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ABSTRACT Most of the available American Sign Language (ASL) words share similar characteristics.
These characteristics are usually during sign trajectory which yields similarity issues and hinders ubiq-
uitous application. However, recognition of similar ASL words confused translation algorithms, which
lead to misclassification. In this paper, based on fast fisher vector (FFV) and bi-directional Long-Short
Term memory (Bi-LSTM) method, a large database of dynamic sign words recognition algorithm called
bidirectional long-short term memory-fast fisher vector (FFV-Bi-LSTM) is designed. This algorithm is
designed to train 3D hand skeletal information of motion and orientation angle features learned from the leap
motion controller (LMC). Each bulk features in the 3D video frame is concatenated together and represented
as an high-dimensional vector using FFV encoding. Evaluation results demonstrate that the FFV-Bi-LSTM
algorithm is suitable for accurately recognizing dynamic ASL words on basis of prosodic and angle cues.
Furthermore, comparison results demonstrate that FFV-Bi-LSTM can provide better recognition accuracy of
98.6% and 91.002% for randomly selected ASL dictionary and 10 pairs of similar ASL words, in leave-one-
subject-out cross-validation on the constructed dataset. The performance of our FFV-Bi-LSTM is further
evaluated on ASL data set, leap motion dynamic hand gestures data set (LMDHG), and Semaphoric hand
gestures contained in the Shape Retrieval Contest (SHREC) dataset. We improve the accuracy of the ASL
data set, LMDHG, and SHREC data sets by 2%, 2%, and 3.19% respectively.

INDEX TERMS American sign language, deep learning, fast fisher vector, hand gesture recognition, leap
motion controller, orientation angles, spatio-temporal sequence, ubiquitous computing.

I. INTRODUCTION
The incredible attention in human-computer interac-
tion (HCI) makes human hands the most natural and effi-
cient medium to express intentions for daily interaction
activities [1]. It leads to the development of numerous HCI
systems such as sign language recognition, robotics, med-
ical diagnostics, among others. Hard of hearing are gener-
ally dependent on sign language to participate in the real
world. World Federation of the hard of hearing put figures
around three hundred active natural sign languages across
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the globe [2]. American Sign Language (ASL) is one of the
famous sign languages with unwritten grammar characterized
by hand motions, and sometimes facial/body signs [3]. This
language involves constructing very complex grammatical
structures, using dynamic word gestures. The dynamic word
gestures are most crucial constructing blocks during ASL
sentence development and facilitating expressive commu-
nication. ASL comprises over ten thousand dynamic word
gestures with approximately 65% and 35% represented by
sign words and finger-spelled words respectively [4]. Sign
words remain the common means for the hard of hearing to
express themselves. Therefore, these words are indispensable
for daily hard of hearing communication. It is imperative to
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mention that majority of the available ASL words comprised
of similar gestures. Thus, the similarity usually confuses
sensing devices and hinders the application of most sensors
leading to misclassification. To solve this, Fang et al. [5],
proposed DeepASL using leap motion controller (LMC)
sensor from backhand view with bi-directional long short
term memory (Bi-LSTM). Therefore, Deep Bi-LSTM archi-
tectures should have more potential for the dynamic sign
language recognition (SLR) [6], [7].

In Avola et al. [6], a similar recent approach where LMC
with stack Deep Bi-LSTM network is used as a prediction
model on temporal feature descriptors, which represent coor-
dinates of internal hand joints angles and the palm displace-
ment. However, stacking large number of Deep Bi-LSTM
units resulted to unsatisfactory recognition accuracy. Moti-
vated by [5], [6], we present 3DSpatio-temporal skeletal hand
joint features according to the prosodic model and orienta-
tion angle to address misclassification of highly correlated
ASL words. These words are difficult to be recognized by
learning internal hand joint angles and the palm displace-
ment only, thus, the similar ASL words can be treated as
composed by many small orientation variations and prosodic
cues. The major difference between the Deep Bi-LSTM
in [6] and ours, is that, we trained the Deep Bi-LSTM from
encoded fast fisher vector (FFV) information to improve
the Deep Bi-LSTM learning and reduce large abstraction.
Our contributions are supported by several sign language
models [8]–[11]. We make the following contributions:
(i) We introduced orientation angle Qn and prosodic µ

features to discriminate similarity between ASL words
from 3D skeletal hand characteristics.

