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ABSTRACT Melanoma is considered one of the most dangerous skin cancer diseases that threaten human
health and life. Early diagnosis of melanoma is a big challenge, especially with the presence of color
variations across similar lesion types. Automatic skin lesion segmentation is an essential step to build a
successful skin disease classification system. Recent deep learning architectures significantly improve the
skin lesion segmentation results. Especially, U-Net deep convolutional neural network (CNN) is considered
one of the state-of-the-art models with promising performance. Most deep CNNs and particularly U-Net
model utilize a single input RGB color image for skin lesion semantic segmentation. However, RGB color
space is not usually the best choice to represent the invariant characteristics of skin lesion chromatic
information. The selection of the optimal color space significantly affects the performance of segmentation
results. In this paper, three novel variants of U-Net model with single, dual, and triple inputs, namely,
Single Input Color U-Net (SICU-Net), Dual Input Color U-Net (DICU-Net) and Triple Input Color U-Net
(TICU-Net) are proposed. The structure of SICU-Net, DICU-Net, and TICU-Net contains single, dual,
and triple encoder sub-networks connected with only a single decoder path. Each encoder sub-network is
fed with different color space of the input image. A channel-wise attention module is utilized to fuse the
contribution of the learned feature maps from each encoder sub-network which is fed to the decoder sub-
network to generate segmented image map. Moreover, a composite loss function is designed to improve the
performance of the proposed CU-Net models. Three public benchmark datasets, namely, International Skin
Imaging Collaboration (ISIC 2017, ISIC 2018) and PH2 datasets, are utilized to evaluate the performance
of the proposed models. Experimental results reveal that the proposed models significantly improve the
performance of the original U-Net model and achieve comparable performance with other state-of-the-art
methods.

INDEX TERMS Color U-Net, multi-input U-Net, combined loss function, melanoma, channel-wise
attention, skin lesion semantic segmentation.

I. INTRODUCTION
Skin cancer occurs when some skin cells are grown abnor-
mally. It is commonly appeared in areas of the body that are
most exposed to ultraviolet (UV) radiation [1]. Skin cancer is
divided into three major types, namely, squamous cell carci-
noma, basal cell carcinoma, and melanoma [2]. Melanoma
is the most dangerous type of skin cancer since it appears
and grows in the melanocyte cells that produce melanin
[3]–[5]. The main cause of melanoma is not known yet, but it
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is scientifically proven that direct exposure to ultraviolet rays
from sunlight or tanning lamps and beds increases the risk
of melanoma. Early detection and diagnosis are necessary
to preserve human survival [6]. Skin cancer diagnosis, like
many diseases, is vulnerable to human error or it may be
costly. Thus, recent researches [7]–[10] tend to rely on Com-
puter Aided Diagnosis (CAD) systems based on dermoscopic
images to reduce the probability of errors. Skin lesion image
analysis is an essential stage for early skin cancer disease
diagnosis. As a crucial step, skin lesion image segmentation
helps to distinguish lesions from the background by labeling
each pixel in the image as healthy or Infected ones. Skin
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Lesion segmentation is a challenging problem due to the
low contrast of skin lesions images, irregular borders, and
the existence of some extraneous elements such as hair, pen
markers, oil drops, etc. Other factors such as the irregular
color, size, scale, and precision of the lesion area add another
challenge to the segmentation problem. Figure 1 shows some
examples of skin lesion dermoscopy images with various
variations. All those factors pose major obstacles to the suc-
cess of many skin lesion segmentation methods. Increasing
the number of collected skin lesion images makes it imper-
ative to use computers to perform automatic segmentation
easily and effectively. However, manually labeling such a
large number of images by an expert is a tedious work and
very costly.

A few research works have carried out to study the
color contrast variations in skin lesion image segmentation
[11]–[16]. Most of these works utilize color space
conversion-based methods to efficiently represent the
infected parts and discriminate them from background pixels.
These methods convert the RGB input image to another
color space like YCbCr, Lab, and HSV. A significant number
of research applied a specialized pre-processing operation
on the input image [11], [14], [17]–[19] while other works
employed post-processing [11], [12], [17], [20], [21] to
enhance the segmentation results of the proposed architec-
tures. On the other hand, recent works using deep learning
methods [22]–[25], [27]–[29] rely on extending the archi-
tecture of existing deep convolutional neural networks to
improve the skin lesion image segmentation results.

One of the main issues in skin lesion segmentation is
the color contrast variations among similar lesion types.
Although previous works handled this issue by exploiting
various color spaces using single input deep CNN, this paper
investigates the effect of combining multiple color spaces of
the input image usingmulti-input deep CNN.A newmodified
Color U-Net (CU-Net) model with multiple encoders and one
decoder sub-network is developed to take advantages of com-
bining multiple features extracted from various color space
representations of the input image. The U-Net model [30] is
used as a backbone architecture to build a three variants of
CU-Net models. The proposed models depends on connect-
ing multiple encoders into a single decoder sub-network to
capture different color features of the skin lesions to over-
come color variation problem of skin lesion image segmen-
tation. Three different models are proposed based on U-Net
architecture using single, dual, and triple inputs, namely, Sin-
gle Input Color U-Net (SICU-Net), Dual Input Color U-Net
(DICU-Net) and Triple Input Color U-Net (TICU-Net). The
proposed DICU-Net and TICU-Net models comprise two and
three separate encoder sub-networks based on the traditional
U-Net structure, where each encoder path of the proposed
network accepts different color space of the input image and
interconnected with each other to learn more rich features.
The learned feature maps from each encoder sub-network are
fused through a Channel-wise Attention Network (CAN) and
fed into the decoder sub-network to learn the contribution of

each color space into the segmentation results. Various com-
binations of color spaces are examined to find the optimum
color spaces which achieve the best performance. Due to the
significant effect of loss function in the segmentation results,
a new hybrid binary-weighted loss function is proposed from
the combination of three different loss functions, namely,
cross-entropy, generalized dice, and sensitivity-specificity.
We considered various performance metrics such as: accu-
racy, sensitivity, specificity, Jaccard index and Dice coeffi-
cient to evaluate the segmentation results. The contributions
of the paper can be summarized as follows:
• Exploring the effect of changing input image color space
on the performance of the new proposed color U-Net
model segmentation results.

• Proposing two multi-input networks based on color
U-Net architecture. These networks are composed of
multiple encoder sub-networks and a single decoder to
combine various color features of the input image.

• Using channel-wise attention module to interconnect the
encoder and decoder paths of the proposed models.

• A new hybrid loss function is designed as a combina-
tion of cross-entropy, generalized dice, and sensitivity-
specificity loss to improve the performance of the
proposed models.

• Experiments are conducted using three standard skin
lesion databases to validate the proposed models and
a comparison of the results with other state-of-the-art
methods is performed.

The rest of the paper is organized as follows: the related
works are reviewed in section II. Our proposed models are
detailed in section III. Then, we come to the experimental
results section IV followed by the analysis of the obtained
results. Discussion is presented in section V. Finally, the
conclusion is given in section VI.

II. RELATED WORK
Several methods have been introduced to solve the auto-
matic skin lesions segmentation problem over the last decade.
In this section, we briefly explain the latest developments
in skin lesion segmentation which are closely related to our
work. Currently, recent skin lesion segmentation methods
are transferred from adopting shallow hand-crafted feature
extraction algorithms into deep feature learning using Convo-
lutional Neural Network (CNN) architecture. These methods
can be classified into three different categories: Traditional,
deep learning, and color-based skin lesion segmentation
methods.

