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ABSTRACT The concept of Digital Twin is creating and maintaining a digital representation of the real
physical entity and supporting its performance utilizing simulation and optimization tools, which are fed with
the real data obtained from the physical equipment. Development and implementation of the Digital Twin
technology are one of the main challenges for today’s industry, more detailed studies are needed on design
methods for Digital Twins. Besides using Digital Twin as a high-quality simulation, one of the commitments
is monitoring and maintaining control of the whole system via a constant live link between virtual and
physical entities. The related research study presents a detailed structural description of the developed Digital
Twin virtual entity and the development of a framework that allows Robot Operating System (ROS) to
securely communicate with remote Digital Twins via the Internet and harness ROS’s adaptability across vast
distances and multiple systems. This paper is an extended version of the authors’ International Conference
on Electrical Power Drive Systems (ICEPDS20) paper, in which we propose a development case study of
Digital Twin for an electric motor based on an empirical performance model.
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NOMENCLATURE
5D - Five-dimensional
AR - augmented reality
DS - Digital Siblings
DT - Digital Twin
IoT - Internet of Things
JSON - JavaScript Object Notation
LAN - Local Area Networks
MQTT - Message Queuing Telemetry Transport
PID - Proportional–integral–derivative
ROS - Robot Operating System
UDP - User Datagram Protocol
VR – Virtual reality
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I. INTRODUCTION
This paper is an extended version of the authors’ IEEE
International Conference on Electrical Power Drive Systems
paper [1] that took place in October 2020 at Saint-Petersburg,
Russia.

Digital Twin (DT) concept is creating and maintaining
a digital representation of the real physical entity and sup-
porting its performance through simulation and optimization
tools, which are fed with real and updated data. DT is a
part of the digitalization and simulation pillar of Industry
4.0 paradigm, according to Wang et al.d [2], DT covers
three aspects of the system: knowledge content, effect and
functionality, and application domain. For utilization of a DT
technology, the relations of the three components must be
recognized, and the gaps remaining for exploration must be
identified and categorized.
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The basic DT system, architecture consists of at least three
main components – the physical entity in the real world,
its virtual entity (or virtual model(s)), and the data; fur-
thermore, services and connections are often presented as
separate entities, what makes reasonable a five-dimensional
(5D) DT representation [3]. Generally, a real physical entity
consists of assorted subsystems and sensory devices that work
online; however, it is possible to use already collected data to
establish a virtual entity. According to the DT application,
the virtual entity subsists of one or several models; it can
be the spatial, physical, numerical, behavior, rule, or another
model. The DT data entity contains various sets of data from
the real physical entity that can be obtained by implementing
different sensors and data acquisition platforms. The service
entity mainly includes regulation for both virtual and physical
entities and may carry several sub-services, such as mainte-
nance and diagnostic, energy optimization, path planning, etc.
The connection entity usually defines the interaction between
other entities. However, the 5D DT is not the technological
boundary, and more studies are needed on design methods for
DT to allow full synchronization and connectivity between
virtual and real environments [4].

Nowadays, DTs are being made for almost all physical
things, including humans, vehicles, organizations, industrial
systems, and even ice cream machines [5]. DT is already
being used in the field of electrical drives, where the concept
is being used for the predictive maintenance [6] and simula-
tion aspects of various drive parts [7]. In [8], several modeling
tools have been identified as an attractive solution for the
development of DT of vertical transportation systems, which
is based on physics-based models and estimation algorithms.
However, the field is not fully uncovered, and there are
demands for the fully synchronized DT of electrical drives,
and to develop it, a virtual copy(ies) of the physical object
should be created. It is important to notice that when the status
of the physical object changes, all models used in DTmust be
updated, this issue can be solved by introducing transaction
management functions into the framework [9]. DT of the
system accommodates specific requirements of applications:
providing special functions, or permit access to the data
with different rates, or segmenting and securing the compu-
tational space. Open-source platforms allow researchers to
study, change, and use of source code of such frameworks.
One of the most popular platforms for DTs’ development is
Robot Operating System (ROS) which might be combined
with other tools, such as Tecnomatix [10], [11]. Moreover,
documentation of the DT is not a guided process, and special
attention must be given to the platforms for managing and
distributing meta-level DT data, such as Twinbase [5].

