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ABSTRACT This paper proposes an innovative hazard identification and risk assessment mapping model
for Urban Search and Rescue (USAR) environments, concentrating on a 3Dmapping of the environment and
performing grid-level semantic labeling to recognize all hazards types found in the scene and to distinguish
their risk severity level. The introduced strategy employs a deep learning model to create semantic segments
for hazard objects in 2D images and create semantically annotated point clouds that encapsulate occupancy
and semantic annotations such as hazard type and risk severity level. After that, a 3D semantic map that
provides situational awareness about the risk in the environment is built using the annotated point cloud.
The proposed strategy is evaluated in a realistic simulated indoor environment, and the results show that
the system successfully generates a risk assessment map. Further, an open-source package for the proposed
approach is provided online for testing and reproducibility.

INDEX TERMS Hazard identification, mapping, object classification, risk assessment, risk mapping,
semantic mapping.

I. INTRODUCTION
Consequences of real-world disasters create a need for safer
Urban Search and Rescue (USAR) where victims are found.
Disasters can be natural, such as earthquakes, floods, and hur-
ricanes, or human-made catastrophes, such aswars, terrorism,
and accidents. Most of the time, disasters lead to the collapse
of buildings, leaving behind an unstructured environment
with victims surrounded by sources of danger that both need
to be located [1]–[3]. The unstructured disaster environment
suffers from harsh conditions such as hazardousmaterials and
blocked pathways that make the operation of the rescue team
harder, where reaching services such as hospitals and power
supply is restricted [3]. Finding survivors and rescuing them
is the prime goal in search and rescue missions. According
to [4], rescue workers have approximately 48 hours to find
trapped survivors; otherwise, the likelihood of finding victims
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alive drops substantially. Thus, USAR response time should
be fast enough to maximize saving as many survivors as
possible and locate all sources of danger, yet adequate to
respond without adding additional risk to the rescuers and
victims [2], [3]. Rescue robots are required to explore the
environment, detect and locate victims, locate the source of
hazard, assess risk, create an informative map, and provide an
optimal danger-free path for the first responders.

The work presented in this paper tackles the safety of the
first responders, where the rescue robot provides situational
awareness for the first responders before the intervention. The
situational awareness is provided by assessing the risk types
and severity levels by creating a 3D occupancy semantic map
that exhibits the different levels of risks with various color
labels.

In the current state of the art, various contributions stud-
ied the problem of object detection, including human detec-
tion [5]–[12] and semantic mapping [13]–[18]. However,
most of the work focused on locating the victims inside the
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USAR environment without conceding the assessment of the
risk level and increasing the level of situational awareness
of the first responders. Therefore, the primary objective of
our research is to determine how to use current software
and hardware to develop a system capable of autonomously
recognizing, locating, and projecting the source of risk in 3D
space in an indoor environment.

In this work, we present a hazard identification and risk
assessment mapping system to locate the source of hazards in
a simulated urban search and rescue environment, as shown
in Figure 1. Commonly, The risk assessment in an indoor
environment is performed manually by a human investigator
that moves around the building, fills a checklist for the risk
objects, and performs risk analysis. The risk analysis and
quantification are usually performed using a risk matrix that
explains the connection between the probability and severity
of the risk, as shown in Figure 2. The quantitative risk analysis
is a valuable method for determining the priority of dangers
that first responders may consider. Risk analysis and assess-
ment using drones for search and rescue missions were only
performed in the literature for the outdoor environment.

The proposed hazard identification and risk assessment
mapping system for the indoor environment uses a single
onboard sensor, mainly RGBD, to generate a risk assess-
ment map that shows three different types of risks with two
severity levels of each. A deep learning model is applied
to detect distinct sources of risks and indicate their severity
level. Consequently, the information obtained from the deep
learning model is used to create a 3D semantic map. The
generated map labels the different risk types to speed up the
search mission of locating victims and increase situational
awareness.

The suggested system is modular for multiple independent
software components. For example, alternative object detec-
tion algorithms may be evaluated without changing the entire
system because the component is separate. A variety of deep
neural networks might be investigated.

