19), Hp = I + O(φ), thus giving us the
expression of (13). �
Lemma 1 shows that the template coordinates r are unaf-

fected by the anchoring force uφ , satisfying our Def. 1. The
main restriction to applying it is that h(p, φ) satisfying (37)
exists. The following lemma shows that we can approximate
this function.
Lemma 2: With r = h0 + h1 + . . ., the approximation

error for (37), δk :=
∑k

j=0
∂hj
∂φ
+

∂hj
∂p c̃φ(p), where c̃φ(p) :=

ib
mb

[
I · · · I

]
c†φ , can be controlled to orders of the orientation

error ζ , δk =
∇ζ k

k! δ̃k (p), by setting

hk (p, φ − φ∗) := −
∇ζ k

k!
δ̃k−1(p), (41)

where δ̃ is defined recursively as δ̃k (p) := −Dpδ̃k−1(p) ·
c̃φ(p).

Proof: We use a proof by induction: the base case
h0 = p reveals that δ0 = c̃φ(p) = δ̃0(p). The induction step
is

δk = δk−1 +
∂hk
∂φ
+
∂hk
∂p

c̃φ(p)

=
−∇ζ k

k!
Dpδ̃k−1(p) · c̃φ(p) =:

∇ζ k

k!
δ̃k (p)

The induction step relies at least upon the ∂hk−1
∂p c̃φ(p) term

cancelling with the ∂hk
∂φ

term. This requires a factorial in the

denominator so that ∂hk
∂φ

will be multiplied by 1
(k−1)! and

that the lingering factor of ∂hk−1
∂p c̃φ(p) will also have that

denominator and cancel. So, this series (with k terms) can
approximate the error (37) to O(∇ζ k ). �

APPENDIX C
NON-INPUT-DECOUPLED PITCH-STEADY ANCHORING
In this section we present a feedback-linearization approach
to anchoring pitch-steady dynamics and demonstrate its pit-
falls compared to the approach of Prop. 1.
Proposition 3: If BTA†θcφ 6= 0, where cφ is in (10), A†θ is

in (8), and B is in (5), then we can preferentially prescribe
the template manifold as attracting and invariant to satisfy
Def. 1.

Proof:We set

τ =
BTA†

θ
cφ

‖BTA†
θ
cφ‖2

uφ, (42)

a pseudo-inverse for the coefficient of τ in the last row of
(11). In closed loop, where the feedback law assigned uφ will
be specified in (15), the last row of (11) is

ibφ̈ = −uφ + cTφA
†T
θ Gθ

(15)
= −kp∇ζ − kd φ̇,

which can render the ζ = 0 template manifold attracting and
invariant. �

We can evaluate the Lie derivative of the first two rows of
(11) along the flow,

mbp̈+ Gp + ĪA
†T
θ Gθ =

−ĪA†Tθ BBTA†θcφuφ

‖BTA†θcφ‖
2

,

where we can find uφ as a (noise-contributing) defect in the
p̈ dynamics. In other words, the closed-loop dynamics of the
template coordinates cannot be decoupled from the anchoring
dynamics, thus failing Def. 1. We shall rectify this deficiency
with an additional assumption and a new anchoring controller
in Prop. 1.
Remark 6 (Relationship to Input-Decoupled Anchoring):

First, note that the condition required in Prop. 1 implies
satisfaction of the condition for conventional anchoring in
Prop. 3: if ATθ cφ ∈ B, for given υ 6= 0, we can find τ s.t.
Bτ = ATθ cφυ. Then, c

T
φA

†T
θ Bτ = cTφ cφυ 6= 0,5 and so it

must be true that cTφA
†T
θ B 6= 0 which implies anchorability in

the sense of Prop. 3.
In exchange for the slightly stricter condition, we get the

benefit of property Prop. 12c: (13) has no dependence on the
(possibly large) control force uφ (15) (as posited by Def. 1),
and only on the O(φ, φ̇) ‘‘state error’’ terms, which vanish
on the template manifold. In practice, as we show in Sec. IV,
the orientation-error-dependent terms cause negligible distur-
bance also off this manifold, while the ‘‘classical’’ alterna-
tive of relying on template-like behavior of the actual CoM
suffers from large disturbances introduced by the anchoring
process.