In the current study, Unity3D is used for physics sim-
ulations and visualization of the DT because of research
team previous experience and high-quality documentation
provided by software producers and the community.

A recent study presents a part of the project that aimed
to develop a specialized unsupervised prognosis and control
platform for electric propulsion drive systems performance

estimation of an autonomous self-driving electric vehicle.
This goal requires the development of several subtasks and
related objectives, one of them is to develop physical models
of different energy system components (motors, gearboxes,
power converters, etc.) and the related reduced models of
these components (testbed), which will serve to construct the
DT of the system [12].

The paper is structured as follows: Section III presents
details about the Empirical Performance Model (EPM) and
structure description of the DT virtual entity and its imple-
mentation framework based on the chosen software packages.
Section IV presents the integration of the middle layer for
remote communication and shows the evaluation of various
connectivity methods. Sections V and VI – the discussion
and conclusion section, present the further development and
application of the presented DT.

II. DIGITAL TWIN
A. EMPIRICAL PERFORMANCE MODEL
In order to have a reasonable EPM, 7.5 kW induction motor
(IM) was studied. The process of efficiency map obtaining is
described in previous research by authors [13]. The graphical
representation of an empirical performance model of IM is
presented in Figure 1, and the rated data is given in Table 1.
Numerical representation of an IMEPM, obtained previously,
may be used as one of the inputs for building DT to evaluate
the IM performance over a given speed-torque region.

FIGURE 1. The empirical performance model of induction motor used for
Digital Twin.

B. STRUCTURE OF THE DIGITAL TWIN
The DT for the IM is set up in the following way: Unity3D
physics engine is used to simulate fundamental physics while
connected via ROS Bridge. Specific Linux ROS nodes sim-
ulate more advanced electrical machine-specific behaviors,
such as motor efficiency following the efficiency map and
motor controller, as shown in Figure 2. Linux ROS Server
sends a User Datagram Protocol (UDP) command packet via
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TABLE 1. Rated data of induction motor.

FIGURE 2. The spatial model used for Digital Twin visualization.

ROS Bridge standard to the Unity3D Visualizer. Its main
task is to receive a control message from a specified IP
address in a standardized ROS Bridge message format that
is being published by the Linux ROS Server and control the
3D models to display the behavior of the motor, as it would
be in real life. It is also responsible for sending feedback
to the Linux ROS Server for processing, just as if a real
encoder would send updates on the motor rotation rate to
a motor controller. Linux ROS Server consists of multiple
nodes that simulate various aspects (e.dg., mechanical, ther-
mal, electrical, diagnostic [14], etc.) of the motor, a single
motor controller simulator node, and a Simulation controller
node that combines information coming from all other aspect
simulation nodes and feedback from the Unity3D, process it
and send the data to a visualization client in Unity3D.

More details of the DT physics engine are presented in
Figures 3 and 4. Unity3D Visualizer message is received in
the form of a UDP package in a custom ROS Bridge format
by the ROS Bridge Client, reserialized into input variables
(Empirically EstimatedVelocity and Torque) of themotor and
passed on to the 3D Object Controller as variables. Object
Controller converts data from the EPM to DT model velocity
at which the motor’s shaft rotates. This data is applied to the
motor’s 3D visualization. Then, a simulated encoder (virtual
sensor) takes the angular velocity of the motor shaft, converts
it to feedback data, and sends it to the Linux ROS Server.

There are two active nodes in the simulation: a motor
controller simulator node and a mechanical simulation node.
The motor controller has a proportional–integral–derivative
(PID) controller that provides a control signal to the motor.
Mechanical simulation node works with an efficiency map,
measured and recorded on a real motor, and applies it to a
simulation to emulate proper torques and power output at

FIGURE 3. Detailed representation of digital twin physics engine.

FIGURE 4. The operational architecture of digital twin.

certain angular velocity to make DT act just like a real entity
motor.

C. SPATIAL MODEL SIMULATION IN UNITY3D
The DTmodel does not undoubtedly mean a spatial or graph-
ical model, however, such representation is user-friendly and
is broadly used by engineers and scholars. The main accent
should be paid to process flow and relations behind such spa-
tial model and the data entity. An application of augmented
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reality (AR) and virtual reality (VR) tools for distance simula-
tion via DT adds a safety layer for accelerated lifecycle tests,
applications in hazardous environments, and remote work
maintenance overall. The spatial model used in the current
study is shown in Figure 2.