A. TRADITIONAL SKIN LESION SEGMENTATION METHODS
An efficient skin lesion image segmentation technique
helps to enhance the early detection and diagnosis of
melanoma. Several approaches are adopted according to the
nature of the segmented lesion. Region growing approaches
[31], [32] and thresholding approaches [33]–[35] are used
to find the fine border in lesion images. While clustering
approaches [36], [37] are used to address the unclear border
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FIGURE 1. Image samples of appearance variations in ISIC 2017 skin lesion dataset due to: (a) hair, (b) pen markers, (c) oil, (d) markers,
(e) pen marker and gel, (f) irregular boundaries, (g) light-colored lesion area, (h) dark-colored lesion area, (i) ruler sign, (j) unclear lesion.

lesions problem. Other approaches in [38], [39] are based on
employing histogram-based cluster estimation to distinguish
between healthy and infected parts in the images. Active
contours based methods [40], [41] were among the proposed
approaches that focused in the separation of the required
pixels from the image for further processing and analysis by
using energy forces with some constraints. In addition, edge-
based methods [42] were suggested to identify the region
of interest. All previously mentioned segmentation tech-
niques are considered primitives as they depend only on low-
level pixel-wise features. Therefore, they could not achieve
the desired performance in comparison with deep learning
methods.

B. DEEP LEARNING SKIN LESION SEGMENTATION
METHODS
Recently, Deep Convolutional Neural Networks (DCNN) is a
powerful technique that play a prominent role in developing
new medical image segmentation methods [10], [17]–[19],
[21], [43]–[48] due to the high-accuracy results in segmen-
tation operations. In 2011, Yuan et al. [17] utilized a 19-layer
deep convolutional neural network that is trained end-to-end.
They did not have any prior knowledge of the data to present
a fully automatic method for skin lesion segmentation. Fur-
thermore, they proposed a novel loss function based on
Jaccard distance to dispense with sample re-weighting. Their
technique could eliminate the need for data re-balancing
when the numbers of foreground and background pixels are
un-balance.

In 2018, Poap et al. [47] presented a smart home system
that using in-built sensors and proposed artificial intelligence
methods to diagnose the skin health condition of the residents
of the house. They compared the results of their proposed
method with the results of some similar methods. In 2019,

Hashemi et al. [46] used an asymmetric similarity loss func-
tion to train a fully convolutional deep neural network in order
to overcome the data imbalance issue and achieved a much
better trade-off between precision and recall. Moreover, they
developed a 3D fully convolutional densely connected net-
work (FC-DenseNet) with large overlapping image patches as
input and an asymmetric similarity loss layer based on Tver-
sky index. They also used large overlapping image patches as
inputs for intrinsic and extrinsic data augmentation, a patch
selection algorithm, and a patch prediction fusion strategy
using B-spline weighted soft voting to account for the uncer-
tainty of prediction in patch borders.

An automatic semantic segmentation network for
skin lesion segmentation named Dermoscopic Skin Net-
work (DSNet) and a new loss function that combines a binary
cross-entropy and intersection over-union are presented by
Hasan et al. [10] in 2020. They succeeded to reduce the
number of parameters and make the network lightweight.
they used a depth-wise separable convolution instead of
standard convolution to stand out discriminatory features
in the pixel space at different steps of the encoder. Their
proposed loss function played an important role in semantic
segmentation and achieved higher true positive rates in the
conducted experiments.While, in 2020, a novel segmentation
methodology is proposed by Al-masni et al. [18]. They used
Full resolution Convolutional Networks (FrCN) that do not
require any pre- or post-processing operations but it learns the
full resolution features of each individual pixel of the input
data to improve pixel-wise segmentation performance. They
achieved high evaluation metrics value in the tested datasets.
Xie et al. [8] devised a high-resolution feature block with
three branches, the first one is the main branch that accepts
high-resolution feature maps to extract spatial details around
boundaries. The second and the third branches are the spatial
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attention and the channel-wise attention branches, which are
used to enhance the discriminative features in themain branch
regarding the spatial and channel-wise dimensions. Robust
features with detailed spatial information were yielded and
extracted, and accurate skin lesion boundaries have obtained
by fusing the branch outputs.

In 2021, Khan et al. [44] proposed a fully automated com-
puterized aided diagnosis system that is based on the deep
learning framework. In their proposed scheme, they pre-
processed the original dermoscopic images using the decor-
relation formulation technique. Then, the resultant images
are passed to the MASK-RCNN which is trained using the
segmented RGB images generated from the ground truth
images of the used datasets. Next, the resultant segmented
images are passed to the DenseNet deep model for feature
extraction. They combined the output of average pool and
fully connected layers for feature extraction and the resultant
vector is forwarded to the feature selection block for down -
sampling using proposed entropy-controlled least square
SVM. Their proposed model was the lowest in computational
time compared with other works. Kadry et al. [45] extracted
the skin melanoma section by employing the VGG-SegNet
scheme to the digital dermoscpy image. Then, they executed
a relative assessment between the segmented skin melanoma
and the ground-truth, and computed the essential perfor-
mance indices. Their proposed technique is significant in
evaluating the clinical grader of digital dermoscopy image.
Khan et al. [48] extended their previous works and proposed
a fully automated approach for multi-class skin lesion seg-
mentation and classification that used the most discriminant
deep features. They used local color-controlled histogram
to enhance the image intensity values. Then, they used a
novel Deep Saliency Segmentation method that is a custom
convolutional neural network (CNN) of ten layers to estimate
Saliency. By using a thresholding function, they got a binary
image from the generated heat map. They used the segmented
color lesion images for feature extraction via a deep pre-
trained CNN model. They implemented an Improved Moth
Flame Optimization (IMFO) algorithm to select the most
discriminant features to avoid the curse of dimensionality,
and the resultant features are fused using a Multi set Maxi-
mum Correlation Analysis (MMCA) and classified using the
Kernel Extreme Learning Machine (KELM) classifier. Their
approach showed an improvement in accuracy but with high
computational time.

Currently, several researches in skin lesion segmenta-
tion field employed a model of Fully Convolutional Net-
work called U-Net [9], [49]–[54]. In 2019, a psoriasis
lesion segmentation network (PsLSNet) was introduced by
Dash et al. [52] as an automated method based on a modi-
fied U-Net architecture. The architecture has 29-layer deep
fully convolutional network for extracting spatial informa-
tion automatically. Their proposed structure accelerated the
training by reducing the co-variate shift through the imple-
mentation of batch normalization and could segment the
lesion even in challenging cases. Qamar et al. [49] combined

DenseNet [55] and ResNet [56] and presented an encoder-
decoder–based CNN for skin lesion segmentation that is
based on UNet architecture. Their aim was to improve the
performance of skin lesion segmentation. In the encoder path,
they used atrous spatial pyramid pooling (ASPP) to generate
multi-scale features from different dilation rates and used
dense skip connections to combine the encoder and decoder
feature maps. They proposed a deep learning method to
model lesion patterns to perform melanoma detection and
lesion segmentation. They were able to exploit multi-scale
contextual information, retrieve accurate information, and
improve segmentation performance. Pham et al. [50] com-
bined multiple hypotheses into a single decision point. For
melanoma detection and seborrheic-keratosis classification,
they trained Inception-v4 [57], ResNet-152, and DenseNet-
161 [55]. While for lesion segmentation, U-Net and U-Net
with VGG-16 Encoder [58] were trained to produce segmen-
tation masks. Their model ranked 5th in classification and
8th in segmentation among 23 and 21 international teams,
respectively. Also, Tang et al. [51] exploited the advantages
of U-Net architecture and the separable convolutional block
to propose a skin lesion segmentation method that is based
on the separable-U-Net with stochastic weight averaging to
get higher semantic feature information. They introduced a
scheme based on stochastic weight averaging to obtain an
optimum broader and better generalization. They enhanced
the pixel-level discriminative representation capability.

