
Received December 10, 2021, accepted January 31, 2022, date of publication February 1, 2022, date of current version February 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3148703

Admission Control and Virtual Network
Embedding in 5G Networks: A Deep
Reinforcement-Learning Approach
SEBASTIAN TROIA , ANDRES FELIPE RODRIGUEZ VANEGAS,
LIGIA MARIA MOREIRA ZORELLO , (Graduate Student Member, IEEE),
AND GUIDO MAIER, (Senior Member, IEEE)
Department of Electronic, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy

Corresponding author: Sebastian Troia (sebastian.troia@polimi.it)

ABSTRACT Fifth-generation (5G) networks are already available in major urban areas and are expected to
bring a major transformation to citizens’ lives. 5G services, such as enhanced mobile broadband (eMBB),
ultra-reliable low latency communications (URLLC), and massive machine-type communications (mMTC),
require a network infrastructure capable of supporting stringent requirements in terms of latency and
bandwidth demands; as such, it must be highly dynamic and flexible. Network slicing is a key enabler
technology that can provide dynamic and flexible characteristics to 5G network architecture. A network
slice (NS) can be defined as a partition of network and IT resources, that is, network links and nodes capacity
dedicated to a specific set of service demands. As a result, different NSs can coexist over the same physical
infrastructure network and can be used to dynamically and flexibly deploy the aforementioned 5G services.
However, to efficiently implement NSswith different requirements, communication service providers (CSPs)
that own the physical infrastructure network must adopt sophisticated techniques for admission control and
resource allocation of NSs. In this paper, we present a novel framework for admission control and resource
allocation of 5G NSs in metro-core networks. Specifically, our framework is based on a deep reinforcement
learning (DRL) algorithm called Advantage Actor Critic (A2C), which performs admission control, i.e. it is
capable of learning which slice to admit based on the availability of the physical network resources. Then,
given the diversity of requirements for each 5G service, we propose different resource allocation algorithms
based on integer linear programming (ILP) and heuristics to treat each service accordingly. Results show
that our proposed framework can increase the number of admitted NSs with respect to the case in which the
admission control is disabled by improving the resource allocation performance.

INDEX TERMS Network slicing, network function virtualization (NFV), 5G, deep reinforcement learning.

I. INTRODUCTION
Nowadays, emerging 5G technology is widely available in
major urban areas and coverage is expected to reach less
populated areas in the coming years [1]. 5G services, such
as enhanced mobile broadband (eMBB), ultra-reliable low
latency communications (URLLC), and massive machine-
type communications (mMTC), are defined by the Interna-
tional Telecommunication Union (ITU) [2] and will soon
be available to the majority of citizens. In addition, 5G has
already reached relevant industrial scenarios, thanks to the
introduction of new use cases enabled by 5G connectivity

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard P. Parr.

that have improved the productivity and performance of the
production chain (e.g. Industrial IoT).

5G leverages the benefits of network function virtualization
(NFV) to accommodate flexibility in delivering carrier-grade
differentiated services. NFV is the paradigm of moving net-
work functions, such as routing, firewall, and NAT, from ded-
icated hardware appliances to software-based applications
running on commercial off-the-shelf equipment [3]. These
virtual network functions (VNFs) provide many benefits
to communication service providers (CSPs) that own the
physical infrastructure network. They allow openness of plat-
forms, scalability and flexibility, shorter development cycles,
and reduced capital expenditure (CapEx) and operating
expenditure (OpEx) [4]. In addition, NFV enables network

15860 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4712-3767
https://orcid.org/0000-0002-6292-7915

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

slicing, which ensures isolation and multi-tenancy support
on a common physical network infrastructure by providing
the logical and physical separation of network resources.
Specifically, a network slice (NS) is defined as a partition of
network and IT resources, that is, network links and nodes
capacity dedicated to a specific set of service demands.
As such, different NSs can coexist over the same physical
substrate network (SN) and can be used to dynamically and
flexibly interconnect VNFs by providing different types of
services, such as real-time video streaming and enterprise
services. To such extent, NFV opens up the implementation
and management of NSs not only to CSPs, which are also
infrastructure network providers (InPs), but also to third-party
service providers, such as Network Slice Providers (NSPs),
which rely on one or more InPs to sell 5G services to end
users.

Although the adoption of NFV brings revolutionary ben-
efits in terms of scale and agility, it also brings a new level
of complexity. Virtualization breaks traditional networking
into dynamic components and layers that have to work in
unison and can change at any given time [5]. For instance,
a virtualized firewall can be subject to continuous updates by
NSPs. To efficiently implement NSs over SNs, NSPs must
deploy a software-based embedding system (ES) compris-
ing a set of sophisticated techniques for admission control
and resource allocation of NSs of different types, such as
eMBB, URLLC, and mMTC. The problem of how to allo-
cate physical resources to virtual resources is called virtual
network embedding problem (VNEP). In most real-world
scenarios, the VNEP needs to be addressed as an online
problem (online VNEP). That is, we do not know how many
andwhich types of Network Slice Requests (NSRs) will come
to the ES, as such, they arrive dynamically and remain in
the SN for an arbitrary period of time [6]. To be realistic,
the ES must handle the NSRs as they arrive through an
admission control (AC) algorithm, rather than attending a
set of NSRs at once (offline VNEP). The NSP may decide
to admit NSRs deemed to have the best chance of meeting
the predefined requirements. For example, the URLLC and
eMBB are two dominant types of service of the emerging
5G network. Latency and reliability are major concerns for
URLLCNSRs (0.25-0.30 ms/packet [7]), while eMBBNSRs
request for the maximum data rates (Gbps). The trade-off
among latency and reliability between eMBB and URLLC
services, heads to a challenging scheduling dilemma [8], [9].
Slice admission is also dictated by the available resources
in the network resource pool, and the AC algorithm must
consider the available resources in the SN and manage them
in order to accommodate as manyNSRs as possible. Different
solutions to this problem have been addressed by several
research works by employing various techniques, such as
Markov chains [10], big data analytics [11], queuing the-
ory [12], etc. (see Section II). However, these studies do
not differentiate the slices embedding according to the 5G
services they carry, i.e. eMBB, URLLC, and mMTC.

This paper proposes a novel ES framework to solve
the online VNEP of 5G services in metro-core networks.

The AC algorithm is based on deep reinforcement learn-
ing (DRL) while the VNE is based on integer linear program-
ming (ILP) and heuristic algorithms.

DRL is a subfield of machine learning that aims to cap-
ture the most important features of a dynamic environment
by deploying a learning agent (powered by deep learning
algorithms) that interacts with it to achieve a goal [13].
For instance, authors in [14] developed AlphaZero, a DRL
framework that performs exceptionally in games such as
chess, shogi, and Go. In short, this framework includes a
set of software agents capable of learning how to win in
these games. They generate a series of actions (such as
movements of pawns in the chessboard) based on the results
produced in previous games. Each time they play, they pro-
duce increasingly better results. An interesting aspect of DRL
is that it implements software agents capable of learning
how to optimize an objective function by interacting with
an environment that can assume hundreds of thousands of
different states. For this reason, given the complexity of the
AC problem, our goal is to implement a DRL algorithm
to optimize the admission of NSRs in a 5G metro-core
network environment. In particular, we implement a novel
algorithm called Advantage Actor Critic (A2C) [15], which
combines two types of reinforcement learning algorithms:
policy-based and value-based. Policy-based agents directly
learn a policy (probability distribution of actions) bymapping
input states to output actions. Value-based algorithms learn
to select actions based on the predicted value of the input
state or action. Moreover, given the different requirements
of 5G services, we developed different ILP and heuristic -
based algorithms to address the VNE of eMBB, URLLC,
and mMTC slices. This work considers the metro-core net-
work architecture proposed by the Metro-Haul European
project [16] as an SN. This network defines an NFV infras-
tructure that comprises metro nodes with IT and TLC equip-
ment, following the multi-access edge computing (MEC)
model defined by ETSI to support the instantiation of VNFs.
Both ILPs and heuristics aim to optimize the SN resources for
each NSR.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III presents
the proposed ES framework that solves the online VNEP
of 5G network slices. Section IV presents the performance
evaluation of the proposed AC and VNE algorithms. Finally,
section V concludes the study.

II. RELATED WORK AND PAPER CONTRIBUTION
This section reviews the researchworks that have investigated
AC and VNE algorithms.

A. ADMISSION CONTROL TECHNIQUES
The authors in [10] presented an analytical model based on
a semi-Markov decision process enhanced by an artificial
neural network (ANN) to perform AC of NSs on a wireless
access network. The objective of the model is to maximize
the overall profit of the infrastructure network provider while

VOLUME 10, 2022 15861

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

guaranteeing the service level agreement (SLA) committed to
all slices.

In ref. [11], the authors introduced a slice admission strat-
egy based on big data analytic (BDA) predictions. They
considered a network architecture comprising three differ-
ent domains: 1) wireless access network, 2) metro-optical
network, and 3) datacenter (cloud) network. The goal is to
accept a slice request issued by a customer from the wireless
network domain only when it is estimated that no service
degradation will occur for both the incoming slice request and
the slices already deployed. The BDA prediction algorithm is
a regression-based framework that makes predictions based
on past data.