Physics Engine has a ROS Bridge client who receives
a ROS Server data package. The data in that package is
extracted by the ROS Bridge client and sent to the spatial
model controller that recalculates new positions and orien-
tations of the simulated motor components. After that, the
spatial model is updated with a new state. This step ensures
that a spatial model acts like a real motor from a visual stand-
point. Then, the model considers any other physical forces
applied to the motor, such as friction losses and moment of
inertia of the motor, simulated via angular drag feature in
Unity3D’s Rigidbody. After that, the simulation results and
updates of simulated encoder values are packed and sent to
the ROS Server and act as feedback for the speed controller.
The simulated encoder is modular and can be replaced by any
necessary feedback simulator.

D. ROS BRIDGE STRUCTURE AND PURPOSE
The ROS Bridge is a client between Linux ROS server and
Unity3D, which was designed in four main scripts:

• Subscriber – parent class that has to be inherited by
any class that wants to receive messages from the ROS
Bridge;

• Publisher – parent class that has to be inherited by
any class that advertises topics to the ROS Bridge and
publishes messages;

• Bridge – script that is responsible for establishing
a connection with the ROS Bridge Server, sending
and receiving messages and services; every Publisher
and Subscriber reference it; responsible for serializ-
ing and deserializing outgoing and incoming messages,
respectively, as JavaScript Object Notation JSON)
strings;

• Message – a serializable parent class used to build a
hierarchy of messages similar to that of the ROS frame-
work; each message type has a unique class that cor-
responds to its type with all of the message’s fields as
parameters. Message class has a public abstract string
GetMessageType()method that returns the message type
name that should be used when ROS Bridge advertises
a topic with any given message.

To note – a parent-child system in Unity3D shows the hier-
archy and the dependency of project components to each
other, which is crucial in the design of the related study
architecture. The Bridge script is the core script that handles
the connections. It is a child ofMonoBehaviour – a superclass
provided by the Unity3D engine – it has built-in methods
that simplify the integration of the new code into the global
loop of the Unity3D project. Such methods are universal
and inherited by all MonoBehaviour’s children. Inheriting
MonoBehaviour also allows the class that inherited it to

FIGURE 5. Bridge script featured as a component in Unity3D editor.

attach to the objects in the runtime scene and be considered
a Unity3D Component. Unity3D Component is a developer
user interface feature that gives a certain amount of control
over the values of the variables from the Unity3D Editor,
as shown in Figure 5. Bridge script has a couple of public
variables such as enum ConnectionType, int MaxPacketSize,
string ServerIP, int ServerPort, etc. All named values of these
public variables can be edited from the Unity3D Editor while
Bridge script is considered as Component due to inheriting
from MonoBehaviour. This feature of Unity3D Engine is
extremely useful for rapid prototyping and debugging.

Bridge script contains a private abstract class Connection
with two children – UDPConnection and TCPConnection.
An object of one of two classes is created at the beginning of
the runtime and contains information about the network client
used to communicate with ROS Bridge. The connection type
that Bridge attempts to establish has to match the type of the
ROS Bridge running on the ROS Server, which is decided via
an enum ConnectionType that has two values: UDP and TCP.

After a connection has been established, children of the
Publisher class advertise their topics by calling the Adver-
tise() method of the Bridge through the object that references
its only object in the runtime. Publisher (same as Subscriber
for that matter) finds this object of the Bridge () through a
built-in Unity3D-Engine method FindObjectOfType<T>(),
where T has to be replaced with the class of the object being
searched, Bridge is the variable T in this case. If the connec-
tion in the Bridge object is present, Subscriber children can
request a subscription to the topic via the Subscribe() method.
Once they are subscribed to a topic, the MessageReceived
(T message) method will be called every time the message of
the type T is received and used to further process the incoming
data in themessage. Type T can only be a child of theMessage
superclass that acts as a root of the message hierarchy imple-
mented in this solution. Each new Message child requires a
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corresponding Publisher and Subscriber children to be added
to handle the new message type.