Azad et al. [54] proposed a frequency re-calibration U-Net
(FRCU-Net) for medical image segmentation to reduce the
effect of texture bias, and get better generalization for a
low data regime. They applied the Laplacian pyramid in the
bottleneck stage in the U-structure. They used a channel-wise
attention mechanism to capture the relationship between the
channel features maps in a layer of the frequency pyramid.
Then the extracted features of each level of the pyramid are
combined through a non-linear function based on their impact
on the final segmentation output. Their proposed net achieved
state-of-the-art results, However, employing high frequency
information can exaggerate the noise information exists in
the skin images which may deteriorate the performance of
the system in real-time scenarios. Alom et al. [59] utilized the
power of U-Net to propose a Recurrent Convolutional Neural
Network (RCNN) based on U-Net as well as a Recurrent
Residual Convolutional Neural Network (RRCNN) based on
U-Net models, and named RU-Net and R2U-Net respectively.
All the proposed models had several advantages for seg-
mentation tasks. Their proposed network showed better per-
formance in segmentation tasks with the same number of
network parameters when compared to existing methods
including the U-Net and residual U-Net (or ResU-Net) mod-
els. However, computational Time for training and testing
increased due to the recurrence operations. Asadi et al. [60]
took the full advantages of U-Net, Squeeze and Excita-
tion (SE) block, bi-directional ConvLSTM (BConvLSTM),
and the mechanism of dense convolutions to create a new
model called (MCGU-Net) as an extension of U-Net for
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medical image segmentation. The network was able to cap-
ture more discriminative information and more precise seg-
mentation results. However, using dense connections in the
bottleneck increase the complexity of the network.

C. COLOR-BASED SKIN LESION SEGMENTATION
METHODS
Few researchers [11], [12], [14], [61] have adopted the idea of
using color spaces in the segmentation process that relying on
convolutional neural networks. Schaefer et al. [19] presented
an effective approach that combines an enhancement stage
and two different segmentation algorithms. The enhancement
stage was a pre-processing step to counter the weak contrast
and lack of color calibration in the dermoscopy images. They
proved that applying a color normalization technique was
necessary to reduce color variations and enhance image con-
trast to improve skin lesions segmentation. Pour et al. [11]
developed a segmentation model for skin lesion segmentation
tasks and dermoscopic feature segmentation. They trained
the network from scratch in spite of the limitation of data
size without applying any data augmentation or any pre-
processing techniques to remove artifacts or enhance images.
Instead of that, they increased the depth of input to convolu-
tional layers by using the efficient featuremaps concatenation
from transform domain in addition to using CIELAB colour
space with RGB colour channels. Their proposed method
improved the segmentation process in two ways: (1) con-
catenated feature maps to the network provided an excellent
realization of the input to the model. (2) applying CIELAB
colour space with RGB colour channels provides more infor-
mation for the network. Likewise, a deep fully Convolutional
Deconvolutional Neural Network (CDNN)- based frame-
work is proposed by Yuan et al. [61] to automatically seg-
ment dermoscopic images of skin lesions. They did not use
pre-or post-processing algorithms and even any hand-crafted
features. They focused on designing a suitable network archi-
tecture and an effective training method such that it can
handle images under various acquisition conditions. Besides
using RGB color for the input image, they used HSV color
space with L channel from Lab color space as the training
input image. Their effective training strategies were able to
handle images under different acquisition conditions.

De Angelo et al. [12] presented a methodology using a
combination of deep learning, color space, and conditional
randomfields to segment a dataset created in partnership with
a group of dermatologists. For this purpose, they developed
an application to collect skin lesion images using smart-
phones’ camera and created a new clinical dataset. They
presented an investigation regarding the color spaces and
post-processing that had enabled them to raise some impor-
tant remarks about the ground truth images for skin lesions
that affect the final segmentation results. Abbas et al. [14]
enhanced the quality of dermoscopic images before segmen-
tation by applying three pre-processing operations. Those
operations include, firstly remove image noise by using
median filter and morphological operations. Secondly, they

selected the green channel as the optimal color channel
from RGB values. Thirdly, they utilized a combined Spline
and B- spline to enhance the image before segmentation.
After image pre-processing, they used the empirical threshold
value of the optimal color channel to complete the lesion
segmentation. Finally, post-processing (morphological oper-
ation) was utilized to fuse the smaller regions and the main
lesion region and extract the lesion border. Although their
approach achieved a good performance and obtained a high
accuracy value, it depends on the quality of the pre- and
post-processing results. Table 1 shows a summary of the most
related methods listed in this section that concerned the skin
lesion segmentation in terms of the advantages and the disad-
vantages the proposed methods with the detests employed in
the testing.

III. PROPOSED METHOD
In this section, we explain the details of the three pro-
posed color U-Net models which is based on the well-
known U-Net architecture. Firstly, we explain the image
pre-processing technique employed in this work. Then,
we explain the structure of the proposed single input color
U-Net (SICU-Net). Next, the other two proposed architec-
tures, namely DICU-Net and TICU-Net are explained in
details. Finally, the proposed composite loss function is
presented.

A. IMAGES PRE-PROCESSING
The performance of the proposed skin lesion segmenta-
tion method can be improved by applying a simple pre-
processing technique on the images before performing the
training/testing process. Since the skin lesion images used
for segmentation contain a lot of noise, complexities, and
different textures, it was necessary to use a pre-processing
to relieve the effects of these obstacles. We used two-steps
pre-processing process including, color space transformation
and image contrast normalization.

1) COLOR SPACE TRANSFORMATION
The captured skin lesion images are usually available as
3-channel images or tri-stimulus colors, red (R), green (G),
and blue (B) called RGB color space. RGB color space is
the most commonly used color space in the image processing
field. Although RGB model is commonly used, it is a device-
dependent color space and not uniform. Also, it is difficult
to determine a specific color in that model and there are
non-linear differences among similar colors. Figure 4 shows
existing irregular color contrast representation in the ISIC
dataset. The problem of color contrast lesion variations can be
alleviated by selecting appropriate color space representation
of the input image. Various color spaces are commonly used
to solve skin lesion segmentation problems such as: Lab,
HSV, YCbCr, XYZ, etc.

While RGB represents colors as a combination of red,
green, and blue signals, the YCbCr color space is defined as
a transformation from RGB color space. YCbCr represents
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TABLE 1. Summary of the advantages and limitations of the most related methods concerned with skin lesion segmentation.

colors as a combination of luma component of the color signal
and two chroma signals (blue-difference and red difference).
HSV is a map of the RGB primary colors into easier and
understandable dimensions for humans which are: hue, sat-
uration, and value. HSV is a cylindrical color which is more
natural than the additive (RGB) color components.XYZ color
space is the conversion of the channels of the RGB image to
CIE 1931XYZ values.Y channel refers to luminance,Z chan-
nel is approximately equal to blue channel, and X is a mix of
response curves chosen to be non negative and orthogonal to
luminance. Lab is a color model that is introduced to obtain
near uniform spacing to the differences of perceived color.
The distance between the two points shows the difference of
the colors in luminance, chroma, and hue. YIQ color space
is the model that is used in NTSC color TV system. The Y
channel represents the luma information or brightness of the
image. While, I is the amount of blue or orange tones in the
image. Q (Quadrature) is the amount of green or purple tones
in the image. The gray-scale image is the image with pixels
values equal to the amount of light for each pixel.

Each color space of the skin lesion image provides a
different representation which help to capture the invariant
color properties of the lesion. Figure 2 (left part) shows the
appearance of the components of each color space. It is clear
from the figure that some channels carry discriminative skin

lesion information with high contrast between lesion and
normal skin such as: B, Y, V, X, Y and L channels in RGB,
YCbCr, HSV, XYZ YIQ, and Lab color spaces, respectively.
In addition, some channels like Cr, IQ, and ab have invari-
ant characteristics of the lesion despite their low contrast
appearance.