Our main contributions are:
• A risk assessment technique based on Deep Neural Net-
work to identify and locate different sources of risk and
categorize them to various levels of severity to increase
the situational awareness of the indoor environment;

• A unique semantic 3D mapping model for risk assess-
ment and situational awareness

• Dataset, provided for download, efficiently acquired on
realistic sources of risk with their corresponding anno-
tated labels, that was used to train and test the Deep
Neural Network;

• Amethod implementation and presentation on a quadro-
tor for detecting, locating, and mapping previously
unseen risk sources in an indoor environment.

The remainder of the paper is arranged as follows;
Section II outlines the related work. The detailed proposed
method is presented in Section III. Section IV shows the
simulation process and the experimental results. Finally,
section V draws the conclusion and future works.

II. RELATED WORK
Different robotics platforms are used in Search and Rescue
missions to perform various tasks such as victim detec-
tion [12], exploration for mapping and 3D reconstruc-
tion [13], and risk assessment [19], [20]. The first responders
should be aware of the environmental situation before inter-
vention. Hence, risk assessment is a crucial task where the
risks should be identified and located. In this work, state-of-
the-art object detection, semantic mapping, and risk assess-
ment methods are studied.

A. OBJECT DETECTION
Object detection in the search and rescue context includes
the detection of victims and sources of danger/risk. The
detection process can be performed using single or multi-
ple sensors. For example, a single RGBD sensor can detect
victims visually, or multiple sensors outputs can be fused to
reduce detection uncertainty. Autonomous object detection is
considered challenging due to object orientation, occlusions,
and lighting conditions. Numerous approaches investigated
object detection; the most common approach is visual detec-
tion using machine learning and deep learning models. The
information captured from a visual sensor (camera) is used in
visual detection. However, various features are extracted from
the images in machine learning visual inspection. Examples
of such feature extraction methods are Scale-invariant feature
transform (SIFT) or Histogram of oriented gradients (HOG)
features. Then, objects are classified using machine learning
models such as support vector machines (SVM). The limita-
tion of such approaches are highlighted below:

• Image training should be done with a nearly uniform
background, which is unreliable in a real-world disaster
scenario.

• Low detection accuracy as machine learning algorithms
represents humans with pre-defined features.

Unlike machine learning methods, deep learning models
can detect objects with higher detection accuracy since the
algorithm finds the most efficient feature patterns in the cap-
tured images without needing a feature extraction step. Sev-
eral deep learning techniques are proposed in the literature
that either creates a bounding box surrounding the classified
objects, such as Single Shot MultiBox Detector (SSD) [5],
You Only Look Once (YOLO) [6]–[8] and others [9]–[11] or
create semantic segmentation of the classified objects such
as PSPNet [21]. The mentioned approaches are visual-based,
where 2D images obtained from the camera classify the
objects. In addition, depth-based information such as point
cloud obtained from the depth camera are used to create point
cloud segments and classify them to their corresponding class
like PointNet, and PointNet++ [22]–[24].

B. SEMANTIC MAPPING
In literature, maps are represented in different formats;
topological maps where the links between different points
are identified; metric maps where the environment can be
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FIGURE 1. Our UAV captures the indoor environment images from a forward-looking camera; a Deep
learning network identifies the risk sources and their corresponding level. The mapping module projects the
risk in different annotation colors in a 3D semantic map.

presented in different dimensions, showing occupied and free
spaces; and semantic maps that encapsulate characteristics
compatible with human conception.

Metric maps are considered the most commonly usedmaps
for robot exploration [14]–[18]. However, these maps do not
have sufficient information that can guide the robot toward
the detected objects (i.e., victims’ location or sources in
danger). Therefore, there is a need for more advanced skills
than metric mapping, where the robot should understand
the surrounding environment. Semantic maps provide such
a solution by incorporating semantically labeled objects into
the metric maps, which will provide a better understanding of
the surrounding environment [25] and [26].