Han et al. [12] tackled the AC problem by proposing
a system based on the queuing theory. The authors placed
this problem into a typical wireless access network scenario,
where the mobile operator decides to lease infrastructure
resources to customers (or tenants). The proposed system
consists of a stochastic model that leverages a multi-queuing
system (e.g., one queue for each type of slice) to design an
AC for on-demand network slices.

Challa et al. [17] mapped the AC problem into a knapsack
problem (MKP) with randomized arrivals and slice duration.
The goal is to maximize resource monetization, defined as
the revenue of the network provider while minimizing the
rejection rate to avoid SLA violations.

The authors in [18] proposed an AC model based on
RL with the goal of maximizing the profit of the network
provider. Specifically, they considered a 5G flexible RAN,
where slices of different mobile service providers are vir-
tualized over the same RAN infrastructure. The proposed
RL-based algorithm employs an ANN-based stochastic pol-
icy network to model the AC agent used to accept or deny
slice request to maximize revenue.

In [19], the authors proposed a framework for network slice
management in the context of a 5G RAN. It comprises three
modules: prediction, AC, and scheduling. The prediction
module is responsible for predicting the traffic of a specific
slice. The second module performs the AC as a geometric
knapsack problem, showing that this problem is NP-hard.
Finally, the scheduling module is in charge of meeting the
agreed SLAs, and reports back deviations to the prediction
module.

In [20], the authors proposed an admission control based on
a recurrent neural network (RNN) to improve the overall sys-
tem performance for the online VNE problem. The admission
control serves as a filter for the incoming network slices by
preventing the VNE algorithms from spending time on slices
that are either infeasible or that cannot be embedded within
an acceptable time. Their approach was based on supervised
learning, which means that their RNN algorithm is trained
offline.

The different techniques proposed in the aforementioned
papers are based on accepting/rejecting individual network
slices as they arrive. These studies do not distinguish the
slices according to the 5G services [21], such as eMBB,
URLLC, and mMTC, preventing the diversity of their QoS

requirements. Furthermore, most of the proposed techniques
focus on allocating radio resources while neglecting the
allocation of 5G metro-core network nodes. In this study,
we focus on a generic 5G metro-core network and consider
standardized 5G services to perform AC based on a novel
DRL approach.

B. VIRTUAL NETWORK EMBEDDING TECHNIQUES
In this section, we present an overview of the research work
on the VNE techniques. Several research works have pro-
posed different methodologies to solve this problem. ILP
formulations, hence, mathematical optimization models, pro-
vide optimal solutions. Heuristics algorithms cope with the
complexity problems that generally affect ILPs, such as the
rapidly-increasing resolution time due to the large number
of variables and constraints. Machine learning algorithms
provide flexible and autonomous solutions to cope with the
dynamic nature of VNE problems.

In [22], the authors proposed an ILP formulation to solve
the VNE. The authors implemented a multi-commodity flow
formulation to optimize the allocation of a generic slice onto
a physical network. Their model strives to minimize physical
resource consumption and load balancing, which is accom-
plished by means of three different objective functions: load
balancing plus shortest path (LB+SP), shortest distance path
(SDP), and weighted shortest distance path (WSDP).

In [23], the authors proposed a heuristic algorithm for the
VNE. The authors evaluated the acceptance ratio and run time
of rank algorithms by comparing them with an ILP-based
solution. They claim that all ranking techniques achieve high
acceptance ratios within short run-times, whereby the best
algorithm depends mainly on the slice and the SN.

In [24], the authors provided an ILP formulation by propos-
ing a single objective function to compute the optimal VNE
with respect to the revenue-to-cost ratio. They considered
computation power, memory, throughput, and latency as the
relevant resources for the SN by providing a nearly optimal
ILP formalization and implementation. However, the revenue
and cost are not the only objectives that an embedding algo-
rithm needs to meet for every type of slice; different types
of slices have different requirements, and as they claim in
the future work section, heuristics need to be designed and
evaluated to solve large problem instances within a short
run-time.

The authors in [25] proposed a graph-based model to map
network slices to the SN. The mapping process is based
on two steps: 1) node mapping, that is, the selection of the
substrate nodes as the host for the virtual nodes of the slices;
2) then, link mapping, that is, the procedure of connecting
selected host nodes in the physical SN.

In [20], the authors formulate an ILP and a heuristic algo-
rithm for VNE of network slices. They considered network
slices requests with a delay requirement and a set of ser-
vice function chains (SFCs) where each SFC is denoted as
a set of VNFs with a capacity requirement. However, this
solution does not have different objectives of bandwidth or

15862 VOLUME 10, 2022

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

CPU capacity for the different types of slices; their work aims
to minimize the embedding costs while guaranteeing delay
constraints.

In [26], the authors proposed a framework based on deep
reinforcement learning to allocate virtual radio resources.
They considered bandwidth and delay -constrained slices,
whose radio resources are mapped to base stations to max-
imize the transmission rate and minimize the queuing delays
according to the slice requirements. Nevertheless, this work
does not consider the slice admission control nor the metro-
core network slicing.

In [27], the authors developed an algorithm for VNE based
on deep reinforcement learning. They considered virtual net-
work requests that demand node CPU processing and link
bandwidth resources to the network with the goal of improv-
ing the acceptance ratio and the revenue. Besides enabling
dynamic slice embedding, this work does not consider the
heterogeneous requirements of the services that may be car-
ried by the slice.

Most of these studies mapped the arriving generic slices
onto the physical SN. In contrast, in this work, we propose
both ILP and heuristic-based algorithms that consider four
types of 5G network slices, namely, generic, eMBB, mMTC,
and URLLC, according to the International Telecommuni-
cation Union (ITU) [21]. We consider their requirements
to tailor both the proposed ILP and heuristic-based VNE
algorithms. In short, the objective of this work is to jointly
perform AC and VNE of NSs in a 5G metro-core network by
optimizing resource utilization and maximizing the revenue
of the infrastructure network provider.

C. PAPER CONTRIBUTION
In a nutshell, we developed a novel ES framework able to
solve the online VENP for 5G services in metro-core net-
works. The contribution of this work can be summarized as
follows:
• We implemented a novel algorithm for the AC of NSs
based on DRL. In particular, we tailored the Advan-
tage Actor Critic (A2C) [15] algorithm with the aim
of optimizing the slice admission control of different
types of 5G services, such as generic, eMBB, mMTC,
and URLLC. Furthermore, we took into account the
revenue-to-cost ratio after the VNE procedure to design
the reward function.

• We included two types of VNE algorithms in our ES
that are inspired by the research work in [25]. The first
is based on an ILP mathematical formulation with the
aim of solving the online VNE for different types of
NSR. The second is based on a heuristic with the goal of
reducing the computation time of ILP-based algorithms.
Compared to the work in [25], we provided the follow-
ing novelties:
1) We extended the ILP formulation bymodifying the

objective functions for eMBB and mMTC NSRs.
In particular, our objective functions ensure that
the residual physical resources on the SN are maxi-
mized. As a result, our ILP formulations provided a

fair distribution of available resources throughout
the SN in order to prevent some nodes, or links,
from being used more than others.

2) We developed the heuristic algorithms by taking
into account specific requirements of the 5GNSRs.
As such, we have considered the maximum CPU
capacity of the physical nodes as the main feature
to embed the eMBB NSRs; then, we have used
the minimum bandwidth available on the substrate
nodes and the number of hops as the main features
for the mMTC and URLLC NSRs respectively.

In the following sections, we discuss the proposed ES that
solves the online VNEP for 5G services on a metro-core
network.

III. EMBEDDING SYSTEM FRAMEWORK FOR 5G
NETWORK SLICES
Fig. 1 shows the proposed ES framework. It includes two
modules: an AC module and a VNE module. The first is
based on a DRL algorithm and performs admission control
of NSRs. The second is based on different ILP and heuristic-
based algorithms and performs resource allocation onto the
SN. The proposed ES framework is as follows.

FIGURE 1. Embedding system framework for AC and VNE.

1) At time t , an NSR arrives at the AC module. It decides
to accept or reject the NSR based on the output of the
VNE module and the status of the SN at the previous
time step.

2) If the AC module accepts the NSR, it informs the VNE
module such that it can be embedded onto the SN.
Otherwise, it is rejected.

3) Once the VNE module receives acceptance from the
AC module, it performs the embedding procedure.
If the NSR embeds successfully, the VNE module
sends positive feedback to the AC module; otherwise,
it sends negative feedback. The latter is important for
the AC module because it can learn to reject NSRs that
cannot be embedded in advance.

The following sections will discuss the details of the SN,
the type of NSRs, the DRL-based AC module and the VNE
module.