2) IMAGE CONTRAST NORMALIZATION AND
ENHANCEMENT
In order to increase the contrast of skin images after con-
verting them into another color space, we applied a sim-
ple image contrast enhancement technique to improve the
contrast between background and foreground (skin lesion)
in each channel. The contrast enhancement method maps
the intensity values of each component of the input image
to new values. The contrast enhancement technique also,
control the relationship between the values in the input and
the output images by defining the shape of the curve that
describes this relationship to produce more brighter, darker,
or linear mapping output values. The intensity of the nor-
malized image have 1% values saturated at low and high
intensities. In this paper, we chose the linear mapping method
and investigated its performance on the proposed models.
Figure 2 (right part) shows the appearance of each color space
component after applying contrast normalization. It is clear
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FIGURE 2. Different component representation of each color space. On the left without using image adjustment and on the right
after using image contrast normalization and enhancement.
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that, the distinction between foreground and background pix-
els is improved by applying the simple contrast enhancement
technique.

B. SINGLE INPUT COLOR U-NET ARCHITECTURE
The use of convolutional neural networks (CNN) in the image
classification field has been prevalent for a long time. CNN is
a hierarchical model used to learn multi level features of the
image and these feature maps are transformed into a vector
which is then used for the classification task. However, with
the presence of complex objects and the need to perform
segmentation taskswhich requires not only converting feature
maps into a vector but also re-model the image from this
vector, the use of traditional convolutional neural networks
has become useless and can not achieve any acceptable
progress. Therefore, the need for an alternative structure that
can perceive these complex images has emerged and this is
the beginning of the U-Net architecture.

The performance of classical U-Net is not satisfactory
when applied to skin lesion segmentation due to the low
contrast and color discrepancy of skin lesions. To overcome
these problems, we propose three network architectures based
on U-Net structure, which exploit different color spaces at
each input path. The proposed networks enclose single, dual,
and triple inputs and one output path. The inputs can be
fed with any color space or any selected channel. Proposed
networks are denoted as single input color U-Net (SICU-Net),
dual input color U-Net (DICU-Net), and triple input color
U-Net (TICU-Net).

U-Net was suggested by Ronneberger et al. [30] and
designed to deal with biomedical image segmentation. It was
focused on the image segmentation task where its input is
an image and the output is a single label for each pixel
in this image. U-Net is able to localize and recognize bor-
ders as it performs classification on every pixel, so the
input and output images have the same size. The idea of
U-Net is that the learned feature maps from the input image
can be transformed again into another image instead of a
vector of classes. Figure 3 shows the architecture of the
proposed single input color U-Net (SICU-Net) model. The
design of the SICU-Net looks like a ‘U’ shape, hence it
gets its name. The SICU-Net structure consists of three
parts: The contracting/down-sampling (encoder path), bot-
tleneck, and the expanding/up-sampling (decoder) path. The
encoder path consists of 4 blocks. Each block contains two
3 × 3 convolution layers followed by an activation function
and a 2 × 2 Max Pooling layer. The number of feature
maps is doubled after each pooling. The network begins
with 64 feature maps in the first block, then it is dou-
bled to 128 for the second, and so on. The function of
the encoder path is to capture the context information of
the input image, then producing feature maps. Those fea-
ture maps will be transferred to the up-sampling through
a channel-wise attention module instead of the simple skip
connections (dashed gray arrows in Fig. 3) in the classi-
cal U-Net model. The second part is the bottleneck which

is located between the contracting and expanding paths.
The bottleneck is also built from two 3 × 3 CNN layers fol-
lowed by a 2×2 up-convolution layer with dropout. The third
part is the decoder path and again, is composed of 4 blocks
each one of them consists of a deconvolution layer with
stride 2, concatenated with the corresponding cropped feature
map from the contracting path, and two 3 × 3 convolution
layers with ReLU activation function. At the end of each
block, the number of feature maps decreases by half to keep
symmetry. The function of the decoder path enables precise
localization using transposed convolutions. However, every
time the input is appended by attentioned feature maps from
the corresponding contraction layer. In this way, the features
which are learned from contracting the input image will be
passed through a Channel-wise attention module and used to
reconstruct it. The number of expansion blocks is equal to
the number of contraction blocks. In the end, the attentioned
feature maps passes through another 1 × 1 convolutional
layer with the number of feature maps equal to the number of
classes desired to produce the segmentation map by assigning
a label for each pixel in the image.

In the single input color U-Net (SICU-Net) structure,
the color space/channels of the input image can be chosen
according to the type of medical input image. The segmen-
tation results can be improved if we choose an appropri-
ate color space to represent the class information. Thus,
SICU-Net model allows to manually choose the appropri-
ate color space/channel to improve segmentation results.
The contraction path of the SICU-Net network serves as a
deep feature extractor which is connected to the expansive
path through channel-wise attention modules. Expansive path
enables precise localization information to be combined with
contextual information coming from the contracting path.
SICU-Net model inherits all advantages of traditional U-Net
and provides a general (context and localization) information
necessary to predict segmentation map. Input images can be
of any size and color space/channels. The possibility of using
data augmentation due to the limited number of annotated
samples can further improve the results.

C. PROPOSED DUAL INPUT CU-NET (DICU-NET) AND
TRIPLE INPUT CU-NET (TICU-NET)
Similar to all convolution neural networks, SICU-Net archi-
tecture accepts only one input image which is processed
by consecutive convolution and pooling layers. This paper
extends the capabilities of the proposed SICU-Net architec-
ture to accept multiple inputs. The proposed network archi-
tectures namely, dual input color U-Net (DICU-Net) and
triple input color U-Net (TICU-Net) are adapted from the
proposed SICU-Net structure with multiple encoders and
single decoder path. The contracting path in each network has
four (stages) comprising convolution blocks followed by a
bottleneck stage. Each block contains two convolution layers
with ReLU activation function followed by a max-pooling
layer for down-sampling the input by a factor of two. Each
encoder sub-network receives the same input image but with
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FIGURE 3. Single Input Color U-Net (SICU-Net) architecture.
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FIGURE 4. Color challenges in ISIC dataset. Top row (a-e) shows the lesion with different background colors. The middle row (f-j) shows the
lesion itself with different colors. The bottom row (k-o) shows how the lesion and background are close in color.

different color spaces. The output from each max-pooling
layer in each stage of the encoder sub-network is added to the
output of the corresponding stage in the other encoder sub-
network. Then, the output of each addition layer of each stage
from every encoder sub-networks are passed regularly to the
next stage. In contrast, the feature maps resulted from the
encoding path in each stage from encoder sub-network are fed
to a channel attention network in the expansive path. Then,
the output is concatenated with output of each sub-network
bottleneck stage passed through decoding blocks that begin
with a de-convolution layer followed by two convolutional
layers to decrease the number of feature map by a factor of
two. Figure 5 and Figure 6 show in details the architecture
of DICU-Net and TICU-Net, respectively. The extracted fea-
tures in the decoding path are passed to the channel attention
network at the end of the decoding path and fed to the final
classification layer. The combination of various feature maps
from different input color spaces leads to improve the perfor-
mance of the segmentation results. Also, the entire context of
the input images is kept due to the end-to-end training process
from the multiple input images to produce its corresponding
segmentation map. The structure of the attention network is
shown in detail in section III-D.

The proposed DICU-Net and TICU-Net structures are fed
with an RGB input image and followed by a distribution
layer which convert the input image into another color space
and fed it to each encoder path of multi input CU-Net.
The structure of the proposed encoder sub-network including

the number of layers, size and number of convolutional filters
are identical to each other. The feature maps from the last
de-convolutional layer of the decoding path are fed to an
attention network before entering the final 1× 1 convolution
layer, which produce the semantic segmentation map.