C. RISK ASSESSMENT
The risk assessment process is critical as it forms an essential
component in search and rescue missions. The risk assess-
ment is helpful since it increases the situational awareness of
hazards and risks in the environment and prioritizes hazards
for intervention decisions. Furthermore, the risk assessment
is used to identify who may be at risk, determine if existing
control models are sufficient or if more should be performed,
and limit damages and injuries, mainly if the risk assessment
is performed in the early stages.

Risk assessment in urban search and rescue (USAR) envi-
ronments is a process that consists of hazard identification,
risk analysis, risk evaluation, and risk control [27]. When
multiple risks are presented in the environment, ranking
or prioritizing hazards help to determine risk severity and,
consequently, the required control used. There is no unique
approach to define the level of risk. One of the popular
approaches is using the risk matrix that explains the con-
nection between probability and severity of the risk [27],
as shown in Figure 2

FIGURE 2. Risk matrix and risk quantification.

UAVs have become a ubiquitous factor in indoor risk
assessment. Their role is attributed to the significant tech-
nological advancements that resulted in highly sophisticated,
economically affordable UAVs capable of carrying high-
resolution cameras and other sensing equipment. Addition-
ally, UAVs offer less hazardous alternatives than conventional
risk assessment techniques as they eliminate human factors.

UAVs have been employed in real-world disaster scenarios
for risk assessment. In [28], a drone equipped with LiDAR
and uses photogrammetry technology is used to create high-
resolution maps of impacted areas. The drone is called ‘‘Terra
Drone Indonesia.’’ In March 2019, Terra Drone Indonesia
surveyed 750 hectares of land. The data and images collected
from the drone are used to create maps that present the current
conditions and the damages. In [19], manually controlled
drones are deployed to capture aerial images, develop maps,
and help in assessing the damage in some of the affected
regions in Ecuador in April 2016. In [20], UAV has been used
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FIGURE 3. Risk definitions labels. Rows: Risk levels. Columns: Risk types.

FIGURE 4. Proposed risk assessment model and mapping.

for landslide risk studies. The UAV was assigned to inspect
rock cuts, cliffs, and rugged mountains. The UAV offered
rapid and flexible data acquisition.

All risk assessment methods provided in the literature
are performed on large outdoor areas or the inspection
for building from outside. Additionally, the risk assess-
ment using UAVs requires trained pilots. However, in this
work, we tackle the risk assessment for an unknown indoor
environment using a UAV that explores the environment
autonomously utilizing a deep learning model. The proposed
system creates a 3D semantic map that increases situational
awareness about the indoor environment by identifying the
risk types, severity, and accurate risk location.

III. MATERIALS AND METHODS
A. PROBLEM FORMULATION
Consider a USAR environment -a generic scene- with various
types of risk placed in different locations with different sever-
ity levels. In this work, only three types of risk are considered,
fire from electric plugs, trip hazards, and combustible mate-
rials. Two risk levels are considered for each type; high and
low levels, as illustrated in Figure 3.

FIGURE 5. Trip hazard, high level objects placed in the environments for
dataset collection.

Our input is an image acquired from a camera mounted
on the drone. Given an image, our goal is to identify the risk
source from the 2D image and project it in a 3D semantic
map to facilitate the first responders’ work and find the safest
path for survivors. The risk is identified by semantically
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FIGURE 6. Dataset annotation.

FIGURE 7. Examples of dataset augmentation. Each images shows the method used for augmentation. (a) Original image.
(b) Horizontal flip (c) Gaussian blur (blur images with a sigma of 0 to 3.0) (d) Vertical flip (e) Scale images to 80-120% of their size,
individually per axis, translate by −20 to +20 percent (per axis), rotate by −45 to +45 degrees, and shear by −16 to +16 degrees
(f) Sharpen and emboss images (g) e + f + Change brightness of images (by -10 to 10 of original value), change hue and change
saturation (h) Improve or worsen the contrast, convert it to gray scale, move pixels locally around (with random strengths) and
move parts of the image around (i) Improve or worsen the contrast, convert it to gray scale (j) f + i (k) j + e + Change brightness
of images (by −10 to 10 of original value), change hue and saturation, and crop pixels (l) k + Gaussian noise to images, move
pixels locally around (with random strengths), and sometimes move parts of the image around.