(ii) Developed robust fast fisher vector (FFV) for fea-
ture selection and encoding in Deep Bi-LSTM, which
requires no large abstraction.

(iii) Hyper-parameters tuning of FFV-Bi-LSTM sequential
learning algorithm is conducted using a validation data-
driven approach.

(iv) We classified complex gestures using FFV-Bi-LSTM
that are critical to recognize by conventional Deep
Bi-LSTM algorithms.

(v) Our method conforms with the existing results in numer-
ous examples, even with a limited number of data set,
static and dynamic hand gestures.

The remainder of this article is as follows: Section II intro-
duces related works, Section III provides problem analysis,
mathematical hand gesture models, spatio-temporal feature
extraction, data correction and normalization, FFV encoding,
and FFV-Bi-LSTM). The recognition phase is proposed in
Section IV-A2. Section IV provide details of experimental
analysis and evaluation. Discussion is proposed in Section V.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK
From the existing works, we can further subgroup available
SLR systems into four groups as shown in Table 1. The first
group addressed SLR sensing using a contact-based system,

which is further sub-divided into two classes namely; wear-
able systems [12]–[16], which are very unnatural and prone to
misclassification and radio frequency system (RF) [17]–[19]
more natural and address intrusion, however, these systems
are restricted to high internet access and interference. The
emergence of digital cameras and camera stereo gave birth
to the vision-based SLR, forming the second group [20],
[21], [21]–[30] are natural, however, the camera systems
suffer complex segmentation. Sensors such as optical sensors,
flex sensors, accelerometers, etc. [16], [31]–[34] require no
segmentation and good accuracy. However, they are very
expensive, invasive, unnatural, and needs calibration set,
as shown in Table 1. Therefore, recent papers track dynamic
signwords using active imaging devices such as LMC [1], [5],
[35], MS Kinect [36] and Orbbec Astra which are portable,
requires no complex segmentation, no calibration, inex-
pensive, mobile, and provides 3D information. This formed
an active image sensor-based group four. The summary of
some of the available recognition methods are illustrated
in Table 2.

III. MATERIALS AND METHODS
In this section, our approach for addressing the misclassifi-
cation problem consists of the following process: Problem
analysis, mathematical hand gesture models, spatial and tem-
poral feature extraction, data correction and normalization,
FV encoding, and lastly FF-Bi-LSTM algorithm. This proce-
dure is illustrated in Fig. 1.

A. PROBLEM ANALYSIS
To solve misclassification, authors in [6] utilizes skeletal
joints sequence of hand displacements and internal angles as
their feature vector. However, these features are insufficient
to recognize most ASL words, especially similar ASL words
in Figs. (2)-(3). It is found that the differences among these
ASL words happen more at hand orientation as shown in
Figs. 2(a), (c), (f) and 3(a) and (d). However, small motion at
wrist generate large variation angles (1ϕ). To analyze hand
orientation, there is need to investigate prosodic model as
described in [10]. The Prosodic model is built from Inherent
and prosodic cues to form a lexeme at the root node. Inher-
ent cues comprised of handshape, location and orientation.
Prosodic cues are motion (movement cues) features. This
is the reason why motion features are known as prosodic
feature, as shown in Fig. 5. Thus, prosodic cues are mathe-
matically represented to mimic hand joint motion.

B. MATHEMATICAL HAND GESTURE MODELS
Hand joints are represented in Fig. 4 according to 3D coordi-
nates X, Y, and Z axes, which set origin at wrist position. The
distance Xj,k between positions j and k gives the relationship
between finger joints and fingertips (Zj,k,l) as refers in [1],
equivalently written as

Zj,k,l = [t ′s/po(j3), tj/tk(j3, tj), t ′s/j′s(t, j)]. (1)
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TABLE 1. SLR according to capturing modalities.