The main characteristics of the proposed SICU-Net,
DICU-Net, and TICU-Net models can be summarized as
follows:

1) At the beginning, the input image is resized and nor-
malized then converted to the desired color spaces.

2) All the channels that are resulted from this conver-
sion is stacked together one after another to form an
input imagewithmultiple channels from different color
spaces.

3) The constructed multi-channel input image is sent to
the distribution layer. This layer is responsible for
dividing the input image channels into single, dual or
triple subset(s) of channels according to the type of
network.

4) In the single input color U-Net model (SICU-Net), all
input channels are fed into the CU-Net.

5) In the dual input color U-Net model (DICU-Net), the
first subset of channels is fed into the first encoder sub-
network while the second subset is fed into the second
encoder sub-network.

6) In the triple input color U-Net model (TICU-Net), the
first subset of channels is fed into the first encoder
sub-network, while the second and third subsets are
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FIGURE 5. The proposed dual input color U-Net (DICU-Net) structure.

fed into the second and third encoder sub-networks,
respectively.

7) The output feature maps from SICU-Net or from each
encoder sub-networks of DICU-Net and TICU-Net
models are fed to a simple channel-attention module
until they reach the final classification layer.

8) The final layer is a convolutional layer with kernel size
equal 1 × 1 to accomplish the semantic segmentation
task.

9) The training process of the proposed models uti-
lize backpropagation learning algorithm with gradient
decent optimization and a composite loss function.

D. CHANNEL-WISE ATTENTION MODULE
The proposed multi-input deep convolutional neural net-
work generates multiple feature maps from each input. It is

beneficial to fuse the extracted features by focusing the
attention on significant feature maps to emphasize informa-
tive features and suppress redundant features. A channel-
wise attention module is employed to draw the convolutional
neural network attention towards important color features.
Channel-wise attention modules are usually based on learn-
ing the interrelation between feature channels. The input to
the channel-wise attention module is a set of feature maps
FMc ∈ <

h×w×c where h,w, and c are the number of rows,
columns, and channels, respectively. The feature maps fed
into the channel-wise attention module are generated by
applying a set of convolutional and pooling operations on
the contraction path of the input image with different color
spaces. The channel attention module used in this work is
inspired from [64] by applying global max pool and global
average pool operations to get Fmax and Favg, respectively.
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FIGURE 6. The proposed triple input color U-Net (TICU-Net) structure.

Then, the pooled features are concatenated and forwarded by
two fully connected layers that reshape the output features
into the required number of channels to be passed to the
Relu and Sigmoid activation functions. The resulted channel
attentionmapMc ∈<

1×1×c. where c represents the number of
channels is multiplied with the input feature maps to get the
required channel weighted map. Figure 7 shows the structure
of the channel-wise attention network. The resulted feature
mapMc is computed from the following equations:

Mc = σ (Relu(Fc64(Relu(Fc32(concat(Fmax ,Favg)))))) (1)

where σ denotes sigmoid activation function. The final chan-
nel attention map CMc is obtained from:

CMc = FMc ⊗Mc (2)

where ⊗ is the element-wise multiplication and CMc ∈

<
h×w×c.

E. PROPOSED COMPOSITE LOSS FUNCTION
Plenty of loss functions are used to improve the performance
of deep convolution neural networks used to solve semantic

segmentation problem. The aim of the loss function is to
evaluate the performance of the network and minimize the
error resulted from the training. In this section, we will
explain our proposed composite loss function, but before that,
we will mention some parameters that are usually employed
to formulate themetrics used to evaluate the network, namely,
True Positive(TP), True Negative (TN), False Positive (FP),
and False Negative (FN). Pixels in binary skin lesion image
segmentation usually belong to one of the two-class objects:
foreground (lesion skin) and background (normal skin). The
group of pixels that belong to the foreground and are pre-
dicted correctly by the model is known as (TP). While the
group of pixels that belong to the foreground but the model
predicted them incorrectly are known as (FN). And finally,
the pixels that do not belong to the foreground but the model
predicted them incorrectly are (FP).

Now we can explain our novel proposed composite
loss function called Binary Weighted Cross-entropy, Dice,
Sensitivity-Specificity (BW-CE-Di-SS) loss function. It con-
sists of three terms combined with binary weights where its
components are defined as the following:
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FIGURE 7. The structure of channel-wise attention module.

• Cross Entropy Loss: cross-entropy is the most com-
mon effective metric in the binary segmentation tasks.
It is derived from Kullback-Leibler (KL) divergence
to measure the model performance whose output is a
probability value between 0 and 1. Its value is increased
when the predicted probability (Y) close to the actual
label (T). It is defined as:

LCE = −
1
N

N∑
i=1

C∑
c=1

[Tic log(Yic)] (3)

where Tic is the ground-truth label of the pixel i that
belongs to class c and (Yic) is the predicted proba-
bility value for pixel i that belongs to the class c.
N and C represent the total number of pixels and
classes, respectively. Ronneberger et al. [30] introduced
a Weighted Cross Entropy (WCE) formula to handle the
class imbalance problem in binary segmentation tasks as
the following equation:

LWCE = −[wT log(Y )+ (1− w)(1− T ) log(1− Y )]

(4)

where w is inversely proportional weight to the class
frequencies and it is used to penalize majority classes.
In our proposed loss, we assigned 0.7 for the weight w.
However, due to high imbalance data in skin lesion
segmentation, WCE can not overcome this problem on
its own. Hence it is required to combine it with other
complementary loss functions.

• Dice Loss: Dice loss is used as an alternative to cross-
entropy to train 3D U-Net [65] and other network
architectures. It is derived from Sørensen–Dice coeffi-
cient, which is a statistical metric used to evaluate the

similarity (overlap) between two samples. This metric
ranges from 0 to 1 whereas assigning 1 to the Dice coef-
ficient denotes perfect and complete overlap between
the evaluated samples. Milletari et al. [65] utilizes Dice
coefficient in computer vision and define it as the area
of overlap divided by the mean of the total number of
pixels in both images.

Dice =
2|T ∩ Y |
|T | + |Y |

(5)

where |T ∩ Y | is the common pixels between T and
Y . While |T | + |Y | are all pixels in T and all pix-
els in Y . In image segmentation problems, |T ∩ Y | is
evaluated as element-wise multiplication between the
predicted (Y) and the ground truth mask (T) and then
sum the elements in the resulted matrix. On the other
hand, to evaluate the denominator, some researchers use
the regular sum whereas the other researchers prefer
to use the squared sum. We tried both and found that
the squared sum gave better results. By applying Dice
definition (Eq. 5) to the Boolean data and employ the
definition of {TP,FP,FN }, we can reformulate Eq. 5
into:

Dice =
2TP

2TP+ FP+ FN
(6)

Dice loss weighs (FPs) and (FNs) equally to achieve a
better trade-off between precision and recall. The value
(2) in the numerator is due to the double count of the
common pixels from the union calculation in the denom-
inator, one from T and the other from Y . The dice loss
function will be:

LDice = 1− Dice (7)
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Dice =

2
N∑
i=1

C∑
c=1

(TicYic)

N∑
i=1

C∑
c=1

T 2
ic +

N∑
i=1

C∑
c=1
+Y 2

ic

(8)

LDice = 1−

2
N∑
i=1

C∑
c=1

(TicYic)

N∑
i=1

C∑
c=1

T 2
ic +

N∑
i=1

C∑
c=1
+Y 2

ic

(9)

In which Yic and Tic represent pairs of corresponding i
pixel predicted and ground truth values at a specific
class c, respectively. Dice loss can deal efficiently with
situations where there is a great imbalance between the
number of skin lesion and normal pixels and is one of
the loss functions that achieved very good results in
the semantic segmentation field. However, both WCE
and DL can not directly improve the sensitivity and
specificity performance metrics.