segmenting the source of danger from 2D colored images
and assigning a level risk. After that, the point cloud corre-
sponding to the risk segments is annotated. Finally, amapping

module is used to project the annotated point cloud and create
a 3D semantic occupancy map. The map presents the risk
locations with a unique color for each type.
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B. PROPOSED APPROACH
A new approach for risk assessment and mapping, shown in
Figure 4, is proposed.

In this work, bounded volume V ∈ R3 is initially unknown
and must be semantically mapped. Our strategy attempts to
create a 3D mapM that locates the risk source and identifies
their severity level. The 3D semantic map for different risk
types and levels is generated by identifying the source of risks
and classifying them into different labels with their corre-
sponding level. The source of risk is identified and localized
in 2D images obtained from a camera by performing semantic
segmentation through a deep learning model to locate the
risk and estimate its level. After that, the depth information
obtained from a depth camera is used along with the output
of the deep learning model to register an annotated point
cloud. Finally, the annotated point cloud is used to create a 3D
semantic occupancy map for risk assessment and situational
awareness.

The 3D map is divided into small cubical voxels m ∈ M
with an edge of length res that indicates the map resolution.
Moreover, a single voxel on the map carries the occupancy
information and class type (risk type and severity level) rep-
resented by a unique color. Each voxel, in the map, stores
three prime information i) the occupancy, ii) semantic color,
and iii) risk level that corresponds to the i) voxel’s vacancy,
ii) risk type, and iii) severity level, respectively.

Initially, all the voxels are assigned to be unknown. After
the initial data gathering from the camera, the 3D semantic
occupancy map is updated to contain Vfree ∈ V , Vocc ∈ V ,
as well as the updated information in each voxel about the
class type and severity level. Vfree and Vocc are the free and
occupied volume, respectively.

C. VISUAL PERCEPTION FOR USAR ENVIRONMENTS
We solve the problem of locating risk sources and identifying
their severity level as a supervised machine learning task,
which is exceptionally challenging because of the nature of
the USAR environment. USAR environment suffers from a
wide variability of structures. Risk perception is profoundly
affected by the vast amount of risk types and levels, the
dynamic nature of the environment, and many other factors.
We only chose three different types of risks, and we dealt
with their different formation by collecting large numbers of
shapes orientations.

1) DATASET
To acquire such a dataset, firstly, we created objects for each
type of risk. For the first type (fire hazard), the objects are
images of electric plugs with a transparent background. For
this type, two-level of risks have been identified, high and
low. Figure 3 shows an example of the first type of risk with
two levels, high and low, respectively. These objects will be
placed in the simulation environment as images on the wall.
For the second type (TripHazard), the objects are presented as
rappels. These objects are presented asmultiple objects on top

FIGURE 8. U-Net architecture. Extracted from [33].

FIGURE 9. Semantic labels.

TABLE 1. Deep neural network models used for semantic segmentation.

of each other as if they are fallen. Figure 3 shows an example
of type two risk with two levels high and low, respectively.
These objects will be placed in the simulation environment as
rubble objects, not as images as in the first type. For the third
type (combustible materials hazard), the objects are images
of a gas cylinder with a transparent background. Figure 3
shows an example of the third type of risk with two levels,
high and low, respectively. These objects will be placed in
the simulation environment as images on the wall.

In order to acquire a reliable dataset, data has been obtained
for each type separately. For each type and level of risk,
a unique environment is created in the gazebo simulator [29].
For example, as the environment is shown in Figure 5, it con-
sists of objects of trip hazard risk with a high severity level.
All risk objects placed in this environment are of the same
type and level. A drone was used to explore every single
environment and capture image frames. For each environ-
ment, a rosbag file was recorded for 5 min. A rosbag, often
known as a bag, is a file type for storing ROS message data
in ROS. Subscribing to one or more ROS topics and storing
the received message data in an efficient file format are the
primary ways to create these bags. These files may be read
in various ways, including MATLAB, which can be used to
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TABLE 2. Deep learning models - evaluation metrics.