A. SUBSTRATE NETWORK (SN)
The SN considered in this work follows the metro-core
network architecture proposed by the Metro-Haul European
project [16]. The Metro-Haul (MH) network is designed to

VOLUME 10, 2022 15863

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

support network slicing according to the 5G-MEC model;
as such, it can support different 5G service requirements.
For instance, eMBB requires a wide range of VNFs dis-
tributed across the core and edge metro nodes. At the same
time, the mMTC needs VNFs deployed at the edge to
support a high connection density of online devices such
as sensors and other wireless devices. The MH network
defines an NFV infrastructure that comprises metro core edge
nodes (MCENs) interconnected by a high-capacity optical
network. The MCENs are considered as mini datacenters
hosting both IT and Telecommunication (TLC) equipment,
following the MEC model defined by ETSI, so that they
can support the instantiation of VNFs. Following the MH
guidelines, we assumed that these metro nodes are connected
via bidirectional fiber links with transmission distances rang-
ing from 5 km to 50 km. Each link contains two fibers
with 20 wavelengths each at 100 Gbps/wavelength; in addi-
tion, each MCEN is also equipped with a set of 100 Gbit/s
transponders. In terms of the nodes computational capacity
required to host the VNFs related to each slice, we consider
the server Intelr Xeonr Gold 6134 with 8 cores, processing
capacity of 537.6 GFLOPS, maximum operating frequency
of 3.7 GHz. In this work, we designed the 5G metro-core
network as an undirected graph GS := (NS ,LS), where NS
represents the set of all physical nodes (MCENs) and LS ⊆
NS ×NS represents the set of all physical links in the SN. AN
and AL are the node attributes (CPU processing capability)
and link attributes (bandwidth).

B. NETWORK SLICE REQUEST (NSR)
The NSR comprises a virtual topology composed of VNFs
and virtual links with CPU and bandwidth requirements.
In this work, we follow the separation between the 5G control
plane and data plane VNFs [28], which includes the fol-
lowing VNFs: access/mobility management function (AMF),
session management function (SMF), and user plane function
(UPF).We consider four types of NSRs based on 5G services:
eMBB, mMTC, URLLC [21], and a generic slice that can be
customized according to the user needs. Next, we present the
details and requirements of the considered 5G NSs.
• eMBB: It requires high throughput (up to 20 Gbps)
and computing resources, while the latency constraint
is approximately 4 ms [25]. As a result, the deploy-
ment of eMBB requests aims to minimize the remaining
resources of the physical nodes. Video streaming ser-
vices and augmented reality applications belong to this
class [23].

• mMTC: It includes a large number of connected online
devices (1 million devices/km2 [29]), such as IoT sen-
sors. The deployment of mMTC requests aims to min-
imize bandwidth usage on physical links. These types
of requests have plenty of connections; consequently,
the requirement of computing resources is high and the
demand for a low congestion rate.

• URLLC: this type or requests have strong latency con-
straints (e.g. 1 ms) and high availability requirements
(e.g. 99.9%) [30]. The deployment of URLLC requests

TABLE 1. Mathematical notation for the SN and NSRs.

aim to minimize the delay. Autonomous driving services
and eHealth applications are examples of this type of
slice.

As for the SN, we denote each NSR as an undirected graph
GV := (NV ,LV), where NV represents the set of all virtual
nodes and LV ⊆ NV×NV represents the set of all virtual links
in the NSR.RN andRL are the node requests (CPU processing
capability) and link requests (link bandwidth). Table 1 shows
the mathematical notation of the SN and NSRs.

C. ADMISSION CONTROL MODULE
This section describes the proposed AC module based on the
DRL. As mentioned in the Introduction section, DRL is a
sub-field of machine learning that combines RL and deep
learning. In particular, DRL agents can handle very large sets
of input data and decide what actions to perform to optimize
an objective. In this study, we implement the Advantage
Actor-Critic algorithm (A2C) [15], which takes as input the
current NSR and different information from the SN (i.e. state
space), such as the number of metro-core nodes and links, the
current CPU loads, bandwidth consumption, etc. Then, the
agent learns to make decisions, such as accepting the NSR
(i.e. action space) by optimizing the profit of the NSP. For
this, we shaped a reward function that returns the goodness
of action made by the agent. In the following subsections,
we discuss the details of the A2C algorithm implementation.

1) A2C ALGORITHM
Actor Critic algorithms have proven to be very efficient for
problems with a large number of environmental states [31].
For instance, Md. Shirajum Munir et al. [32] designed a
multi-agent A2C algorithm with the goal of providing an
efficient energy scheduling scheme for a microgrid-powered
MEC network. In particular, the objective is to reduce the gap
between energy generation and demand estimation, where
it can maximize the usage of renewable energy. Madyan
Alsenwi et al. [33] proposed a novel approach combining
optimization-theory based methods with the A2C algorithm
to improve the performance of resource allocation of eMBB
and URLLC traffic in wireless networks. These two research
works show successful implementations of the A2C algo-
rithm in different network scenarios. The objective of our
work is to exploit the capability of the A2C algorithm to per-
form the AC task of NSs in the metro-core network scenario.

15864 VOLUME 10, 2022

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

A2C is a specific type of actor-critic algorithm that belongs to
the family of action-value functions. It combines two types of
RL algorithms: policy-based and value-based. Policy-based
algorithms comprise agents that learn a policy, that is, a prob-
ability distribution of actions, by mapping the input state
space to output actions. A policy can be represented as a
rule used by the agent to select the correct action. It can be
deterministic or stochastic, in which case it is usually denoted
by π . Policy-based algorithms represent a policy as π (a|s),
where a is the action and s is the state. On the other hand,
value-based agents learn how to select actions based on the
predicted value of the input state or action. Unlike policy-
based algorithms, value-based agents aim to find a numerical
representation of a state. In other words, the value is the
expected reward E for state s under a policy π . The value
function is denoted by V π (s) and it is represented as follows:
V π (s) = Eπ [r(t) |s]. As a result, action-value functions learn
a value for the action instead of a state. The goal of the agent
is to find an optimal policy π∗ : S → A to maximize the
expected reward. As such, we first define the value function
V π : S → R which represents the expected value returned
by following the policy π for each state s ∈ S. The value
function V for policy π is defined in Eq. 1:

V π (S) = Eπ
[
rt (st , at)+ γV π (st+1) | s0 = s

]
(1)

Because the goal of the agent is to find the opti-
mal policy π∗, an optimal action at each state can
be expressed by the optimal value function: V ∗(s) =
maxat {Eπ [rt (st , at)+ γV

π (st+1) | s0 = s]}. If we denote
Q(s, a) , rt (st , at) + γEπ [V π (st+1)] as the optimal
Q-function for all state-action pairs, then the optimal value
function can be written as follows: V ∗(s) = maxa{Q∗(s, a)}.
Therefore, the final goal is to find the optimal values of the
Q-function, that is, Q∗(s, a), for all state-action pairs, which
can be done through iterative processes. In particular, the
Q-function is updated according to the following rule:

Qt+1(s, a) = Qt (s, a)+ αt [rt (s, a)

+ γmaxa′Qt (s, a
′)− Qt (s, a)

]
(2)

In Eq. 2, the learning rate αt defines the impact of new
information on the existing Q-value. The algorithm then
yields the optimal policy indicating an action to be taken at
each state such that Q∗(s, a) is maximized for all states in the
state space, i.e., π∗(s) = argmaxα Q

∗(s, a).
The traditional Q-learning is based on the concept that the

agent knows the expected reward for each action at every step.
However, it does not scale for problems with large states and
action spaces. Therefore, DRL-based algorithms use deep
learning to scale to decision-making problems that were pre-
viously intractable, that is, settings with high-dimensional
state and action spaces. An actor-critic algorithm consists
of two artificial neural networks: actor and critic. The actor
network selects an action at each time step, and the critic
network outputs the Q-value of a given input state. In other
words, while the critic network learns which states are better
or worse, the actor uses this information to explore good

states and try to avoid bad states. The A2C algorithm is a
specific version of the traditional actor-critic that exploits an
advantage function that predicts the error of the agent [15].
The learning procedure of the actor and critic network is
performed separately, and it uses gradient ascent to update
both sets of weights in the corresponding networks. As time
passes, the actor is learning to produce better and better
actions (it is starting to learn the policy), and the critic is
getting better and better at evaluating those actions. In the
following subsections, we provide a definition of the state
space, action space, and reward function.

2) STATE SPACE
A state is represented by the available resources in the sub-
strate 5G metro-core network. To achieve efficient admission
control, the agent needs sufficient information about the cur-
rent state of the environment and the NSR characteristics.
To achieve this, we define two feature vectors, ϕS (GS , t) and
ϕV (GV , t), which are representative of the SN and NSR at a
time t . The ϕS (GS , t) vector is composed by the following
features:
• Number of physical nodes (N’): it is the number of
physical nodes that have available CPU capacity at
a time t . It is defined as follows: N ′(t) = {∀n ∈
NS |AN (n, t) > 0}

• Number of physical edges (L’): it is the number of
physical links that have available bandwidth capacity
at a time t . It is defined as follows: L ′(t) = {∀l ∈
LS |AL(l, t) > 0}

• Average and standard deviation degree of physi-
cal nodes (ADp and SDp): the degree of a node is
defined as the number of its neighboring edges. Average
degree (ADp) is the average value of the degree of all
nodes in the graph, i.e. d(G, t) =

∑N ′(t)
i d(ui, t)/N ′(t)

where d(ui, t) denotes the degree of node ui at a time t .
While, the standard deviation degree SDp) is the stan-
dard deviation of the degree of all nodes in the graph

• Average and standard deviation of clustering coeffi-
cient (ACC and SCC): considering a node u, the clus-
tering coefficient ccu(t) represents the likelihood that
any neighbors of u are connected among each other at
a time t . It is defined as: ccu(t) =

2Nu(t)
Ku(t)(Ku(t)−1)