• Sensitivity-Specificity Loss:Due to the imbalance class
representation problem in semantic segmentation, a loss
function combining sensitivity and specificity is pro-
posed by Brosch et al. [66]. Sensitivity and Specificity
are used together to evaluate the classification perfor-
mance for great unbalanced problems. Sensitivity refers
to the ability to detect lesion pixels with the skin disease
correctly.

Sensitivity =
TP

TP+ FN
(10)

Therefore, if a test skin image has 100% sensitivity,
this means that the model correctly identifies all skin
lesions from normal skins. On the other hand, the speci-
ficity refers to its ability to detect normal skin pixels
correctly.

Specificity =
TN

TN + FP
(11)

Therefore, a test skin image with 100% specificity
means that all normal skin pixels are correctly identi-
fied. Sensitivity (true positive rate) measures the ratio
of actual skin lesion pixels that are correctly classi-
fied. While Specificity (true negative rate) measures
the ratio of actual normal skin pixels that are correctly
classified. By combining them, the final error will mea-
sure a weighted sum of the mean squared difference of
the lesion pixels (sensitivity) and normal pixels (speci-
ficity). The final error was formulated in the following
form

LSS =

N∑
i=1

C∑
c=1

(Tic − Yic)2Tic

N∑
i=1

C∑
c=1

Tic + ε

TABLE 2. Distribution of ISIC 2017 dataset classes.

+

N∑
i=1

C∑
c=1

(Tic − Yic)2(1− Tic)

N∑
i=1

C∑
c=1

(1− Tic)+ ε

(12)

The first term in Eq. (12) is the Sensitivity and the second
one refers to specificity.
Due to the class imbalance in the skin lesion images,
a binary weighted composite loss function is proposed
in this paper in the following way.

LBW−CE−D−SS = 1 ∗ LWCE + 2 ∗ LDice + 4 ∗ LSS
(13)

LWCE , LDice, and LSS are defined in Eqs. 4, 9, and 12
respectively. Each term in the proposed loss function
has contributed to balance the results of accuracy, true
positive and true negative rates. Whereas Dice gave
additional weight to false positives and false negatives,
which boosted the performance of segmentation results.
The specificity term further enhances the true negative
rate. Our proposed loss function works in harmony with
the proposed multi-input CU-Net to segment color skin
lesion images in different color spaces.

IV. EXPERIMENTAL RESULTS
In this section, the segmentation performance of the proposed
CU-Net architectures are evaluated using three data sets,
namely, ISIC 2017, ISIC 2018 and PH2. International Skin
Imaging Collaboration ISIC dataset 20171 contains three
subsets, the first training subset has 2000 lesion images
in JPG format divided into 3 subcategories, 1372 images
for benign images, 374 for Melanoma images, and 254 for
Seborrheic_Keratosis (SK) and their 2000 corresponding
binary mask images in PNG format. The second test-
ing subset includes 600 lesion images for testing in
jpg format, 393 benign images, 117 Melanoma images,
and 90 Seborrheic_Keratosis (SK) and their 600 corre-
sponding binary mask images in PNG format. The third
validation subset includes 150 lesion images for testing
in JPG format, 78 benign images, 30 Melanoma images,
and 42 Seborrheic_Keratosis (SK) with their 150 correspond-
ing binary mask images. To evaluate our proposed models
on this dataset, all images are scaled to (160×224) Figure 8
shows samples from ISIC 2017 dataset. In addition, the class
distribution of each skin lesion type is shown in Table 2.

1https://challenge2017.isic-archive.com/
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FIGURE 8. Three image samples from each ISIC 2017 dataset class (top
row) with its corresponding ground truth (bottom row) (a) Melanoma
class, (b) Benign class, and (c) Seborrheic_Keratosis class.

FIGURE 9. Three image samples from each ISIC 2018 dataset class (top
row) with its corresponding ground truth (bottom row).

The ISIC 20182 dataset was published by the International
Skin Imaging Collaboration (ISIC) as a large-scale dataset of
dermoscopy images. The training dataset of ISIC 2018 con-
tains 2594 RGB dermoscopic images that have a resolu-
tion ranged from (576×768) to (6748×4499) in jpg format.
We divided the training images into 80% (2076) images
for training and 20% (518) images for testing with size
(256×256). Figure 9 shows samples from ISIC 2018 dataset.

PH2 dataset was created at the Hospital Pedro Hispano
with the help of the research group Universidade do Porto,
Técnico Lisboa in Matosinhos, Portugal. The PH2 dataset
consists of 200 skin lesions in total, 80 of them including
Common Nevus cases, 80 for Atypical Nevus, and 40 for
Melanoma cases. Images in the PH2 dataset were captured
under the same conditions, and the size of all images in this
dataset was 768 × 560 pixels. Segmentation masks of this
dataset were drawn by expert dermatologists. In this study,
the PH2 dataset is used only for testing due to its small size
for deep CNN training, thus we utilized ISIC 2017 dataset in
the model training and apply PH2 for testing. All images are
re-scaled to (160×224). The class distribution of lesion types

2https://challenge2018.isic-archive.com/task1/

TABLE 3. Distribution of PH2 dataset classes,(CN) is Common Nevus,
and (AN) is Atypical Nevus.

FIGURE 10. Three image samples from each PH2 dataset class (top row)
and their corresponding ground truth (bottom row) (a) Common Nevus
class, (b) Atypical Nevus class, and (c) Melanoma class.

TABLE 4. Effect of changing input color space on the SICU-Net
performance without using any attention modules or image adjustment
for ISIC 2017 dataset.

TABLE 5. Effect of changing input color space on SICU-Net performance
without using attention module or image adjustment for PH2 dataset.

for PH2 dataset is shown in Table 3. Figure 10 shows some
image samples from each class of PH2 dataset.

In order to make a fair comparison with other state-
of-the-art deep learning models, we used the standard
testing protocol (train/valid/test) that commonly utilized
for ISIC 2017 datasets. The validation dataset of the
ISIC 2017 database is utilized to adjust the hyperparameters
of the proposed models while we used the test dataset to
calculate the evaluation metrics of the proposed models.
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TABLE 6. Effect of changing input color space on the DICU-Net
performance without using attention module or image adjustment using
ISIC 2017 dataset.

TABLE 7. Effect of changing input color space on DICU-Net performance
without using attention module or image adjustment using PH2 dataset.

The experiments conducted in this paper are implemented
using Matlab 2020a running on Windows 10 using PC with
Intel core i7 processor, 32 GB RAM, and (NVIDIA GeForce
RTX 2080 Ti). Regarding the overfitting issue, we employed
two techniques to avoid overfitting (1) using L2 regular-
ization in the loss function, and (2) using dropout layers.
As for training stoppingwe tried different numbers of training
epochs and chose the one that give the best results. The
number of epochs was 30, SGDM optimizer was used to
train all proposed models with the following training hyper-
parameters: the learning rate was 0.05, and the mini-batch
size was set as 4. The following experiments are conducted
to investigate different aspects of our proposed method.

The evaluations of the proposed models are presented
using common performance metrics such as: true positive
rate/sensitivity (SEN) defined in Eq.10, and true negative

TABLE 8. Effect of changing input color space on TICU-Net performance
without using attention module or image adjustment using
ISIC 2017 dataset.

TABLE 9. Effect of changing input color space on TICU-Net performance
without using attention module or image adjustment using PH2 dataset.

rate/specificity (SPE) defined in Eq. 11, Dice coeffi-
cient (DIC) defined in Eq. 6. While the Jaccard index (JAC)
and Accuracy (ACC) metrics are defined as:

JAC =
TP

TP+ FP+ FN
(14)

ACC =
TP+ TN

TP+ FP+ FN + TN
(15)

where, TP, TN, FP, and FN have been clarified in
subsection III-E

A. EFFECT OF CHANGING COLOR SPACE ON PROPOSED
CU-NET MODELS
The first experiment evaluates the contribution of each
color space without using any attention modules or image
enhancement. All three models are trained and tested using
ISIC 2017 and PH2 datasets. Tables 4 and 5 show the effect
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TABLE 10. Effect of using channel-attention modules with SICU-Net using
ISIC 2017 dataset.