FIGURE 10. Risk images that has not been shown in the training set and their corresponding prediction.

filter and retrieve message data. Image frames were extracted
and filtered to the different risk types and levels. The dataset
is composed of the images acquired by a single camera. For
each environment, each image is labeled, i.e., it is associated
with its ground-truth class. Because of the definition of our
classes, all images acquired in env 1. are of class ‘‘risk1h’’.
Conversely, images acquired in env 2. are of class ‘‘risk1l’’,
images acquired in env 3. are of class ‘‘risk2h’’, images
acquired in env 4. are of class ‘‘risk2l’’, images acquired in
env 5. are of class ‘‘risk3l’’, images acquired in env 6. are of
class ‘‘risk3h’’. Images that do not contain risk are of class
‘‘background.’’

The ground truth data have been annotated using labelme
tool [30]. Figure 6 shows an example of the annotated
images using labelme package.The labels/classes weremanu-
ally annotated using the graphical user interface provided by
the package. The dataset has been augmented by [31]. The
augmentation is applied to increase the size of the dataset.
The dataset is augmented by using random transformations
on the images and changing the color properties of the input
images. The transformations can be rotation, scale, and flip-
ping. However, changing the color can be hue, saturation,
brightness, etc. The transformation is applied to both the
original and the segmented labeled images. The augmentation
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FIGURE 11. Risk images that has not been shown in the training set and their corresponding prediction.

FIGURE 12. Risk images that has not been shown in the training set and their corresponding prediction.

has been performed in both the original images and their
corresponding annotations. An example of dataset augmenta-
tion is presented in Figure 7. The augmentation increased the
dataset from 580 images to 12180 images for both colored
and corresponding annotated images.

2) EVALUATION METRICS
The deep learning model has been evaluated using classi-
fication and computer vision metrics. Classification accu-
racy is the most simplistic metric that is defined as the
number of correct predictions divided by the total number
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of predictions. However, if the objects that need to be clas-
sified in the image are small compared to the image size,
then the accuracy metric does not appear to coincide with
labeling objects correctly. Also, image segmentation is dif-
ferent from image classification. Therefore, there is a label
for every individual pixel in this image rather than having
one label for an image. Hence, different evaluation metric is
required to evaluate the deep learning model. As an alterna-
tive to accuracy, the Jaccard index also called the IoU score
(Intersection over Union), is defined as the intersection of
two sets defined by their union. The fundamental idea is to
see the image masks as sets. These sets can overlap in the
image. If both sets are the same size, both masks are identical
and overlap to 100%. Then the intersection is equal to the
union. In this scenario, the IoU equals one, and it is optimal.
However, in contrast, the IoU score decreases if the union
gets bigger than the intersection, which happens when the
predicted mask is moved or changed in size compared to the
original mask.

3) DEEP LEARNING MODEL
Different deep learning models for image segmentation have
been trained for five epochs, and the evaluation metrics
are recorded to select the best choice for our problem (see
Table 2). In addition, the results of the prediction for the
different deep learning models are compared to the ground
truth presented in Figure 11 and Figure 10 respectively.
As the table implies, the best performance is provided by
fcn_8_resnet. However, the U-Net was chosen for testing and
3D mapping because it is a more lightweight computation
than the fcn_8_resnet. The various deep Image segmentation
models were derived from [32] and implemented in Keras.
The network parameters were adapted as well. The loss
function utilized was based on [32]. Furthermore, the same
loss function was employed for a fair comparison between
the different networks, and it was not modified. However,
to improve performance, we contemplate evaluating alterna-
tive loss functions in future work.