, where

Nu(t) is the number of links between the neighbors of
u, while Ku(t) is the degree of u. The average clustering
coefficient (ACC) is the average of ccu(t) across all the
nodes in the graph. The same applies for the standard
deviation clustering coefficient (SCC)

• Average and standard deviation of path length
between physical nodes (APLp and SPLp): the aver-
age path length between physical nodes (APLp) is the
average total path length at a time t between physical
node u and every other physical node that is reachable
from u. The same applies for the standard deviation of
path length between physical nodes (SPLp)

• Percentage of end points (PEP): it is defined as the
percentage of nodes with degree equal to one

VOLUME 10, 2022 15865

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

• FreeCPU (FCPU): it is the total available CPU capacity
in the SN at a time t

• Occupied CPU (OCPU): it is the total occupied CPU
capacity in the SN at a time t

• Free bandwidth (FB): it is the total available bandwidth
capacity in the SN at a time t

• Occupied bandwidth (OB): it is the total occupied
bandwidth capacity in the SN at a time t

• Total bandwidth (TB): it is the sum of the free and
occupied bandwidth at a time t

• Embedded nodes (EN): it is the number of embedded
nodes at a time t

• Embedded edges (EE): it is the number of embedded
links at a time t

ϕV (GV , t) comprises the following features:
• Number of virtual nodes (V’): it is the number of
virtual nodes of an NSR arrived at a time t

• Number of virtual edges (T’): it is the number of virtual
links of an NSR arrived at a time t

• Average degree of virtual nodes (ADv): the degree of a
virtual node is defined as the number of its neighboring
virtual edges. Average degree is the average value of the
degree of all virtual nodes in the graph, i.e. d(G, t) =∑V ′(t)

i d(vi, t)/V ′(t) where d(vi, t) denotes the degree of
virtual node vi at a time t .

• Average path length between virtual nodes (APLv):
it is the averaged total path length at a time t between
virtual node v and every other physical node that is
reachable from v

• CPU and bandwidth requests for NSRs (CPUNSR and
BNSR): the are defined as the CPU and bandwidth units
requested by the specific type of slice

• NSR type: it defines the type of NSR, such as: generic,
eMBB, URLLC and mMTC

As an example, Fig. 2 shows the embedding of a generic
NSRmade by 3 virtual nodes, with requirements on CPU and
bandwidth, on the SN composed by 9 physical nodes; while
Table 2 shows the values of the ϕV (GS , t) and ϕV (GV , t) state
space vectors that describe the network at a time t = 1.

3) ACTION SPACE
At each time step, the A2C-agent receives an NSR and
decides whether to accept or deny the incoming slice. The
set of actions is denoted by a(t) and can assume a value equal
to 0 (deny) or 1 (accept). The agent selects the action that
maximizes the reward function.

4) REWARD FUNCTION
The reward function considers the resource efficiency of
the SN in terms of revenue-to-cost-ratio (see section IV-A).
We can improve the overall acceptance ratio if the agent
predicts which NSR can be embedded in such a way that the
resulting resource efficiency is maximum. If the agent rejects
an NSR that cannot be embedded onto the SN, the VNE
algorithm does not lose time trying to embed requests that
are unfeasible. Therefore, the reward function depends on the
success of the VNE algorithm. If the NSR can be embedded,

the reward function is described by Eq. (3).

ra =


revenueNSRi
costNSRi

, if a = 1

0, if a = 0
(3)

On the contrary, if the VNE cannot embed the incoming
NSR, the reward function is described in Eq. 4.

ra =

{
α, if a = 1
β, if a = 0

(4)

where α is a negative value between -1 and 0, and β is a
positive value between 0 and 1. If α is closer to−1, the agent
will be more cautious and will reject more incoming NSR;
in contrast, if α is closer to 0 the agent will accept more
requests. Algorithm 1 shows the complete AC procedure
based on A2C.

FIGURE 2. Example of a generic NSR embedding at a time t = 1.

D. VIRTUAL NETWORK EMBEDDING MODULE
The VNE module allocates the resources of each type of
NSR to the SN. In this study, we extended two types of VNE
algorithms introduced by the research work in [25]. The first
is based on integer linear programming (ILP), a mathematical
formulation model to solve optimization problems, such as
the VNE. We start by defining different objective functions
(one for each type of NSR) with the goal of minimizing or
maximizing one (or more) specific metric, such as bandwidth
and latency. Then, we define the constraints that consist of
equations or inequalities that set upper and lower bounds on
the variables of the model, for example, the CPU capabil-
ity for each physical node. Compared to the work in [25],
we modified the objective functions for eMBB and mMTC
NSRs. Specifically, our ILP formulations tend to maximize
the minimum physical resources left on the SN nodes and
links. Consequently, a fair distribution of available resources
is achieved throughout the SN to prevent some nodes, or links,
from being used more than others.

However, the well-known VNE problem has been demon-
strated to be NP-hard [6]; hence, exact solution methods
suffer from scalability problems, unfeasible computational
complexity, and running times. To address these issues,
we developed a second set of algorithms based on heuristic

15866 VOLUME 10, 2022

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

methods. The goal is to obtain VNE solutions as close as
possible to the optimal solutions in the shortest possible time.
In particular, the run time of the VNE module is important to
facilitate the rapid exploration/exploitation of the ACmodule
and to speed up the embedding of the NSRs onto the SN.
Compared to the work in [25], we developed the heuristic
algorithms by taking into account specific requirements of the
5G NSRs. Therefore, we have considered the maximum CPU
capacity of the SN nodes as themain feature when embedding
the eMBB NSRs; then, we have used the minimum band-
width available on the substrate nodes and the number of
hops as the main features for the mMTC and URLLC NSRs
respectively.

1) ILP-BASED ALGORITHMS
As stated above, we propose a mathematical formulation
to accommodate different types of NSRs in the SN. It is
based on a node-link formulation [22], which enables the syn-
chronous embedding of virtual nodes and links by optimizing
the allocation of physical network resources. Specifically,
we define: 1) four objective functions (one for each NSR
type); 2) a set of constraints shared by each type of NSR.
Table 3 shows the variables and parameters used to develop
the ILP.

a: OBJECTIVE FUNCTIONS
The definition of the objective function is one of the major
challenges in formulating an ILP. We define four different
objective functions for the following NSR types:
• Generic NSR: this type of slice is used for those
service requests that have no specific network con-
straints, as opposed to those that require specific net-
work requirements such as eMBB, mMTC and URLLC.
The idea is to allow slices of generic applications that
do not need fixed allocations of resources in the SN.
As such, the goal for a generic NSR is to take advantage
of SN resources efficiently [25]. Therefore, the objective
function minimizes the overall CPU and bandwidth.
See Eq. (5)

minimize
∑
v∈NV

Cvµvp +
∑
i,j∈LV

Bijui,ja,b (5)

• eMBB: as stated above, for this type of request, we have
to minimize the CPU usage on physical nodes; hence,
in this objective function, we maximize the minimum
CPU capacity on physical nodes. See Eq. (6).

maximize TCPU
s.t TCPU ≤ Cp(t)−

∑
v∈NV

Cv
· µvp, ∀p ∈ NS (6)

The constraint under Eq. (6) ensures that the CPU capac-
ity assigned to the eMBB slice does not exceed the
maximum capacity of the physical nodes.

• mMTC: for this type of request, we have to maximize
the remaining resources of physical links; hence, in this

TABLE 2. State space at a time t = 1.

objective function, we maximize the remaining band-
width on physical links. See Eq. (7).

maximize TBW
s.t TBW ≤ Bab(t)−

∑
i,j∈LV

Bi,j · uvp, ∀a, b ∈ LS

(7)

The constraint under Eq. (7) ensures that the bandwidth
capacity assigned to the mMTC slice does not exceed
the maximum bandwidth of the physical links.

• URLLC: the objective function for this type of requests
is the minimization of the number of physical links used
to embed virtual links of the NSR. See Eq. (8).

minimize
∑
i,j∈LV

ui,ja,b (8)

b: CONSTRAINTS
To ensure a feasible embedding between the virtual
nodes/links of the NSR and the physical SN resources,
we define a set of constraints shared by each NSR type.