E. ROS MESSAGE HIERARCHY IN UNITY3D
ROS Messages are grouped by the type of data they carry,
e.dg., geometry_msgs group carries information used to
describe the objects’ coordinates and geometry. For exam-
ple, Pose that used for the representation of pose in free
space, composed of position and orientation, PoseStamped
that represent a Pose with reference coordinate frame and
timestamp, Pose2D to expresses a position and orientation on
a 2D manifold, PoseWithCovariance that represents a pose
in free space with uncertainty, PoseWithCovarianceStamped
that expresses an estimated pose with a reference coordinate
frame and timestamp, Point contains the position of a point
in free space, Quaternion that represents an orientation in free
space in quaternion form, Vector3 used for the representation
of a vector in free space, transforms message TFMessage,
TransformStamped that expresses a transform from the coor-
dinate frame, and Twist used to express velocity in free
space broken into its linear and angular parts. std_msgs group
contains messages used to communicate basic data types
(e.dg., Int32Array - signed 32-bit integer array, Int32 - signed
32-bit integer, Float32 - 32-bit IEEE float, ASCII string
- String, and time clock - Clock. Several other groups of
messages that include but are not limited to sensor_msgs are
used to commute sensor data (such as Joy, which reports the
state of a joystick’s axes and buttons), and vision_msgs that
commute visual data and computer vision-related informa-
tion, etc.

When a topic is advertised in ROS, it has to state its group
and type. A similar process occurs when a node or a ROS
Bridge client subscribes to the topic, e.dg. when it requests a
subscription, it has to specifywhat type ofmessages it expects
to be published in the topic. ROS Bridge serializes messages
into a string format using JSON, a highly flexible and uni-
versal approach to recording data from objects. C# also has
libraries that allow JSON serialization and deserialization.

Unity3D ROS Message system adaptation consists of a
Message superclass inherited by all other classes that describe
messages. All message classes inherit a string GetMes-
sageType()used by the Subscriber and Publisher classes to
specify a message type expected from ROS when subscribing
or publishing. Other than that, message classes that are used
as ROS messages in Unity3D have a few key guidelines to
simplify JSON serialization and deserialization: they can only
contain fields- no methods are allowed, their fields can only
consist of simple data types and objects of another Message
children, and they must override string GetMessageType()
and clearly state the ROSmessage type corresponding to their
specific class. Type Dependency Diagram of the message
hierarchy, showing everything described above, can be seen
in Figure 6. Solid blue lines represent inheritance, and green
dotted lines show which classes use objects of other classes
and the field name used by the object of that class.

III. INTEGRATION OF MQTT MIDDLE LAYER FOR
REMOTE COMMUNICATION
ROS is a well-developed system, modular by design and with
a thought-through messaging system, which was developed
to work in relatively small systems. ROS communication was
designed to work in Local Area Networks (LANs), and thus
it has some downsides that make it almost impossible to
use for remote communication via the Internet. The largest
obstacle is the complete absence of security, ROS has no
authentication or message encryption, which means anyone
with access to the LANwith the ROSServer and an IP address
of that server can read and write in all the topics of that ROS
Server. Current work will use Message Queuing Telemetry
Transport (MQTT) protocol as a transport layer for ROS
messages to bypass the security issue. MQTT is considered a
standard for Internet of Things (IoT) messaging and is used
in various control systems.

A. INTEGRATION OF UNITY3D AND MQTT WITH THE
ROS-UNITY3D INTERFACE
Because of yet agile structure, MQTT clients were imple-
mented in almost every programming language, including C#
used by Unity3D. MQTT client works with ROS Messages
implemented in Unity3D, as described in Section IV. The
main operational scripts used in the MQTT integration are:

• MqttClient – a script that acts as a networking interface –
sends and receives messages using a.dNET framework;

• MqttUnityClient – a class that inherits from MonoBe-
haviour superclass and acts as a component in the
Unity3D engine; it behaves as a wrapper forMqttClient
that adapts its behavior to match the Bridge script cre-
ated in the ROS-Unity3D interface; minor adjustments
were made to work with MqttSigleton;

• MqttSingleton – a script that uses a variation of a com-
mon Singleton Design Pattern to allow the use of multi-
ple MQTT Brokers in the same runtime contingency in
case the main Broker fails;

• MqttPublisher and MqttSubscriber – superclasses that
play the same role as Publisher and Subscriber in
Unity3D.