TABLE 11. Effect of using channel attention modules with SICU-Net using
PH2 dataset.

of changing the input color space on the SICU-Net perfor-
mance by using ISIC 2017 and PH2 datasets, respectively. For
ISIC 2017 dataset, Table 4 shows that using XYZ color space
achieves the highest ACC while RGB achieved the highest
TPR and Lab color space achieved the highest TNR. The
best values for DIC and JAC coefficients are accomplished
using YCbCr. Results in Table 5 for PH2 dataset show that
using LUV color space for the input image achieved the best
value for ACC, DIC and JAC coefficients. While the gray
image accomplished the best value for TPR, and Lab achieved
best TNR.

For DICU-Net which accepts two different color spaces,
Tables 6 and 7 summarize the results of changing the input
color spaces using ISIC 2017 and PH2 datasets, respectively.
In this experiment, we triedmany color space combinations to
find the best ones. For ISIC 2017, Table 6 shows that the XYZ
color space achieves superiority over other color spaces when
it is combined with other color spaces.While for PH2 dataset,
Table 7 shows that the combination of gray and YIQ color
spaces give better results than using each of them separately.

TABLE 12. Effect of using channel attention modules with DICU-Net using
ISIC 2017 dataset.

TABLE 13. Effect of using channel attention modules with DICU-Net using
PH2 dataset.

For the proposed TICU-Net, a combination of three dif-
ferent color spaces is fed to the network. Table 8 shows
the effect of changing the three color space combination
on the evaluation metric values. For ISIC 2017 data set,
using ‘RGB-YCbCr-LUV’ color spaces achieved the best
ACC and TNR values, while using the ‘Gray-YCbCr-XYZ’
combination achieved the best ACC, DIC, and JAC values.
The best TPR is obtained using ‘XYZ-HSV-Gray’ color
spaces combination. For PH2 dataset, Table 9 shows that the
‘Gray-YIQ-XYZ’ color spaces combination accomplished
the best ACC, SPE, DIC, and JAC values, while using
‘RGB-Lab-Gray’ combination achieved the best value for
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TABLE 14. Effect of using channel attention modules with TICU-Net using
ISIC 2017 dataset.

TABLE 15. Effect of using channel attention modules with TICU-Net using
PH2 dataset.

TPR, also good results for DICE, and JAC is achieved using
‘RGB-XYZ-LUV’.

B. EFFECT OF USING CHANNEL ATTENTION MODULES ON
MULTI-INPUT CU-NET
This experiment is conducted by employing same color
spaces that are used in previous experiments but by adding all
channel attention modules in the proposed CU-Net models.

TABLE 16. Effect of normalizing input image using image adjustment in
SICU-Net performance for ISIC 2017.

TABLE 17. Effect of normalizing input image in SICU-Net performance
using PH2 dataset.

TABLE 18. Effect of normalizing input image in DICU-Net performance for
ISIC 2017.

Table 10 shows the comparison between the SICU-Net
segmentation results with and without using channel-wise
attention modules for ISIC 2017 dataset. In general, adding
channel attention modules improves the value of ACC,
DIC, and JAC coefficients in the vast majority of color
spaces except some exclusions of Gray and YCbCr color
spaces. YIQ color space accomplished the best values for the
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TABLE 19. Effect of normalizing input image in DICU-Net performance for
PH2 dataset.

TABLE 20. Effect of normalizing input images on TICU-Net performance
using ISIC 2017 dataset.

evaluation metrics. Moreover, for PH2 dataset, Table 11
shows the SICU-Net segmentation evaluation metrics. The
performance of the SICU-Net is improved by adding the
attention modules in all color spaces. YCbCr color space
achieves the best values of ACC, DICE, and JAC evaluation
metrics. Tables 12 and 13 show the effect of using attention
modules in DICU-Net model with the ISIC 2017 and PH2
dataset, respectively. For ISIC 2017 dataset, using atten-
tion modules improves the values of ACC, DIC, and JAC
when it used with ‘RGB-YCbCr’, ‘RGB-XYZ’, ‘Gray-HSV’,
‘XYZ-YIQ’, and ‘XYZ-Lab’ color spaces, and using the
attention modules with ‘RGB-YCbCr’ color spaces achieves
the best results in TPR, DIC, and JAC evaluation met-
rics. For PH2 dataset, using attention modules improves
the values of ACC, TPR, DIC, and JAC with all color
spaces as shown in Table 13. Using the attention module
with ‘LUV-YIQ’ color spaces achieves the best results for
ACC, DIC, and JAC evaluation metrics. Table 14 depicts
the results of using proposed attention modules with the
ISIC 2017 dataset to train and test the TICU-Net with the
outlined color spaces. Using a combination of ‘RGB-YCbCr-
YIQ’, all evaluation metrics are increased, and using ‘RGB-
YIQ-Gray’ color spaces achieved the best values for ACC,
TNR, DIC, and JAC. Using ‘Gray-YCbCr-YIQ’, color spaces
yield the best TPR, and ‘XYZ-HSV-Gray’ yield the best
TNR. Table 15 views the results of using proposed attention
modules with the PH2 dataset for testing and ISIC 2017 for
training. Using a combination of ‘RGB-XYZ-Lab’, ‘LUV-
YCbCr-RGB’, and ‘LUV-YCbCr-YIQ’ increases the values
of all evaluation metrics, and using ‘Lab-LUV-Gray’ color

TABLE 21. Effect of using image normalization on TICU-Net performance
using PH2 dataset.

spaces achieved the best values for ACC,TNR, DIC, and
JAC, and Using ‘RGB-XYZ-Lab’ color spaces yield the
best TPR.

C. EFFECT OF NORMALIZING INPUT IMAGES ON THE
PROPOSED CU-NET MODELS
This experiment is conducted using the same color spaces that
are used in subsection IV-B on the proposed CU-Net models
except by applying image normalization to the input image.
The image normalization technique utilized in this experi-
ment maps the intensity values of each channel of the input
image to new values to increase the contrast of the normalized
image. The intensity of the normalized image have 1% values
saturated at low and high intensities. Using ISIC 2017 dataset,
Table 16 shows the comparison between the SICU-Net seg-
mentation results with and without image normalization. The
table shows that all evaluation metrics are improved and the
best ACC, TPR, DIC and JAC are yielded using XYZ color
space, while the best TNR is yielded by using HSV color
space. Table 18 indicates the comparison between DICU-Net
segmentation results with and without image normalization.
The results reveal that all evaluation metrics are increased
and the best TNR is achieved with ‘RGB-XYZ’ color space,
and the best ACC, TPR, DIC and JAC values are achieved
with ‘Gray-HSV’ color spaces. In Table 20, using image nor-
malization with ‘RGB-YCbCr-YIQ’, ‘Gray-YCbCr-YIQ’,
and ‘XYZ-HSV-Gray’ color spaces improved the values of
ACC, DIC, and JAC, and the best ACC is achieved by
‘RGB-YCbCr-YIQ’, and the best TPR is yielded by using
‘RGB-YIQ-Gray’, while using ‘Gray-YCbCr-YIQ’ achieved
the best TNR. and using ‘XYZ-HSV-Gray’ achieved the best
DIC and JAC coefficient.