1) Assignment of virtual nodes to physical nodes: Eq. (9)
ensures that each virtual node is assigned to one phys-
ical node. ∑

p∈NS

µvp = 1, ∀v ∈ NV (9)

2) Assignment of physical nodes to virtual nodes: Eq. (10)
ensures that each physical node can embed at a maxi-
mum of one virtual node per NSR.∑

v∈NV

µvp ≤ 1, ∀p ∈ NS (10)

3) CPU capability conservation: Eq. (11) ensures that the
available CPU capacity of each physical node at time
step t is not exceeded.∑

v∈NV

Cv
· µvp ≤ Cp(t), ∀p ∈ NS (11)

VOLUME 10, 2022 15867

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

Algorithm 1 A2C-Based AC Algorithm
Data: Substrate network (SN), number of episodes,

number of NSR per episode
Result: Updated AC Agent Networks

1 Initialize actor network parameters, θπ , with random
parameters;

2 Initialize critic network parameters, θv, with random
parameters;

3 while iteration ≤ Numepochs do
4 Generate NSRi according to an exponential

distributed arrival rate λ, representing state st ;
5 while i ≤ NumRequests do
6 Get feature vectors ϕS (GS) and ϕV (GV);
7 Get the policy function πθ (st , at) using actor

network;
8 Sample actions from πθ (st , at) to choose an

action at ;
9 if at = 0 then
10 Reject NSRi;
11 Verify rejection and calculate reward rt ;
12 else
13 Pre-accept NSRi;
14 Calculate rt according to VNE output;
15 if VNE output = True then
16 Start life-cycle of the NSRi;
17 else
18 Reject NSRi;
19 end
20 end
21 Get feature vectors ϕS (GS) and ϕV (GV),

representing state st+1;
22 if i = NumRequests then
23 R = 0;
24 else
25 R←− rt + γR;
26 end
27 Calculate value V (st) using the critic network;
28 Calculate value V (st+1) using the critic network;
29 Calculate advantage value A(st , at);
30 Calculate policy gradient δθφ
31 Calculate value gradient δθv
32 Update actor network parameters using policy

gradient δθφ ;
33 Update critic network parameters using value

gradient δθv;
34 end
35 end

4) Bandwidth capability conservation: Eq. (12) ensures
that the available bandwidth capacity of each physical
link at time step t is not exceeded.∑

i,j∈LV

Bi,j · ui,ja,b ≤ Bab(t), ∀a, b ∈ LS (12)

5) Multi-commodity flow conservation with node-
link formulation: Eq. (13) optimizes the mapping
of virtual links and virtual nodes. The multi-
commodity flow constraint is applied within a node-
link formulation [34].∑
a,b∈LS

(ui,ja,b−u
i,j
b,a)=µ

i
a−µ

j
a, ∀p∈NS , ∀i, j∈LV

(13)

6) Integrity constraints: Eq. (14) defines the binary
variables.

µvp ∈ {0, 1}, ∀p ∈ NS , ∀v ∈ NV

uijab ∈ {0, 1}, ∀a, b ∈ LS , ∀i, j ∈ LV (14)

2) HEURISTIC-BASED ALGORITHMS
The VNE problem can be divided into two sub-problems:
virtual node mapping (VNoM) and virtual link mapping
(VLiM). Both sub-problems can be solved in a coordinated
or uncoordinated fashion [34]. The coordination of the VNE
can be achieved in one stage by simultaneously solving the
VNoM and VLiM at the same time. The uncoordinated VNE
is performed by solving each sub-problem separately. In this
work, we implement the uncoordinated method because we
have different types of requests with different embedding
requirements; some of them focus on node resources, while
others focus on link resources. Hence, we solve the VNE
problem using different algorithms for nodemapping and link
mapping. The order in which these algorithms are applied
to the embedding of the NSR onto the SN depends on the
type of NSR.

a: HEURISTIC ALGORITHM FOR GENERAL NSRS
Algorithm 3 presents the VNE procedure for a generic NSR.
It starts by solving VNoM as follows:

1) First, it computes the node resource (NR) and the node
importance (NI) metrics for both virtual and physical
nodes. NR represents the available resources of each
node, and is defined by Eq. 15. NI aims to score
the nodes based on their resources and centrality in the
network. It is defined by Eq. 16.

NR(i) = CPU (i) ·
∑
l∈s(i)

BW (l) (15)

CPU (i) is the CPU resource capacity of node i; s(i) rep-
resents the set of links that are directly connected to
node i; BW (l) represents the bandwidth capacity of
link l.

NI (i) = NR(i) ·
(
d ′i · b

′
i

2

)
(16)

NR(i) is the node resource metric defined by Eq. 15;
d ′i is the normalized degree of node i, and b′i is the
normalized betweenness centrality of node i. The latter
is defined as the number of shortest paths between two
nodes that pass through node i.

15868 VOLUME 10, 2022

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

TABLE 3. ILP mathematical notations.

2) Once the algorithm computes the NR and NI metrics,
it sorts the virtual nodes using Algorithm 2. Each
node v ∈ NSRi is sorted in a non-increasing order
using the breadth-first-search (BFS) algorithm [35] by
exploiting the NI values of each node. The NI metric
allows the nodes to by classified according to the num-
ber of shortest paths that can pass-through each node.
BFS algorithm gives priority to nodes with higher NI ;
as such, virtual nodes v ∈ NSRi are mapped onto the
most important physical nodes.

3) If the VNoM procedure is successful, the algorithm
proceeds with the VLiM procedure. The link mapping
procedure is based on the shortest path between embed-
ded physical nodes, and in particular, we use the Floyd-
Warshal algorithm [36]. For each virtual link ∈ NSRi,
it removes the physical links that do not meet the band-
width requirements. Then, it determines the physical
nodes where the source and target virtual nodes of the
virtual link are mapped. Finally, it maps the virtual link
onto the physical links in the physical shortest path
calculated using the Floyd-Warshal algorithm.

Algorithm 2 Virtual Nodes Sorting
Data: Nv: Set of virtual nodes in NSR.
Result: N i

v: sequence of sorted virtual nodes.
1 Calculate the NI of each virtual node;
2 Sort virtual nodes according to their NI value in a
non-increasing order;

3 Select the virtual node with highest NI value as the root
node;

4 Traverse the NSR graph using BFS algorithm, and get
the BFS tree T;

5 Sort virtual nodes in each layer of T according to the NI
value in a non-increasing order.;

6 Return N i
v

b: HEURISTIC ALGORITHM FOR EMBB NSRS
This heuristic aims to minimize the CPU usage on physical
nodes. Hence, we first run the VNoM procedure and then
the VLiM procedure. The virtual nodes were sorted using
Algorithm 2. The physical node in the SN with the highest

Algorithm 3VNEHeuristic Algorithm for Generic NSRs
Data: Incoming NSRi and SN
Result: Success or failure of the VNE procedure

1 Sort physical nodes p ∈ NS of SN in a non-increasing
order according to its NI;

2 Sort virtual nodes v ∈ NVi of NSRi according to
Algorithm 2;

3 for v ∈ NVi do
4 if v is the root node then
5 Map v onto the physical node with highest NI;
6 else
7 Find parent virtual node P of virtual node v in T;
8 Find physical node PP in which P is mapped;
9 Set C the adjacent physical nodes of PP;
10 Map v onto the physical node with highest NI

in C;
11 end
12 end
13 Sort virtual links (i, j) ∈ LVi of NSRi in a non-increasing

order according to their bandwidth requirement;
14 for (i, j) ∈ LVi do
15 Remove the physical links that can not meet the

bandwidth requirement;
16 Find physical node a where virtual node i is mapped;
17 Find physical node b where virtual node j is mapped;
18 Find the physical shortest path between a and b by

using Floyd Warshall algorithm;
19 Map virtual link (i, j) onto the physical shortest path.
20 end

CPU capacity was selected to map each virtual node of the
incoming NSR. If the VNoM succeeds, we run the Floyd-
Warshal algorithm for the VLiM procedure with the goal of
embedding the virtual link onto the physical links in the SN
shortest path. See Algorithm 4.

c: HEURISTIC ALGORITHM FOR MMTC NSRS
This heuristic maximizes the remaining bandwidth on phys-
ical links; it first runs the VLiM and then the VNoM pro-
cedure. The algorithm sorts the virtual links of the NSR in

VOLUME 10, 2022 15869

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

Algorithm 4 VNE Heuristic Algorithm for eMBB NSRs
Data: Incoming NSRi and SN
Result: Success or failure of the node mapping

procedure
1 Sort virtual nodes v ∈ NVi of NSRi according to
Algorithm 2;

2 for v ∈ NVi do
3 if v is the root node then
4 mapv onto the physical node with highest CPU

capacity resources;
5 else
6 Find parent virtual node P of virtual node v in T;
7 Find physical node PP in which P is mapped;
8 Set C the adjacent physical nodes of PP;
9 Mapv onto the physical node in C with highest

CPU capacity resources;
10 end
11 end
12 Sort virtual links (i, j) ∈ LVi of NSRi in a non-increasing

order according to their bandwidth requirement;
13 for (i, j) ∈ LVi do
14 Remove the physical links that can not meet the

bandwidth requirement;
15 Find physical node a where virtual node i is mapped;
16 Find physical node b where virtual node j is mapped;
17 Map virtual link (i, j) onto the physical shortest path

between a and b;
18 end

non-increasing order according to their bandwidth require-
ments. The goal is to first embed virtual links with higher
requirements. Then, it calculates all possible paths that can
allocate each virtual link and selects the best fitting path in
the SN. The best-fitting path is selected according to the
following procedure: 1) it selects the physical link with the
minimum BW resources for each possible path, and 2) it
selects the path where the minimum link BW is maximum
among all possible paths. Then, the physical links on the best-
fitting path are selected to map the virtual link. If the VLiM
is successful, we select the source and target physical nodes
in the best-fitting path of each virtual link to map the virtual
nodes of the incoming NSR. See Algorithm 5.

d: HEURISTIC ALGORITHM FOR URLLC NSRS
Finally, the URLLC request must be deployed with a specific
delay requirement. To do so, the heuristic algorithm must
minimize the end-to-end delay between sources and destina-
tions; in other words, it will use fewer physical links. As such,
it first runs the VLiM and then the VNoM procedure. Similar
to the previous algorithm, we first sort the virtual links of
the incoming NSRs in a non-increasing order according to
their bandwidth requirements. Then, it calculates all possible
paths that can allocate each virtual link and selects the best-
fitting path in the SN. The best-fitting path is the one with

Algorithm 5VNEHeuristic Algorithm for mMTCNSRs
Data: Incoming NSRi and SN
Result: Success or failure of the link mapping procedure

1 Sort virtual links (i, j) ∈ LVi of NSRi in a non-increasing
order according to their bandwidth requirement;

2 for (i, j) ∈ LVi do
3 Find all physical candidate paths CP where the

virtual link (i, j) can be mapped;
4 for p ∈ CP do
5 Find the physical link l ∈ p with the minimum

bandwidth resources.
6 end
7 Select the path bp ∈ CP where l is maximum;
8 Map the virtual link (i, j) onto path bp;
9 Map virtual node i onto the physical source node of

the bp path;
10 Map virtual node j onto the physical target node of

the bp path;
11 end

fewer hops in the SN. If VLiM is successful, we select the
source and target physical nodes in the best fitting path of
each virtual link to map the virtual nodes of the incoming
NSR. See Algorithm 6.