MQTT protocol is used to transport an array of bytes, not
a string, so the first order of business when creating Mqt-
tUnityClient was to add SerializeJSON<T> (T data) and
DeserializeJSON<T>(byte[] data) methods:

• SerializeJSON<T> (T data) is used to serialize an
object passed as a data parameter to JSON string using
Unity3D’s built-in JSONSerializeModule and then to a
byte array.

• DeserializeJSON<T> (byte[] data) method does the
exact opposite by first converting data from a byte array
to a JSON-formatted string and then attempting to dese-
rialize it into an object of a class specified as a T variable.

This seemingly small addition to theMqttUnityClient enables
it to use ROS messages the same way they are used in
the Bridge script that communicates with the ROS Bridge
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FIGURE 6. Type dependency diagram of the ROS message hierarchy
implemented in Unity3D.

FIGURE 7. Comparison of singleton and conventional classes.

server, making the transition from ROS Bridge middle layer
to MQTT effortless and with almost zero code footprint. This
contributes to one of the main goals of developed DT - to
make a flexible and modular solution that can be easily
integrated into any further DT.

Like in the ROSBridge interface created for Unity3D, each
Message class child needs a MqttPublisher and MqttSub-
scriber children who will send and receive the data in the
specified format. MQTT versions of the messages were cre-
ated similarly to ROS versions of Publisher and Subscriber,
with the same architecture.
MqttSingleton is an added feature to the Unity3D MQTT

client. It is necessary since communication via the Internet
can be unreliable, and having multiple MQTT Brokers acting
as backups in case the main Broker connection fails can be
irreplaceable for DT systems designed to sustain constant
control of the real system and need live updates from the
controlled system to update the simulation. It must be noted
thatMqttSingleton was not a part of the ROS-Unity3D Inter-
face. MqttSingleton class uses a variety of common Single-
ton Design Pattern, a class design to ensure that there is
only one instance of an object of the singleton class in the
entire runtime bymaking its constructor private and replacing
it with a public static getInstance() method. getInstance()
method generates a private static object instance of the class
internally on the first call and returns the same instance
in the next call. A graphical comparison between a con-
ventional class and singleton can be seen in Figure 7.
This pattern is used to ensure that there will be only one
MqttClient instance in the runtime; however, that solution

requires multiple Brokers and multiple clients. To solve
this complication, the MqttSingleton script has a private
static Dictionary<string,MqttClient> Clients that contains
only one MqttClient instance per MQTT Broker. To ensure
that, public static MqttClient getClient(string address, int
port=1883, bool isEncrypted=true)method is created.Much
like the getInstance() method in a singleton, it creates an
instance of a MqttClient that connects to an MQTT Broker
at an IP address and a port specified by an address and
port parameters, respectively. However, it is not limited to a
single MqttClient, every time a new MqttClient instance is
created, it is added to the Clients Dictionary, and the address
parameter doubles as the key for that instance. If theMqttUni-
tyClient instance calls the getClient method with an address
parameter that already exists in the Clients Dictionary, instead
of creating a second instance of theMqttClient, the getClient
method gets the instance from the dictionary. Thus, making
it impossible to have multiple clients connected to the same
MQTT Broker but still allowing for multiple clients to be
created if they are connected to different Brokers.

B. INTEGRATION OF ROS AND MQTT WITH THE
ROS-UNITY3D INTERFACE
To completely transition all communication between ROS
and Unity3D to MQTT, a ROS node that can run on the
ROS side and act as a bidirectional ROS to MQTT converter
is needed. mqtt_bridge is used for that purpose, this node
transfers messages from ROS specified topics to their corre-
sponding MQTT topics and sends them to the MQTT Broker,
and in the opposite direction. A configuration file defines
which outgoing and incoming topics is used whenever the
node starts running. In this configuration file, MQTT Broker
address, port, username, password, message direction of the
conversion, ROS Message type, ROS message topic, and
MQTT message topic are all specified in a specific format.

To maintain an existing functionality of the ROS-Unity3D
interface and add a remote communication option, twomodes
of operation is used:

• LAN Mode – a mode in which no Internet connection
is required; however, both the machine that runs the
Unity3D application and the ROS system that unity
communicates with have to be in the same Local net-
work; no additional hardware besides the two present
machines is needed;

• Remote Mode – a mode in which communication
betweenUnity3D andROS systems happens via a secure
Internet connection; that mode requires a remote MQTT
Broker that is accessible via a global IP address.