TABLE 2. Sign language recognition methods.
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FIGURE 1. Flow chart of the proposed method.

FIGURE 2. Highly correlated double hand ASL words (Good) and (Bad): In Figs. (a.)-(f.) shows corresponding 3D feature
representations of prosodic model. Their corresponding angle domain waveform is shown in (a.) and (d.). Corresponding
3D hand joints motion waveform is represented in (b.) and (e.). Pictures (c.) and (f.) shows corresponding hand shape
waveform.
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FIGURE 3. Highly correlated single hand ASL words (Hey) and (Child): In pictures (a.)-(f.) shows corresponding 3D feature representations of
prosodic model. Their distinct corresponding 3D angle waveform is shown in (a.) and (d.). The Corresponding 3D hand joints motion waveform is
represented in (b.) and (e.). In pictures (c.) and (f.) shows corresponding 3D hand shape waveform.

FIGURE 4. Skeleton hand joints definitions.

where t’s/po, tj/tk, and t’s/j’s denotes all fingertips to palm,
fingertip to fingertip, and fingertip to fingertip to joint ratios,
respectively. Then, the prosodic features µ of finger joints
motionM f (n) per each frame f can be coined as υ f (n), where
n denotes number of sequence per each frame. Thus,

µ = {M f
+ υ f + Z f }. (2)

Similarly, the chosen mathematical representation for hand
orientation angle about motion axis YR was a Right-hand rule,
which can be obtained using cross-product as follows

YR =
ZR × XL
|ZR × XL |

. (3)

Thus, angle between ZR and XL , is denoted as a. Wrist flexion
and extension angle is denoted as ϕ. Similarly, hand internal
angles b [6] can be obtained according to finger joint angles

FIGURE 5. Similar ASL words using single hand according to prosodic
model.

as shown in Fig. 4. Finally, hand orientation angles can be put
together as angular feature vector Q, defined as

Q = {ϕ + a+ b}. (4)

Therefore, extracted features according to formulations in
Eqs. (1)-(4) are fused through simple vector concatenation
equivalently written as:

λv = [µf (n),Qf (n), ρ] (5)

where v ∈ [thumb, index,middle, ring, little], and ρ contains
inherent features. Solving this model, a state-of-the-art Deep
FFV-Bi-LSTM algorithm is adopted.

C. SPATIO-TEMPORAL FEATURE EXTRACTION
Spatio-temporal features are basically defined by given frame
length F of sequence matrix

L = [M1,M2, · · · ,MF ] (6)
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Each matrix Mt ∈ L consists of skeletal measurements at
time-step t.
Thus, spatial information is obtained by setting a threshold

value among successive video frames, as given in Eq. (9).
This value is assumed from hand motion velocity (which is
≥ 45%). Moreover, temporal features are the hand coordi-
nates of all finger joints, tips of hand, palm center, and wrist
center, which generates approximated 3D coordinates of 22
poses. The pose is distinguished by velocity, that is ≥ 45%
of maximum velocity (peak velocity), as illustrated in frames
(b) and (e) of Figs. 2 - 3. Hand velocity, orientation angles,
spatial and inherent features are computed per 22 hand joints
together tomake a sum of 5× 32 (192) information per frame.

D. DATA CORRECTION AND NORMALIZATION
The output obtained from setup illustrated in Fig. 10 contains
noise, which is handled by Savitzky-Golay smoothing filter.
The smoothed information Bh,s,f = {bkp,q,r,f , · · · , b

k
p,q,r,n} is

utilized using local weighted linear regression (WLR) algo-
rithm to handle missing values and nonlinearity [57]. Thus,
weight function is added into linear regression as follow

η(wf ) = e−
(w− wf )

2λ2
(7)

wherew denotes prediction time,wf denotes data progressing
time and λ denotes wavelength parameter. Then, parameter
update is given in Eq. (8) and results of corrected video
information is illustrated in Fig. 6.