Algorithm 6 VNE Heuristic Algorithm for URLLC
NSRs
Data: Incoming NSRi and SN
Result: Success or failure of the link mapping procedure

1 Sort virtual links (i, j) ∈ LVi of NSRi in a non-increasing
order according to their bandwidth requirement;

2 for (i, j) ∈ LVi do
3 Find all physical candidate paths CP where the

virtual link (i, j) can be mapped;
4 Select the path bp ∈ CP whit the minimum number

of hops;
5 Map the virtual link (i, j) onto path bp;
6 Map virtual node i onto the physical source node of

the bp path;
7 Map virtual node j onto the physical target node of

the bp path;
8 end

IV. PERFORMANCE EVALUATION
This section introduces the performance evaluation of the
proposed ES framework. First, we present the metrics used
for assessing the performance. Afterwards, we show the per-
formance of the VNE module by comparing the ILP-based
and heuristic-based algorithms separately; and then we
present the evaluation of the entire ES frameworkwith the AC
module based on DRL. Finally, we discuss the complexities
of the algorithms and the results of this study.

15870 VOLUME 10, 2022

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

A. PERFORMANCE METRICS
The VNE problem is defined as a mapping problem in which
VNE algorithms map an NSR (GV) to an SN (GS). The
mapping procedure of an NSR onto the SN is only valid if
the full set of virtual nodes NV is mapped onto a subset of
substrate nodes N ′S ∈ NS , and all virtual links LV connecting
virtual nodes are mapped onto a subset of substrate nodes
L ′S ∈ LS . All virtual node and link requests in theGV must be
satisfied. The following sections introduce: acceptance ratio,
resource efficiency and run time metrics.

1) ACCEPTANCE RATIO (AR)
The acceptance ratio is the ratio between the number of
requests that have been successfully mapped and the total
number of requests arrived to the AC module [25]. It is
defined in Eq. (17):

AR =

∑T
t=0 NSRaccepted (t)∑T

t=0 NSR(t)
(17)

2) RESOURCE EFFICIENCY (RE)
Resource efficiency is defined as the revenue-to-cost-
ratio [25]. When an NSR is accepted, the mapping revenue
can be defined as the sum of its nodes capacity and link
bandwidth requirements. The cost can be defined as the sum
of the node and link bandwidth resources of the SN. It is
defined in Eq. (18):

RE =

∑
n∈NV RN (n)+

∑
l∈LV RL(l)∑

n∈NV RN (n)+
∑

l∈LV RL(l) ∗ hop(l)
(18)

RN (n) represents the CPU capacity requirement of virtual
node n; RL(l) represents the bandwidth requirement of virtual
link l; and hop(l) represents the path length of link l in which
the virtual link l is mapped onto the SN.

3) RUN TIME (RT)
VNE algorithms experience a trade-off between performance
in terms of resource efficiency and run time. ILP-based algo-
rithms can guarantee optimal VNE solutions but suffer from
scalability issues and long run times. In contrast, heuristic-
based algorithms provide sub-optimal but much faster VNE
solutions. This trade-off must be considered in the case of
real-time network slice deployment. In this work, we evaluate
the run time of the proposed ES framework as a metric for
real-time network services.

B. EXPERIMENTS SETUP
The proposed ES framework was developed using Python
version 3.6.7.We used Ubuntu 18.04 LTS with an Intel Core
i7 CPU and 8 GB RAM. We used the Barabasi-Albert algo-
rithm [37] to generate topologies for the SN and NSRs. In this
paper, evaluations are given for 50-MCENs SN topology and
3-virtual node topologies for generic, eMBB, URLLC and
mMTC [28], [38]. Both physical processing units capacities
and bandwidth unit are uniformly distributed between 20 and
50,U (20, 50). NSR processing units and bandwidth units are
distributed according to the NSR type as follows:

• The CPU requirement is uniformly distributed between
5 and 15 units for each NSR types

• The Bandwidth is distributed as follows: 5 units for
Generic NSR, 4 units for eMBB NSR, 3 units for
URLLC NSR and 2 units for mMTC NSR

The NSRs of each type arrive with an exponentially dis-
tributed arrival rate λ = 1/10, 3/10, 5/10 and stay for an
exponentially distributed lifetime with a mean value of 100 s.
The A2C algorithm comprises an actor network with an input
layer, a recurrent neural network (RNN) layer, two dense lay-
ers, and finally, a softmax layer. Moreover, the critic network
comprises an input layer, a recurrent neural network (RNN)
layer, two dense layers, and a single unit layer. The actor net-
work returns the policyπθ (st , at), a probability distribution of
two possible actions (accept or reject) for the incoming NSR.
The critic network returns the value Vθ (st , θv). Both actor and
critic networks have the same input and hidden layers that are
described as follows:

1) The input layer takes the concatenation of the feature
vectors ϕS (GS , t) and ϕV (GV , t).

2) The output of the input layer is forwarded to the RNN
layer. It is implemented using a long short termmemory
(LSTM) [39] with 200 nodes and an hyperbolic tangent
activation function.

3) Two dense layers with 128 and 64 nodes, respectively,
are implemented. Both dense layers implement a recti-
fied linear unit (ReLU) activation function.

Then, we set the A2C algorithm parameters as follows:
(learning rate) α = 0.0003, (discount rate) γ = 0.99,
(maximum exploration factor) εmax = 1. Training starts
at 400 steps, mini-batch size to 20 samples and actor-critic
updates every 150 steps. The hyper-parameters of the A2C
algorithm were chosen by adopting greedy layer-wise train-
ing [40]. We obtained 95% confidence level of 50 repetitions
of the experiments.

C. RESULTS
This section presents the results of the proposed ES frame-
work. We first show the performance of the VNE mod-
ule in stand-alone mode, by evaluating the RE and RT
for the ILP-based and heuristic algorithms introduced in
sections III-D1 and III-D2. Subsequently, we evaluate the
performance of the entire ES made by the AC and VNE
modules, the last equipped with the heuristic-based algo-
rithms. In this evaluation, we compared two AC algorithms:
the proposed A2C implementation and a state of the art DRL
algorithm called Deep Q-learning (DQN) [41]. We set the
DQN algorithm as follows: 1) policy network is an Arti-
ficial Neural Network (ANN) with 2 hidden layers made
by 128 artificial neurons with a softmax activation function at
the output layer; 2) discount factor equal to 0.99; 3) learning
rate equal to 0.0005; 4) exploration fraction equal to 0.1.

1) VNE MODULE: ILP-BASED AND HEURISTIC-BASED
ALGORITHMS COMPARISON
Figure 3 compares the resource efficiency results of
the generic, eMBB, mMTC, and URLLC NSR types,

VOLUME 10, 2022 15871

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

FIGURE 3. VNE module: resource efficiency for each type of NSR.

respectively. We start by generating 15 NSRs until 50 NSRs
of each type. As shown in the figure, the RE shows a
small difference between the heuristic and the ILP-based
algorithms. Specifically, it is −12% for generic, −5.8% for
eMBB, −11.3% for mMTC and −8% for URLLC. These
results confirm that there is minimal difference between the
solutions derived from ILP-based algorithms and those based
on heuristics.Moreover, we can assess that the algorithms that
perform better are those inwhich the objective functionworks
more in saving link resources (generic, URLLC and mMTC)
than node resources (eMBB).

FIGURE 4. ILP-based algorithm run time.

FIGURE 5. Heuristic-based algorithms run time.

Figure 4 and 5 compares the run time (in Log scale) of
the different types of requests for both the ILP and heuristic
algorithms. Using the ILP method, the eMBB request is
embedded significantly faster than the other request types,
with a mean RT of 15 seconds compared to the other NSR
types that require an average RT of 493, 33 seconds. That
is because it searches only for a set of candidate nodes
(|NS | = 50) for each virtual node. In contrast, the other
types of requests take into account also the set of candidate
paths. This leads to less time consumption when embedding
an eMBB request type.