For PH2 dataset, Table 17 shows the comparison between
the SICU-Net segmentation results with and without image
normalization. The results show that all evaluationmetrics are
improved and the best ACC,DIC and JAC are achieved with
YCbCr color space, the best TNR is yielded from YIQ color
space, and the best TPR is yielded from RGB color space.
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TABLE 22. Evaluation of segmentation performance TICU-Net according to each loss function for ISIC 2017.

TABLE 23. ACC (Accuracy), TPR (True positive rate), and TNR (True negative rate) evaluation of our proposed models and state-of-the-art segmentation
architectures on ISIC 2017 training and testing set.

TABLE 24. DIC (Dice coefficient), and JAC (Jaccard coefficient) evaluation of our proposed models and state-of-the-art segmentation architectures on
ISIC 2017 training and testing set.

TABLE 25. ACC (Accuracy), TPR (True positive rate), and TNR (True negative rate) evaluation of our proposed models and state-of-the-art segmentation
architectures on ISIC 2017 training set and PH2 testing set.

Table 19 displays the comparison between the DICU-Net
segmentation results with and without image normalization.
The table shows that the best evaluation metrics are achieved
with ‘LUV-YCbCr’ color spaces. Table 21 shows the effect
of using image normalization on the segmentation results of
TICU-Net. Using image normalization improves the results
of TPR for most of all the outlined color space combinations.
The best TNR,DIC and JAC are achieved with LUV-YCbCr-
YIQ color spaces, the best TPR is yielded from RGB-XYZ-
Gray combination color spaces, and the best ACC is achieved
from Lab-LUV-Gray color spaces combination. Figure 11
illustrates examples of the resulted predicted images obtained
from SICU-Net (Third row), DICU-Net (fourth row), and
TICU-Net (fifth row) models for both ISIC 2017 and PH2

datasets. The images in the figure are chosen randomly from
each class of the two dataset.

D. STUDDING SEGMENTATION PERFORMANCE
ACCORDING TO EACH LOSS FUNCTION
COMPONENT
This experiment investigates the effect of the proposed com-
posite loss function which contains Dice loss, sensitivity and
specificity loss, and Cross Entropy loss function. Table 22
displays the effect of applying each loss function sepa-
rately on the ‘XYZ-HSV-Gray’ color space combination for
TICU-Net model. The results reveal that the proposed com-
posite loss function outperforms each individual loss function
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TABLE 26. DIC (Dice coefficient), and JAC (Jaccard coefficient) evaluation of our proposed models and state-of-the-art segmentation architectures on
ISIC 2017 training set and PH2 testing set.

TABLE 27. Performance evaluation of different segmentation algorithms on ISIC 2017 dataset.

which leads to improve the accuracy by 0.62%, Dice by
1.95% and Jaccard coefficient by 2.94 %.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
This experiment introduces a comparison between our pro-
posed models and other state-of-the-art methods that utilize

the same dataset. The compared methods were obtained
from [18], [23], [59], [78], [83].

Tables 23 and 24 present the performance of our pro-
posed models with other recently developed fully convolu-
tional networks such as: FCN [84], U-Net [30], SegNet [79],
FrCN [18], DeeplabV3+ [67] which used ISIC 2017 at the
level of dataset categories. Tables show that the proposed
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TABLE 28. Performance evaluation of different segmentation algorithms on ISIC 2018 dataset.

SICU-Net performed the best in TNR with 98.55 % score
for SK cases, and the proposed DICU-Net performed the
best in TPR with 90.69 % score for Benign class. While,
the proposed TICU-Net achieved the best in TNR for benign
cases and the best for TNR for melanoma cases with values
98.18 and 97.58, respectively.

Tables 25 and 26 present the performance of our proposed
models with other fully convolutional networks: FCN, U-Net,
SegNet, and FrCN methods on the PH2 dataset that is used
for testing only at the level of dataset categories. Tables show
that the proposed SICU-Net performed the best in ACC with
95.32 % score, and the proposed DICU-Net performed the
best in TPR with 99.68 % score, all for Benign class.

The results of some of the state-of-art methods such [54],
[59], [60] utilize different partitioning for the benchmark
databases provided by the creator as shown in the second
column table 27 and 28. The differences in data partitioning
make somehow unfair comparison between these methods
and our proposed method. Although our proposed method
could not achieve the best performance compared with other
recent works, the idea of using multi-input paths with differ-
ent color spaces can be added to any of the existing models to
improve the robustness of these models due to color contrast
variations.

V. DISCUSSION
The proposed color U-Net models (CU-Net) using single,
dual, and triple color inputs are designed to overcome the
problem of color variations in skin lesion images. Most of
the existing deep network architectures utilize only a sin-
gle input path, while this work explores the effectiveness
of combining multiple inputs with different color spaces.

The proposed CU-Net variants are fed with different color
spaces of the input image to exploit distinct features that
appear in some color channels in specific color spaces. The
proposed models help to significantly improve the perfor-
mance of U-Net semantic segmentation deep model. The
interconnections between encoder and decoder paths using
attention network enrich the features and hence improve the
classification results. Since each channel of the extracted
feature maps is working as a feature detector, we take
the advantage of the inter-relationship of the channel fea-
tures to focus on the meaning of an input image using
the channel attention module. However, one drawback of
the proposed method is that the complexity of the network
increases as we add more inputs and their corresponding
encoder paths. Although our proposed method could not
achieve the best performance compared with other recent
works, the idea of using multi-input paths with different color
spaces can be added to any of the state-of-the-art models to
improve the robustness of these models against color contrast
variations.

The experiments conducted using three different bench-
mark datasets reveal some interested remarks, which can be
summarized as follows:
• No specific color space is the best among others. How-
ever, the combination of different color spaces improves
the results of various performance metrics.

• Using channel attention modules in the proposed
CU-Net models in the interconnection between the
encoder and decoder paths improves the results of some
evaluation metrics.

• Using image normalization improves the results of TPR
metric for most of all color-space combinations which
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FIGURE 11. SIU-Net, DICU-Net, and U-Net segmentation results for chosen images from each dataset class (one image from each dataset
class).

is considered the most important metric between all
metrics.

• The proposed composite loss function outperforms each
individual loss function.

• The proposed TICU-Net achieves the best values for
Dice and jaccard coefficients compared with SICU-Net
and DICU-Net.

VI. CONCLUSION AND FUTURE WORK
Color contrast variations of dermoscopy images posed a sig-
nificant obstacle for an accurate diagnosis of the infected
regions from the healthy ones. To address this problem,
this paper presented three new convolution neural network
models for skin lesion segmentation. Unlike other existing
deep learning models, the proposed CU-Net models solve
the low contrast and color discrepancy skin lesion segmenta-
tion problems. The three proposed models including single,
dual, and triple input color U-Net (SICU-Net, DICU-Net,
TICU-Net) are fed by multiple input images with different
color spaces. The combination of multiple color spaces not

only improves the segmentation results but also increases
the robustness of the model to skin lesion color variations.
The optimal selection of color space is significantly affect
the performance of the proposed color U-Net models. Deep
convolutional network with multiple input paths enriches the
extracted features and improve the performance of its counter
single input network. Moreover, channel-wise attention mod-
ules are used to focus on the interested features extracted
from each input path. We also utilised the pre-processing by
using (1) color space transformation to choose the optimum
color space, and (2) applying a simple image normalization
to enhance image contrast. The performance of triple input
network is better than both single and dual inputs, but on
the condition that appropriate color spaces are selected. The
three well-known ISIC 2018, ISIC 2017 and PH2 datasets
are used to prove the robustness of the proposed models.
Experimental results reveal that the three proposed CU-Net
models significantly outperform the performance of the
traditional U-Net model. The experimental results conducted
on ISIC 2018 are comparable with other state-of-the-art
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methods. Further improvements can be made by applying
other attention network architectures to emphasize more fea-
tures in the image.
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