θdk = θ
d+1
k + α

n∑
f=1

η(wf )(bkf − Oθ (wf ))w
d
f . (8)

Furthermore, after data correction Y(w), then there is need
to normalize hands by zero centering wrist, using the follow-
ing equation

βw,f =

{
(0, 0, 0), if f = 1.
Yw,f − Yw=Right,f−1, if f = 2, · · · ,F .

(9)

E. FAST FISHER VECTOR ENCODING (FFV)
FFV transform the features by their deflection from a gener-
ative model (Gaussian Mixture Model (GMM)) using sparse
matrix representation (sparse filtering [58]). GMM is utilized
as probability density functionwithmixture weight (w), mean
vector (µ), parameters θ , and covariance matrix (diag(cov))
of the Gaussian respectively; k denotes the number of Gaus-
sian distributions in the mixture model, which is learned
together with the features vector as follows:
θ = {wk , µk ,

∑K
k=1 = diag(cov1k, · · · , covtk) : k =

1 · · ·K }. To apply FFV (~) to our features, let λ = {λt :
t = 1 · · · T } be the set of T local information in Eq. (8),
thus, generative procedures λ of the whole feature vectors are
formulated as follows

Hθ (λ) =
1
v

K∑
k=1

(λt ;µk , covk )wk , (10)

Algorithm 1 Fisher Vector Transformation
1: start
2: set β {Video features}
3: set µ, σ, v, k, diag(cov.) {GMM parameters}
4: set ψ {Target features}
5: repeat
6: while β is detect do
7: normalize β
8: set j = 0 to sequence length
9: set l = 0 to sequence length

10: end while
11: compute µ, σ, v, k, diag(cov.) via EM
12: compute f = β(features[j], µl, cov.l)
13: compute G from Eq. (11)
14: while H best fit β from Eq. (10) do
15: Get FFV encoding using step 11
16: end while
17: compute Eq. (12)
18: until Eq. (11) converge
19: return Eq. (11)
20: end

Also, FFV matrix can be obtained as follows:

~λ = [∇θ logµθ (T )∇θ logµθT ]. (11)

Similarly, ~ is finally obtained from fused partial derivatives
through GMM parameters

~ t = [Gtµ,1,G
t
s,1, · · ·G

t
µ,kG

t
s,k ]. (12)

where Hθ , 1/v, ∇θ log(·) denote generative model parame-
ters, normalized values, and log-likelihood gradient. The θ
are discover from training features via expectation maxi-
mization (EM) strategy. Gradients are computed according
to mean vector µf and standard deviation (sk ) of the fth
Gaussian in Eq. (12).

F. FAST-FISHER-BI-LSTM (FFV-BI-LSTM)
A Combination of FVs and deep neural networks was
already considered [59]. But FFV (GMM with diagonal
covariances) has not been considered in Deep Bi-LSTM for
SLR [4], [5], [51], [60]–[62]. Features encoded by FFV
are concatenated numerically using three-stacked Bi-LSTM
layers as shown in Fig. 8. Basically, each Bi-LSTM layer
evaluate FFV encoding, dimension reduction, spatial stack-
ing, and L2 normalization throughout Gaussians and λ as
follows

Of ,~ = σ [V−→h o
−→
h f ,Q~ f + V←−h o

←−
h f ,Q~ f + V−→h o

−→
h f , µ~ f

+V←−
h o

←−
h f , µ~ f + V−→h o

−→
h f , ρ~ f

+V←−
h o

←−
h f , ρ~ f + V−→h o

−→
h f ,L~ f

+V←−
h o

←−
h f ,L~ f + do] (13)

where σ , Vho, hf , Q, µ, ρ, and L denotes logistic sigmoid
function, weight matrices, angle, motion, shape, and spatial
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FIGURE 6. Data correction: A. shows original average skeletal hand video frames, and
B. represents smoothed and corrected frames information using weighted linear
regression.

FIGURE 7. 3D keypoints generation with Fast Fisher vector transformation.

TABLE 3. Simulation environment.

features encoded by FFV ~ f , and do denotes bias. Where
−→
ho ,

and
−→
hf denotes forward hidden and cell state vectors.

←−
ho and

←−
hf denotes previous hidden and cell state vectors.