On the other hand, using the heuristic algorithms, the
embedding procedure of a generic NSR type takes more
time with respect to the others (approximately 20 s more)
because the node mapping and link mapping procedures of

Algorithm 3 are the longest in terms of time complexity.
Furthermore, heuristic algorithms can embed all NSR types
with a mean time of 7 s, while the ILP-based algorithm takes
almost 372, 48 s. Thus, given the high performance of the
heuristic algorithms in terms of both RE and RT, we can
use them as VNE algorithms within the VNE module of the
proposed ES framework.

FIGURE 6. Acceptance ratio of incoming NSRs with and without AC
module.

2) PROPOSED ES FRAMEWORK: AC MODULE + VNE
MODULE
After assessing the performance of the ILP and heuristic-
based algorithms, this section shows the performance of
the entire ES framework, as shown in Fig. 1, made by the
AC module, equipped with two DRL algorithms (A2C and
DQN), and the VNE module, equipped with the heuristic
algorithms. Figure 6 shows the acceptance ratio of incoming
NSRs with and without the proposed AC module according
to the selected DRL algorithm. Without admission control
means that every time a NSR arrives, it is embedded by the
VNE module. Considering Fig. 6, the four labels represent:
• Accepted: overall accepted NSRs
• Feasible: NSRs rejected by the AC module that can be
embedded when they arrive at the AC module. This
amount of NSR was previously refused in order to opti-
mize SN’s resources

• Unfeasible: NSRs rejected by theACmodule that cannot
be embedded. This means that the ACmodule learned to
successfully pre-reject the NSRs that cannot be embed-
ded onto the SN

• Rejected: overall rejected NSRs by the VNE module

15872 VOLUME 10, 2022

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

The results show that for increasing values of λ, the number
of accepted NSRs decreases. When NSRs are generated with
high arrival rates, the physical resources are occupied much
faster than when they are deployed with shorter arrival rates,
leading to a higher number of rejected NSRs.

FIGURE 7. Resource efficiency with and without AC module.

The number of rejected requests indicates the number of
requests that the VNE module tried to implement in the SN
but failed due to scarce resources left. We can see how this
amount is greatly reduced when we enable the AC module
based on A2C (37%). We can notice that the DRL-based
algorithm has learned to reject in advance the NSRs that
cannot be implemented in the SN. The latter is indicated by
unfeasible and feasible labels. The former identifies NSRs
that cannot be implemented when they arrive. In fact, the AC
module (A2C) has learned to reject them. In contrast, NSRs
in blue could have been implemented on the SN because they
are eligible when they arrive. However, the ACmodule (A2C)
‘‘preferred’’ to reject them to optimize the total RE of the
SN. Thanks to the AC module (A2C), our ES framework
accepts 15% more NSRs than the case in which the AC
module (A2C) is disabled. On the other side, the AC module
based on DQN did not show good results. In particular, the
agent’s policy network did not converge by showing almost
the same results as the case in which the AC module is
not enabled.

Table 4 shows a detailed view on the acceptance ratio
for each type of NSR with an AC module based on A2C.
In this case, the amount of requests that are unfeasible and
feasible from Figure 6 are considered rejected in Table 4.
We can see that embedding eMBB slices is difficult in a
dynamic environment where the types of incoming NSRs are
unknown. This is due to the fact that eMBB slices require high
computational resources, in terms of CPU units, compared to
other types of slices.

Figure 7 presents the overall resource efficiency once all
NSRs are embedded. It can be observed that the resource

TABLE 4. Acceptance ratio with and without AC module (A2C) for each
type of NSR.

FIGURE 8. Overall run-time with and without AC module.

efficiency decreases while λ increases. This is because with
increasing λ, node resources are generally scarce, leading
to embedding virtual links onto paths with a higher num-
ber of physical links as non-adjacent physical nodes are
selected, resulting in higher costs and lower resource effi-
ciency. Moreover, for all λ values, it can be seen that the
overall resource efficiency increases when the AC module
is implemented, both in the A2C case and in the DQN case.
Obviously, given the poor performance of the DQN algorithm
in accepting slices, the efficiency is lower than in the case of
the A2C.

Finally, Figure 8 shows the run time with and without AC
module. We start measuring the time since the arrival of each

VOLUME 10, 2022 15873

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

TABLE 5. Complexity analysis.

NSR until the final embedding by the VNE module. We can
observe that the overall run time decreases when the AC
module based on A2C is implemented. This result shows the
performance of the ACmodule (A2C) in terms of the filtering
capabilities. In other words, it filters NSRs that are either
unfeasible or lead to lower resource efficiency. Consequently,
the VNE module does not waste time in processing NSRs
that cannot be embedded. On the other hand, the DQN based
AC module takes much longer than the other cases since it
does not converge towards a stable solution, i.e. it is unable
to maximize the overall return.

D. COMPLEXITY ANALYSIS
Table 5 summarizes the complexity of each algorithm pro-
posed by this work. Algorithm 1 aims at training aDRL-based
agent to maximize the number of admitted slices into the
SN. RL is generally known to be highly data intensive,
and the amount of state-action space determines the com-
putational complexity and processing time. For instance,
an environment involving N × M state matrix, the com-
putational complexity may be O(NM). Indeed, if the state
matrix becomes too large the complexity may grow expo-
nentially [42] and the computational cost becomes too high.
Besides, DRL-based agents perform action-value approxi-
mations through deep learning techniques, such as artificial
neural networks. Indeed, the computational complexity can
be expressed as the multiplication between the number of
epochs to train the agent and the number of NSRs to process:
O(Numepochs × NumNSRs).
Algorithm 3 and 4 have the same computational complex-

ity since both perform first a virtual node mapping and then
a virtual link mapping, hence the complexity is O(Nv + Lv).
Algorithm 5 is more computationally intensive since it

calculates all possible paths that can allocate each virtual link
and selects the best fitting path in the SN. The complexity is
equal to O(Lv × Ls × Ns).
Algorithm 6 minimizes the end-to-end delay between

sources and destinations by reducing the number of used
physical links. As such, the complexity is related to the virtual
link mapping: O(Lv).

V. CONCLUSION
This work introduced a novel framework to jointly perform
AC andVNE of 5GNSs. The ACmodule is based on the DRL
A2C algorithm, which is able to select the most profitable

NSRs to accommodate onto the SN. The VNE module is
based on a set of heuristic algorithms (validated by ILP math-
ematical formulations) with the aim of embedding each type
of 5G NSRs according to their requirements. Our proposed
ES framework achieved up to 15% more accepted NSRs
with respect to the case in which the AC module is disabled.
Moreover, while accepting more requests, our ES framework
can increase the resource efficiency and decrease the run time
of the admission control and embedding procedure. In future
work, we will enrich the VNE module with algorithms based
on DRL. With this aim, we plan to build a comprehensive ES
made by DRL-based agents, both for AC and VNE, to further
improve the acceptance ratio and resource efficiency in the
5G metro-core network.

REFERENCES
[1] ‘‘View on 5G architecture,’’ 5GPPP Archit. Work. Group, Germany,

Tech. Rep., 2021.
[2] M. Series, IMT Vision–Framework and Overall Objectives of the Future

Development of IMT for 2020 and Beyond, document Recommendation
ITU, Switzerland, 2015, vol. 2083.

[3] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, ‘‘NFV: State of
the art, challenges, and implementation in next generation mobile net-
works (vEPC),’’ IEEE Netw., vol. 28, no. 6, pp. 18–26, Nov./Dec. 2014.

[4] M. Chiosi et al., ‘‘Network functions virtualisation: An introduction, ben-
efits, enablers, challenges and call for action,’’ in Proc. SDN OpenFlow
World Congr., vol. 48, 2012.

[5] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, ‘‘NFV and SDN—
Key technology enablers for 5G networks,’’ IEEE J. Sel. Areas Commun.,
vol. 35, no. 11, pp. 2468–2478, Nov. 2017.

[6] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
‘‘Virtual network embedding: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quart., 2013.

[7] 3GPP TSG RAN WG1 Meeting 87, document R1-1612306, 3GPP, 2016.
[8] A. K. Bairagi, M. S. Munir, M. Alsenwi, N. H. Tran, S. S. Alshamrani,

M. Masud, Z. Han, and C. S. Hong, ‘‘Coexistence mechanism between
eMBB and uRLLC in 5G wireless networks,’’ IEEE Trans. Commun.,
vol. 69, no. 3, pp. 1736–1749, Mar. 2021.

[9] M. Alsenwi, N. H. Tran, M. Bennis, A. K. Bairagi, and C. S. Hong,
‘‘EMBB-URLLC resource slicing: A risk-sensitive approach,’’ IEEECom-
mun. Lett., vol. 23, no. 4, pp. 740–743, Apr. 2019.

[10] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, and X. Costa-Perez,
‘‘A machine learning approach to 5G infrastructure market optimization,’’
IEEE Trans. Mobile Comput., vol. 19, no. 3, pp. 498–512, Mar. 2020.

[11] M. R. Raza, A. Rostami, L. Wosinska, and P. Monti, ‘‘A slice admission
policy based on big data analytics formulti-tenant 5G networks,’’ J. Lightw.
Technol., vol. 37, no. 7, pp. 1690–1697, Apr. 1, 2019.

[12] B. Han, V. Sciancalepore, X. Costa-Perez, D. Feng, and H. D. Schotten,
‘‘Multiservice-based network slicing orchestration with impatient ten-
ants,’’ IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 5010–5024,
Jul. 2020.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[14] S. David et al., ‘‘Mastering chess and Shogi by self-play with a general
reinforcement learning algorithm,’’ 2017, arXiv:1712.01815.