Both LAN and Remote Modes have an MQTT Broker that is
used as a middle layer in the communication between ROS
Node mqtt_bridge and Unity3D MqttUnityClient. However,
in LAN mode system uses the same Linux machine that runs
ROS to act as an MQTT Broker, as shown in Figure 8a.
In contrast to the LANMode, the Remote Mode of operation
uses an external machine as an MQTT Broker. This machine
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FIGURE 8. Operational architecture of the LAN Mode (a) and Remote
mode (b) of MQTT-based ROS-Unity3D interface.

must have a global IP address and be accessible through a
specified MQTT port. In addition, the administrator of that
machine has to provide credentials that the MQTT clients can
use to communicate with the Broker. The operational archi-
tecture of the Remote Mode can be found in Figure 8b. Due
to the massive similarities of the operational architectures and
the feature added through theMqttSingleton script that allows
the Unity3D side of the interface to use multiple different
MQTT Brokers, both modes can be used simultaneously for
different machines or as a fallback option.

C. SYSTEM LATENCY ANALYSIS
Latency analysis, to verify the need for a private server,
was comparing four communication approaches that could
be used with developed DT: communication via the
Unity3D-ROS Bridge interface, communication through
MQTT via the LAN Mode and through the Remote MQTT
Broker on the server, and a public available MQTT Bro-
ker [15].

One of the largest factors in DT controllers is the latency
between the DT and the twinned system. High latency results
in inaccurate and obsolete data, which in turn makes it impos-
sible to consider DT an online representation of the real
system, in production could lead to injury or damages to
the equipment. Virtual entity of DT requires to mean latency
under 100 ms to avoid causing seasickness to the user, thus
making public MQTT brokers unusable for VR implementa-
tions [16]. There are two solutions to avoid latency problem -
to host a private MQTT broker that is not overloaded with

request, or to limit the scope of the system to a local net-
work and run it directly through the ROS bridge. A latency
analysis has been performed to avoid this and ensure that
the developed solution is viable. Latency was analyzed by
sending a message from the Unity3D application to the Bro-
ker, then forwarded it to the mqtt_bridge node in the ROS
system. Then the message was converted to the ROSMessage
and then immediately back to the MQTT message and was
sent back to the Unity3D application through the specific
Broker. This latency measure represents the time it takes for a
message to go on a round-trip; therefore, the latency is called
bidirectional. Each approach was tested with two scenarios:

1. The 100messages and a connection establishmentmes-
sage – 101 in total.

2. The 1000 messages and a connection establishment
message – 1001 in total.

Sample sizes of 100 and 1000 were chosen arbitrarily but
following the statistic rule that states that a sample size above
30 should be used for a statistically significant result. A range
of 970 messages is used to compare significant differences in
data amount.

Results of the latency analysis are presented in Figure 9,
and a heavily loaded public MQTT Broker was the slowest
by taking an average of ca 350 ms to deliver a message in
both ways. It was an expected result that heavy network load
and large amounts of simultaneous requests can easily be
explained. However, LAN Mode and Remote Mode using a
private server yielded almost identical results, taking slightly
more than an average of 50 ms to send and receive the mes-
sage, that the most probable cause of the latency is the middle
layer between ROS and Unity3D in the form of MQTT Bro-
ker. As it can be seen from the experiments, both LANMode
and Remote Mode can be used interchangeably without any
noticeable changes in performance, in case the remote server
is not overloaded. The fastest communication approach with
the lowest latency was a direct ROS Bridge interface. This
approach is the fastest for several reasons, most impactful of
which are that there is no intermediary between ROS and
Unity3D, and there is no need in mqtt_bridge that has to
interpret ROS and MQTT messages. The resulting two-way
latency was barely above 1 ms.