After creating a dataset that contains both the images and
their corresponding annotated/masked images, we use the
U-Net deep learning model for the semantic segmentation
of 2D images. The U-Net architecture shown in Figure 8
uses an encoder-decoder structure with skip connections with
symmetrical encoder and decoder layers [33].

The evaluation metrics of the U-NET model are recorded
after 20 epochs, as presented in Table 1. The U-NET model
is trained on a customized ‘‘Semantic-Hazard’’ dataset.
Semantic-Hazard dataset includes six classes from risk type-
level in an indoor environment. Semantic labels of the
Semantic-Hazard dataset are shown in Figure 9.

4) TRAINING AND EVALUATION
The dataset is currently composed of 12180 frames acquired
using a single camera in the Gazebo simulator in different
configurations. To train the model, 20% of the dataset is used

FIGURE 13. Semantic pointcloud registration.

for testing; hence, the dataset has been divided into disjoint
training(9744 frames) and testing (2436 frames) sets. The
division was defined by carefully avoiding the same images
from the same risk type appearing in both sets. The six classes
are equally embodied within each set. The images and their
corresponding annotations are used for dataset training and
validation. The deep neural network is trained for 20 epochs
using the U-Net model using an ASUS laptop (Intel Core i7
@ 2.8 GHz x 8, 16 GB RAM). The training was conducted
using the package from [32].

5) TESTING
The model has been tested to predict the risk type and level
using a new set of images that have not been provided earlier.
An example of risk images that have not been shown in
the training set and their corresponding prediction is shown
in Figure 12.

D. SEMANTIC POINTCLOUD REGISTRATION
The point cloud is a set of points in an unordered structure
where each point includes a coordinate in a particular ref-
erence frame. The point cloud is created by first registering
a depth image with a color image with the same reference
frame, generally the camera frame. Subsequently, the pixels
from the color image are converted from the camera frame
to the world frame to produce a point cloud using the image
position, its depth, and the intrinsic parameters. In this case,
the semantic image is projected in the 3D map. The colors
of the 3D map represent the risk level and types. An illustra-
tion of the point cloud data structure when storing semantic
information is shown in Figure 13.

E. 3D SEMANTIC MAPPING
To obtain a 3D semantic-occupied annotated risk map rep-
resentation of the environment, object classes are detected
and localized per depth and color image input. The pro-
posed 3D semantic-occupied risk map structure is based
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FIGURE 14. Voxel’s information in 3D occupancy map and 3D semantic-occupied annotated risk map.

FIGURE 15. Simulation environment.

on an occupancy grid map called octomap [34] with
0.05m resolution. The original 3D occupancy map is pre-
sented in Fig.14a that considers the elevation of the voxels
in the z-direction, while the proposed 3D semantic-occupied
annotated risk map is presented in Fig.14b. The map M =
{m1,m2, . . . ,mi} composed of the cubical element of the
same size mi ← voxels for index i. Each voxel mi in the
proposed map accommodates volumetric and semantic infor-
mation. The semantic information is the semantic color that
represents the risk type and level obtained from the deep
learning model.

Each voxel mi holds the following information:
1) Position (x, y, z)

2) Probability of being occupied (value) Po
3) Semantic color (r, g, b)
First, all voxels are assigned to be unknown. The mapping

module takes both the 2D image and 3D annotated point
cloud as input at every robot position and generates annotated
colored voxels. The color indicates a particular class type and
not the surface color. The point cloud creates the voxels in the
semantic-occupied risk map. This information is provided to
the mapwhere the point cloud position and semantic color are
attached to the voxels located within the camera field of view.
Concurrently, the class type is assigned to the voxel using
semantic color indication. The visualized built map is colored
according to the object class.
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FIGURE 16. 3D semantic-occupied risk map.

F. NEXT BEST VIEW EXPLORATION
The next best view planner, a real-time exploration path
planner, is employed in this work for the exploration process.
It builds a tree from the current location to obtain the follow-
ing position with a high exploration gain. The high gain indi-
cates the part of the environment that has not been (entirely)
explored yet. The tree is recomputed as the vehicle moves
along the path, taking into account the updated information
from the sensor. In this work, the next best view planner
adapted from [35] is used to explore the environment.