[15] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. and Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[16] (2019).Metro-Haul Project. [Online]. Available: https://metro-haul.eu/
[17] R. Challa, V. V. Zalyubovskiy, S. M. Raza, H. Choo, and A. De, ‘‘Network

slice admission model: Tradeoff between monetization and rejections,’’
IEEE Syst. J., vol. 14, no. 1, pp. 657–660, Mar. 2020.

[18] M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska, and P. Monti, ‘‘Rein-
forcement learning for slicing in a 5G flexible RAN,’’ J. Lightw. Technol.,
vol. 37, no. 20, pp. 5161–5169, Oct. 1, 2019.

15874 VOLUME 10, 2022

S. Troia et al.: Admission Control and Virtual Network Embedding in 5G Networks: Deep Reinforcement-Learning Approach

[19] V. Sciancalepore, X. Costa-Perez, and A. Banchs, ‘‘RL-NSB: Reinforce-
ment learning-based 5G network slice broker,’’ IEEE/ACM Trans. Netw.,
vol. 27, no. 4, pp. 1543–1557, Aug. 2019.

[20] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer, ‘‘Boost online
virtual network embedding: Using neural networks for admission con-
trol,’’ in Proc. 12th Int. Conf. Netw. Service Manage. (CNSM), Oct. 2016,
pp. 10–18.

[21] M. Series, IMT Vision–Framework and Overall Objectives of the Future
Development of IMT for 2020 and Beyond, document Recommendation
ITU, Switzerland, 2015, p. 21, vol. 2083.

[22] M.Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha, ‘‘Optimal
virtual network embedding: Node-link formulation,’’ IEEE Trans. Netw.
Service Manag., vol. 10, no. 4, pp. 356–368, Dec. 2013.

[23] K. Ludwig, A. Fendt, and B. Bauer, ‘‘An efficient online heuristic for
mobile network slice embedding,’’ in Proc. 23rd Conf. Innov. Clouds,
Internet Netw. Workshops (ICIN), Feb. 2020, pp. 139–143.

[24] A. Fendt, C. Mannweiler, K. Ludwig, L. C. Schmelz, and B. Bauer, ‘‘End-
to-end mobile network slice embedding leveraging edge computing,’’ in
Proc. NOMS-IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2020, pp. 1–7.

[25] W. Guan, X. Wen, L. Wang, Z. Lu, and Y. Shen, ‘‘A service-oriented
deployment policy of end-to-end network slicing based on complex net-
work theory,’’ IEEE Access, vol. 6, pp. 19691–19701, 2018.

[26] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah, and
W. Jiang, ‘‘Dynamic reservation and deep reinforcement learning based
autonomous resource slicing for virtualized radio access networks,’’ IEEE
Access, vol. 7, pp. 45758–45772, 2019.

[27] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, ‘‘Automatic virtual network embed-
ding: A deep reinforcement learning approach with graph convolutional
networks,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1040–1057,
Jun. 2020.

[28] G. Brown, ‘‘Service-based architecture for 5G core networks,’’ Huawei,
Shenzhen, China, White Paper 1, 2017.

[29] W. Lei, A. C. K. Soong, and L. Jianghua, 5G Capability Outlook: ITU-
R Submission and Performance Evaluation. Cham, Switzerland: Springer,
2020, pp. 299–369, doi: 10.1007/978-3-030-22236-9_5.

[30] (2020). ITU-R. Minimum Requirements Related to Technical
Performance for IMT-2020 Radio Interface(s). [Online]. Available:
https://www.itu.int/pub/R-REP-M.2410

[31] M. Wydmuch, M. Kempka, and W. Jaskowski, ‘‘ViZDoom competi-
tions: Playing doom from pixels,’’ IEEE Trans. Games, vol. 11, no. 3,
pp. 248–259, Sep. 2019.

[32] M. S. Munir, S. F. Abedin, N. H. Tran, Z. Han, E.-N. Huh, and
C. S. Hong, ‘‘Risk-aware energy scheduling for edge computing
with microgrid: A multi-agent deep reinforcement learning approach,’’
IEEE Trans. Netw. Service Manage., vol. 18, no. 3, pp. 3476–3497,
Sep. 2021.

[33] M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi, and
C. S. Hong, ‘‘Intelligent resource slicing for eMBB and URLLC
coexistence in 5G and beyond: A deep reinforcement learning based
approach,’’ IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4585–4600,
Jul. 2021.

[34] M. Yu, Y. Yi, J. Rexford, and M. Chiang, ‘‘Rethinking virtual net-
work embedding: Substrate support for path splitting and migration,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29,
Apr. 2008.

[35] T. H. Cormen et al., Introduction to Algorithms. Cambridge, MA, USA:
MIT Press, 2009.

[36] S. Wimmer and P. Lammich. (May 2017). The Floyd-Warshall
Algorithm for Shortest Paths. Archive of Formal Proofs. [Online].
Available: http://isa-afp.org/entries/Floyd_Warshall.html, Formal proof
development.

[37] A.-L. Barabasi and R. Albert, ‘‘Emergence of scaling in random net-
works,’’ Science, vol. 286, pp. 12–509, Oct. 1999.

[38] R. E. Hattachi and J. Erfanian, ‘‘NGMN 5G white paper,’’ NGMN
Alliance, Germany, Tech. Rep., 2015.

[39] S. Hochreiter and J. J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 80–1735, 1997.

[40] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd, ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 1999.

[41] V. Mnih et al., ‘‘Playing Atari with deep reinforcement learning,’’ 2013,
arXiv:1312.5602.

[42] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘Deep reinforcement learning: A brief survey,’’ IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

SEBASTIAN TROIA received the bachelor’s, mas-
ter’s, and Ph.D. degrees (cum laude) in telecom-
munication engineering from the Politecnico di
Milano, Milan, Italy, in 2013, 2016, and 2020,
respectively. He is currently an Assistant Profes-
sor with the Department of Electronics, Informa-
tion and Bioengineering (DEIB), Politecnico di
Milano. He has coauthored more than 30 publi-
cations in international journals, conferences, and
book chapters with particular attention to the con-

text of machine-learning for SDN, SD-WAN, and NFV. His current research
interests include in the field of edge networks softwarization and machine-
learning for communication networks. His activities comprise the develop-
ment of intelligent control and orchestration plane architectures for SDN and
SD-WAN inmulti-layer (optical and IP) networks scenarios. Hewas involved
in different European Projects: H2020 Metro-Haul, NGI Atlantic, and FP7
Marie Curie MobileCloud, and served as an Editor for the ITU Focus Group
on Machine Learning for Future Networks, including 5G (FG-ML5G). He is
the Co-Organizer and the Technical Program Committee (TPC) Co-Chair
of the 1st International Workshop on Edge Network Softwarization (ENS
2022), co-located with NetSoft 2022. He serves as an reviewer for several
international journals and TPC of international conferences and workshops.

ANDRES FELIPE RODRIGUEZ VANEGAS
received the master’s degree in telecommunica-
tions from the Politecnico di Milano, Milan, Italy,
in 2020. He is currently a Software Engineer at
Akka Technologies, Milan. His academical inter-
ests include machine learning and software devel-
opment with a main focus on software-defined
networking (SDN) and networks function virtual-
ization (NFV).

LIGIA MARIA MOREIRA ZORELLO (Graduate
Student Member, IEEE) received the B.Sc. and
M.Sc. degrees in computer engineering from the
Escola Politecnica da Universidade de São Paulo,
Brazil, in 2016 and 2018, respectively, and the
M.Sc. degree in telecommunications engineering
from Télécom Paris, France, in 2016. She is cur-
rently pursuing the Ph.D. degree in information
technology with the Politecnico di Milano, Italy.
Her research interests include optimization in 5G

radio access networks, networks function virtualization, networks slicing,
and machine learning algorithms for communications.

GUIDO MAIER (Senior Member, IEEE) received
the Laurea degree in electronic engineering and the
Ph.D. degree in telecommunication engineering
from the Politecnico di Milano, Italy, in 1995 and
2000, respectively. Until February 2006, he was
a Researcher at CoreCom (a research consortium
supported by Pirelli in Milan, Italy), where he
achieved the position of Head of the Optical Net-
working Laboratory. In March 2006, he joined the
Politecnico di Milano as an Assistant Professor

and became an Associate Professor, in 2015. He is currently involved in
industrial and European research projects. In 2016, he co-founded the start-
up SWAN networks, a spin-off of the Politecnico di Milano. He is an author
of more than 150 papers in the area of networking published in international
journals and conference proceedings (H-index: 25) and holds six patents.
His research interests include optical networks modeling, design, and opti-
mization; SDN orchestration and control-plane architectures; SD-WAN; and
NFV. He is a Senior Member of the IEEE Communications Society and a
TPC Member of many international conferences. He is the General Chair of
DRCN 2020, DRCN 2021, and NetSoft 2022. He is an Editor of the journal
Optical Switching and Routing and a Guest Editor for a special issue of the
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY.

VOLUME 10, 2022 15875

http://dx.doi.org/10.1007/978-3-030-22236-9_5