IV. DISCUSSION
Industry 4.0 revolves around interconnected systems consist-
ing of independent devices that communicate with each other
to achieve higher efficiency and productivity. Long-distance
communication can be considered a higher-level tool that
expands such systems’ horizons, allowing them to interact in
live regardless of their geographical location. Remote mon-
itoring, tuning, reprogramming, and control of IoT systems
shifted from being a useful additional option into a high-
priority necessity. However, to effectively harness the power
of such a feature, it must have the flexibility to support various
types of systems and, more importantly, to join them into one
network seamlessly.
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FIGURE 9. Latency analysis of the communication between Unity3D and
ROS systems via various channels with 100 messages (a) and
1000 messages (b).

DT is a virtual copy of an entire manufacturing system.
Besides using it as a high-quality simulation, one of the
DT’s main goals is monitoring and maintaining control of the
whole system via a constant live link between a DT and a
whole system. DT models already exist, but the vast majority
of them are designed for a specific system or network of
systems, and thus it is challenging to add new members to
such DT models. Remote ROS interfacing could resolve this
issue and make DT systems more versatile. ROS framework
can be used to control a vast range of systems and be easily
modified to evolve along with the systems it is supposed to
regulate. Creating a framework that allows ROS to securely
communicate with remote DT via the Internet and harness
ROS’s adaptability across vast distances andmultiple systems
is the topic researched in this paper.

The general concept of DT may also include the term
Digital Siblings (DS) that was introduced in [7] and can be
considered as a copy(ies) of the physical entity, which need
not necessarily run in real-time but can be used to test out
hypothetical scenarios for maintenance, diagnostics, ‘‘what
if?’’ analysis and risk assessment. A variety of condition
monitoring techniques are available nowadays and may be

combined with DT and DS approaches, different optimiza-
tion techniques may be integrated in an earlier stage [17].
Reducedmodels of the physical entities for DT andDS can be
constructed using different model order reduction methods.
Cross-platform software that combines multiphysics graph-
ical applications with powerful pre-processing, solvers, and
post-processing capabilities will be preferable for DS and DT
creation.

The fact that developed DT ROS nodes are modular makes
it easy to add nodes responsible for electromagnetic, thermal,
diagnostic, or any other simulations. Studies show [18] that
a model order reduction is a promising tool for controlling
industrial processes, where some of the parameters cannot
be measured directly. That means different reduced models
of the devices running parallel and can be used to assemble
a DT in real-time. Development [19], simulation [16], opti-
mization [20], and even manufacturing processes [21] will
definitely become easy using DT technology. Application of
DT for optimization of the early-stage system may have the
potential to change the optimization concept of it, changes
suggested by optimization may be immediately applied in
various simulations to evaluate how the final product will
interact with a real environment.

V. CONCLUSION
The concept of DT is gaining popularity nowadays in many
different industry-oriented fields. Creating and maintaining
a digital representation of the real physical entity and sup-
porting device performance using different simulation and
optimization tools are key goals of many research works.
There is no conventional methodology for DT development
today, while the DT may include several physical or data-
driven models.

This paper presents a development case of DT for an elec-
tric motor based on an EPM. A detailed structural description
of the virtual entity based on Unity3D engine is presented.
The paper considers obtained data required for the DT devel-
opment.

Unity3D-ROS interface that was the one of the goals of this
case study is presented in the Chapter VI. Data fed current DT
via ROS as a connectivity layer. While standard ROS systems
can only communicate locally, the use of MQTT as a mid-
dle layer opens new applications for the ROS systems. The
developed solution consists of a software package that can
be integrated into DT Unity3D projects and a configuration
approach that has to be used on the ROS systems to allow
secure communication. This DT also contains an additional
local ROS-Unity interface that uses ROS Bridge for local
ROS-Unity3D interfacing.

The main application of the recent DT is a loading motor-
drive system for the test bench to estimate the performance of
the electric propulsion drive system of an autonomous electric
vehicle. The development and implementation of the concept
of DT will help provide a brand-new approach for measuring
and estimating the performance of motor-drive systems.
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Future development includes improving the real-time col-
lector from the physical entity (electrical motor) and the abil-
ity to control studied system from online DT environment and
based on DT services entity. Moreover, the authors look to
enlarge the use case with other visualization tools similar and
different from Unity3D to prove modularity and flexibility of
the middle layer.

APPENDIX
The visualization of real-time operation of the con-
sidered example one can see in the following URL:
https://youtu.dbe/lralWRjRMkE

Source code of developed DT is available on: https://
github.dcom/TalTech-PSG453/loading_motor_dt
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