APPENDIX D
MPC-BASED WBC
Solving for acceleration in (9) for a single-toed contact mode
simplifies to

Mxẍ+ G(x) = −ATxϒ

ẍ = −M−1x

([
I

pT J

]
ϒ + G(x)

)
ẍ = −M−1x

([
ATx G(x)

]
u
)

where ϒ = [fx , fz]T ∈ R2 are the forces at the toes and
u := ϒ

1 is enforced using an equality constraint. The
dynamics of the system for state y := x

ẋ ∈ R6 can then be
described as

ẏ = f (x, ẋ) =
[

ẋ
−M−1x

([
ATx G(x)

]
u
)]

Linearizing around an operating point (y0, u0), the system can
be approximated as

ẏ = f (x, ẋ)

≈

[
0I3

−M−1x 00 0

]
︸ ︷︷ ︸

Ac

y+
[

03×20×1
−M−1x ATx |y0 −M

−1
x (G(x0)+00x0)

]
︸ ︷︷ ︸

Bc

u

5cφ = 0 implies the degenerate condition that all of the contact (‘‘toe’’)
locations are coincident with the CoM (10).
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where 00 =
02×2 02×1

(Jϒ0)T 0
. Finally, discretizing the system

dynamics gives

yk+1 = Adyk + Bduk , where
[ Ad Bd

0 I

]
= exp

([ Ac Bc
0 0

]
dt
)
.

Using this discrete linearized dynamics model and follow-
ing sections 8.2 and 11.3 of [62], we set up theMPC problem
via the ‘‘Batch Approach,’’ where the states are calculated
over the horizon and decision variables are the elements of
the input vector over the horizon, ū. In particular,

ȳN = Syy0 + Suū, (43)

where

ȳN :=


y0
y1
y2
...
yN

 , ū :=

 u0
u1
...

uN−1

 , Sy :=


I3
A
A2

...
AN

 ,

Su :=


0 0 ··· 0 0
B 0 ··· 0 0
AB B ··· 0 0

...
AN−1B AN−2B ··· AB B

 .
The objective of the quadratic program is specified as a

quadratic error of the states from the reference states,

min
ū

N−1∑
k=0

(yTk Qyk + uTk Ruk )+ yTNPyN

H⇒ min
ū

1
2
ūTH ū+ fT ū

subj. to Agui = bg for i = 1, 2, . . . ,N − 1

Aµui ≤ bµ for i = 1, 2, . . . ,N − 1 (44)

where

H := (STu Q̄Su + R̄)

f := R̄T (yT0 S
T
y Q̄Su − y∗Q̄Su − ū∗T )T

Q̄ :=

 Q
. . .

Q
P

 , R̄ :=

[
R
. . .

R

]
Ag :=

[
0 0 1

]
, bg := 1

Aµ :=

−1 µ 0
1 µ 0
0 1 0

 , bµ :=
00
0


The reference state y∗ is obtained from the outputs of our
template controller (22) acting on the mode-reactive CFA
template, and the reference input is ū∗ = 0 (i.e. ϒ0 =[
0 0
]T ). In the objective function for the MPC, there is a

quadratic error from each yk in the horizon to y∗. The state
penalty matrices (Q and P) and input penalty matrix R are
also different in the two modes. In particular in Fig. 4,

Qwait = Pwait =

 0
5000

2000
0

50
2

 ,
Rwait =

[ 0.01
0.01

0

]

Qpush = Ppush =

 0
0

10
500

500
10

 ,
Rpush =

[ 0.01
0.01

0

]
The guard φp between the two modes is calculated as in
Sec. IV-B1 with the SLIP-like angle ψ := 6 (p−a) and there
is no use of the virtual COM by the controller.

The QP can be written to include or not the traction
constraints (Aµ, bµ above) that we apply in Sec. III-B. The
horizon length for the example was N = 100, and MPC
timestep of dt = 1ms, so that the length in time of the horizon
is T = Ndt = 100ms, and the MPC was recalculated every
10ms.
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