IV. EXPERIMENTAL SETUP AND RESULTS
A. EXPERIMENTAL SETUP
The main goal of the proposed approach is to create a 3D
semantic-occupied risk map that labels the types of risk and
their corresponding level. An exploration technique [35] is
used by the drone to navigate the environment and build the
map simultaneously. The validation is performed after the
exploration process terminates.

1) SIMULATION
Simulation experiments performed on an ASUS laptop (Intel
Core i7 @ 2.8 GHz× 8, 16 GB RAM). The NBV framework
was implemented onUbuntu 16.04 using the Robot Operating
System (ROS- kinetic) to manage message distribution and
facilitate the shift to hardware. The gazebo was utilized to
perform the simulation, with programming done in both C++
and Python. The simulation was performed using a UAV
equipped with one RGB-D camera only. The specification
of the camera is shown in Table 3. A collision box is con-
structed around the UAV to inspect for collisions with the
environment and constrained within a work-space of size
0.25m, 0.25m, 0.25m.
The gazebo environment, shown in Figure 15, is used

as the unknown environment that the robot should cre-
ate a semantic-occupied risk map for it. The simulation
environment has the dimension of 9.2m, 8.2m, 2.5m of

TABLE 3. Camera parameters.

multi-connected rooms with a corridor with several risk haz-
ards placed inside. The environment contains all types of risks
and levels distributed randomly. The constructed maps are
based on 3D occupancy grid using OctoMap library [34] with
res = 0.15m per pixel.

B. EXPERIMENT RESULTS AND ANALYSIS
Figure 16 shows that the proposed mapping model was able
to create a 3D semantic map annotated with the risk level for
risk assessment and increasing situational awareness of the
environment. The different colors indicate the type of risk and
its severity. The results presented in Figure 16 showed that all
risk types and their severity levels were detected and located
precisely in the constructed 3D semantic map. Moreover, the
results showed that the system successfully distinguished all
risk types and identified them with different colors than the
background or the other objects presented in the environment.

For example, Figure 17 shows that the system was able to
detect the risk object of type trip hazard with a high severity
level. The majority of the object voxels are detected and
assignedwith the correct color annotation. However, the other
dominant color is from the same type with a low severity
level. This behavior was expected since both types share
similar features for the deep learning model. In addition, the
other colors that are not presented in Figure 9 are generated
because of the technical development of the 3D semantic
occupied map. In our development, the map resolution is
0.05, which indicates that each 5 point cloud could be located
within the location of one voxel. Hence, if the point clouds in
one voxel have different colors, the voxel color is the average
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FIGURE 17. 3D semantic-occupied risk object.

color of the point cloud’s colors. This behavior is presented in
figure 16 where the hazards of the combustible materials are
identified, and all the border voxels are with different colors
than the colors presented in Figure 9.

V. CONCLUSION
This paper introduced a new approach for 3D semantic
mapping of an unknown environment to increase situational
awareness of the indoor environment by detecting, labeling,
and mapping the different types and levels of hazards pre-
sented in USAR environments. In this work, we proposed
a novel 3D semantic-occupied risk map data structure that
encapsulates both occupancy and semantic risk annotations.
The mapping approach uses a deep learning model to seman-
tically segment risk types and levels, create an annotated 3D
point cloud, and generate a 3D semantic-occupied risk map.
Furthermore, we provided a new dataset for three different
types of risks, each with two risk levels. The dataset was
acquired efficiently on semi real-world sources of danger
images with the corresponding annotated labels. The deep
learning model was trained using the efficiently acquired
dataset. Moreover, the created 3D semantic occupied risk
map is used for risk assessment and evaluation. Experimental
results in the simulation demonstrated that the system could
create a semantic-occupied risk map that increases awareness
about the hazards in the environment and facilitates the first
responders’ mission. The system will be tested in a real-time
scenario for indoor experiments for a different neural network
with multiple evaluation metrics in future work.
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