IV. EXPERIMENTAL ANALYSIS AND EVALUATION
A. EXPERIMENT
We evaluates the FFV-Bi-LSTM recognition algorithm using
spatial-temporal prosodic and angle features in three cases.
The first, second and third case adopt skeletal video sequence
recognition from our proposed dataset, ASL dataset in [6],
and public data sets [6], [63], [64] with FFV-Bi-LSTM. The

TABLE 4. Network parameter settings.

proposed set up is illustrated in Fig. 10, where a Leap motion
controller (LMC) is employed at the signer’s chest to capture
3D skeletal hand joints information from backhand view. This
is to enable the natural mobility of the signer. The testing
environment is provided in Fig. 12 and the set up values is
given in Table 3.

1) DATA SETS
In our new datasets, we employed and trained 10 voluntar-
ily hearing ability people to perform 57 randomly selected
ASL words of both single and double hand information.
All signers they perform the sign while walking and standing.
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FIGURE 8. Architecture of Bi-directional LSTM.

FIGURE 9. Block diagram of needed hardware components.

Each signer perform all 57 ASL words, ten (10) times.
We have collected 10 pairs of similar ASL words out of
57 ASLwords in the dictionary. The selected words belong to
frequently daily used first 100 ASL words. Some example of
our datasets are given in Fig. 5. The data set is partitioned
into training and testing; using different types of signers
(signer-independence). The selected features have undergone
various tests to ensure effectiveness. We further evaluate
our method on Semaphoric hand gestures contained in the
Shape Retrieval Contest (SHREC) [64], ASLData set [6], and
Leapmotion dynamic hand gestures (LMDHG) [63] Data set,
respectively.

FIGURE 10. Photo of experimental system.

2) RECOGNITION PHASE
Our algorithm call a function InitialTransformWeights name-
value pair. Sparse filtering algorithm is implemented in
MATLAB using ‘‘sparsefilt’’ function from yael package.
The algorithm handle sparse filtering objective function min-
imum [65]–[67]. We selected average number of GMM
components and few number of iteration for effective video
features encoding as provided in Algorithm 1. FFV encoding
generates synthetic local information of a particular frame,
which do not handle possible time correlation between two
different encoded frames of the sequences. To fully exploit
this information, three Bi-LSTM units are chosen, each unit
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FIGURE 11. Confusion matrix of skeletal ASL datasets [6] using adopted method.

TABLE 5. Results comparison on ASL skeletal data set in [6].

accommodate seven layers connected with dropout layers of
20% (0.2) deactivation and validated with careful selection of
parameters of Table 4. The total output of this layer is added
up and normalized by the softmax layer as shown in Fig. 8.
The output Off from Eq. (15) is considered as probability for
a given number of ASL word L. For a given OEt which have
Lth sequence from class EL , then the predicted ASL word
G is obtained from normalized Off at softmax. ASL word
classification is achieved by computing high probability score
p fromEq. (14). The final layer is obtained from the following
formulations:

O =
F−1∑
f=0

Offf (14)

OL = p(El |G) =
eO

l∑L−1
i=0 e

Oi
, L = 1, · · · ,L (15)

We summarize the steps of sequential gesture recognition
in details in the following Algorithm 2.

B. RESULTS
We reported performance results of FFV-Bi-LSTM algo-
rithm. Overall comparison results between FFV-Bi-LSTM
and Avola et al. [6] method are shown in Table 5. Aver-
age recognition of FFV-Bi-LSTM are illustrated in Table 9
for 10-pairs highly correlated ASL words and randomly
selected 57 ASL words. The computational performance
of FFV-Bi-LSTM in the proposed data set is depicted in

TABLE 6. Results comparison on SHREC dataset.

TABLE 7. Results comparison on LMDHG dataset.

Table 10. To show the effectiveness of the FFV optimization,
we extend tests on spatio-temporal features without and with
the FFV optimizationsmentioned in subsection III-F, detailed
as Tables 11 and 12 for ‘‘Bi-LSTM no FFV optimization’’
and ‘‘FFV-Bi-LSTM’’. It is, therefore, demonstrates that our
adopted algorithm is feasible for ubiquitous applications.
We compare the performance accuracy of FFV-Bi-LSTM
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TABLE 8. Results comparison with hand shape and motion features.

TABLE 9. Scores per recognized correlated ASL words.

with some existing state-of-the-art methods, the average
recognition accuracy for each is plotted in Figs. 11 and 13
and the accuracy values (Precision, Recall and F-scores) are
listed in Tables 8, 6, 5, 7.

Algorithm 2 Sequential Feature Learning
1: start
2: set L in Eq. (6) {Video input sequence}
3: set Vh {Sequence weight}
4: set S {Sequence length}
5: set n {Hand index}
6: for each n ∈ [0, s− 1] do
7: repeat
8: if n < s− 1 then
9: Feed MnandVh to Bi-LSTM

10: else if
11: n← S − 1 then
12: Get Mn from Eq. (6) {Features for Bi-LSTM}
13: else if
14: stop
15: end if
16: end for
17: compute parameters and recognition metrics
18: until Eq. (14) converge
19: return Eq. (15)
20: end

V. DISCUSSION
Deep Bi-LSTM with 3 units has hard learning because of
high abstraction, which lead to low accuracy. However, Deep

FIGURE 12. Confusion matrix of Correlated ASL words using adopted
method.

FFV-Bi-LSTM has flexible computing which lead to an
increase of 5% accuracy. Thus, Deep FFV-Bi-LSTM outper-
forms the conventional Deep Bi-LSTM in [6]. The superior
model is number three with four feature vectors, which is cho-
sen for further analysis. Performance evaluation of model 3
using Deep Bi-LSTM and FFV-Bi-LSTM is demonstrated on
Tables 11-12. It is proven that each word takes an amount of
2 seconds to be trained. However, the generalization of model
takes approximately 1 second to test each word per sequence.
Therefore, the standard deviation of 7.091 is achieved from
the mean. This means that each score deviates from the
mean by 0.0738 points on average. The accuracy of the
algorithm and proposed data set is further evaluated using
leave-one-subject-out cross-validation. Per-class accuracy is
obtained to be 91.002%, with less than 9.0% error which
demonstrates that our algorithm has a high probability to
recognize ASL words of similar characteristics, as detailed in
Table 10. Table 9 depict the recognition performance of leave-
one-subject-out cross-validation of the 57 randomly selected
ASL words. Therefore, the chosen mathematical model has
proven to be a good choice for our idea. It is also shown
that the adopted algorithm has a relatively bad generaliza-
tion to recognize positive results of ‘‘Happy’’, ‘‘Cheap’’,
and ‘‘Jump’’. Research findings show that these similar ASL
words have similar spatial information and minimum ori-
entation angle variations. One of the major limitations of
adopting FFV is trial and error strategy while choosing stable
GMM components. All procedures for computing GMM are
iterative, therefore emphasis must be put in place on a suitable
iteration number for the GMM matrix because of its local
convergence.
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TABLE 10. Computational cost of proposed method.

TABLE 11. Different features combination for various Deep Bi-LSTM model comparison.

TABLE 12. Different features combination for various Deep FFV-Bi-LSTM model comparison.

FIGURE 13. Confusion Matrix of the entire dataset.

VI. CONCLUSION
In this work, we adopted an approach to recognize highly
correlated American sign language words. We optimize the
accuracy of recorded 3D video skeletal hand joints informa-
tion, using a WLR algorithm and filter. The final information
is encoded using FFV for fine-grained recognition which
depends on a few discriminative features. The Features are
found potential and interesting for Deep Bi-LSTM recog-
nition. The second contribution in this article includes the
design of a new large 3D dynamic hand skeletal ASL data set.
We also systematically compare the radius of convergence of

our method with the method of [6]. FFV-Bi-LSTM algorithm
fail to learn the small changes of hand motion trajectory
of some similar ASL words, which reflect biases, which
is responsible for misclassification. Since several features
are influencing the recognition of similar ASL words, it is
suggested that similar ASL words should be dealt with as a
multi-feature problem in future research.
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