
Received January 13, 2022, accepted January 26, 2022, date of publication February 1, 2022, date of current version February 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3148387

3DSliceLeNet: Recognizing 3D Objects Using
a Slice-Representation
FRANCISCO GOMEZ-DONOSO 1, FELIX ESCALONA 1, SERGIO ORTS-ESCOLANO 1,
ALBERTO GARCIA-GARCIA 2, JOSE GARCIA-RODRIGUEZ 2, (Senior Member, IEEE),
AND MIGUEL CAZORLA 1, (Senior Member, IEEE)
1Robotics and 3D Vision Laboratory, University Institute for Computer Research, University of Alicante, 03690 Alicante, Spain
2Applied Intelligent Architectures, University Institute for Computer Research, University of Alicante, 03690 Alicante, Spain

Corresponding author: Felix Escalona (felix.escalona@ua.es)

This work was supported in part by the Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación
(AEI)/10.13039/501100011033 under Grant PID2019-104818RB-I00, and in part by the ‘‘European Regional
Development Fund (ERDF) A way of making Europe.’’

ABSTRACT Convolutional Neural Networks (CNNs) have become the default paradigm for addressing
classification problems, especially, but not only, in image recognition. This is mainly due to their high
success rate. Although a number of approaches currently apply deep learning to the 3D shape recognition
problem, they are either too slow for online use or too error-prone. To fill this gap, we propose 3DSliceLeNet,
a deep learning architecture for point cloud classification. Our proposal converts the input point clouds into
a two-dimensional representation by performing a slicing process and projecting the points to the principal
planes, thus generating images that are used by the convolutional architecture. 3DSliceLeNet successfully
achieves both high accuracy and low computational cost. A dense set of experiments has been conducted to
validate our system under the ModelNet challenge, a large-scale 3D Computer Aided Design (CAD) model
dataset. Our proposal achieves a success rate of 94.37% and an Area under Curve (AUC) of 0.978 on the
ModelNet-10 classification task.

INDEX TERMS Deep learning, 3D object recognition, convolutional neural networks, Caffe.

I. INTRODUCTION
Object recognition is one of the key problems to be solved for
the development of a complete scene understanding system
and is the main focus of this work. Although this prob-
lem has traditionally been addressed using RGB cameras,
in recent years many new approaches have encouraged the
use of 3D data. The advent of commodity 3D sensors such
as the Microsoft Kinect, and the creation of large, real and
synthetic 3D data repositories [1]–[4] have opened new trends
for this research problem. In particular, many papers have
addressed the problem of 3D shape classification using deep
learning techniques and a large number of papers have used
Convolutional Neural Networks in the field of 3D object
recognition [5]–[7].

While the best results have thus far been obtained with
methods based on 2D deep learning, their extension to 3D
still presents many problems. For example, the methods
that performed best in the ModelNet challenge are mostly
based on 2D views. These 2D views are usually obtained as

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

a projection of the 3D data. For example, [8] features a CNN
architecture that combines information from multiple views
of a 3D shape into a single, compact shape descriptor. This
method obtained 90% classification accuracy on the Model-
Net40 dataset. However, focusing on 2D visual features could
lead to ambiguities in a real scenario. The external part of an
object may not capture the internal structure of that object.
In addition, most of the best performing techniques in this
challenge also rely on the use of multiple 2D views. The
main reason why volumetric or 3D rendering approaches do
not currently produce as good results as 2D multiple view
methods is related to the 3D data discretization process and
how the volumetric domain needs to handle large amounts
of sparse data. In addition, the cost of handling 3D data is
higher than that of processing 2D data, so it is limited by the
amount of detail that can be captured. Similar conclusions
are presented in [9]. Additionally, as stated in [10], inserting
volumetric representations in a deep Convolutional Neural
Network (CNN) pipeline requires large amounts of memory
and is a very time consuming task.

In this work, which is an extension of the doctoral thesis
by Dr. Francisco Gomez-Donoso [11] and our previous work

15378 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-7830-2661
https://orcid.org/0000-0003-2245-601X
https://orcid.org/0000-0001-6817-6326
https://orcid.org/0000-0002-9575-6403
https://orcid.org/0000-0002-7798-3055
https://orcid.org/0000-0001-6805-3633
https://orcid.org/0000-0001-5161-9311


F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

LonchaNet [12], we present an approach that uses multiple
2D views acquired from 3D models applied to 3D object
recognition. The proposed 2D representations are based on
cross sections of 3D models. The proposed method outper-
forms our previous method, LonchaNet, which uses different
convolutional backbones and more datasets for validation,
and also outperformsmost of the existing approaches that par-
ticipated in the ModelNet challenge. We have now obtained
94.37% classification accuracy. Our proposal focuses on
learning a discriminative representation that is able to dis-
tinguish between most of the categories in the ModelNet
dataset. We also contribute a new architecture that utilizes the
existing GoogLeNet network [13]. We use three independent
GoogLeNet networks for learning features specific to each
cross section or slice of the 3D model. Finally, we evaluate
the trained model using ModelNet on a subset of the IKEA
dataset. We obtained a classification accuracy of 70.45%
demonstrating that the trained model was not overfitted to the
ModelNet dataset.

The rest of the paper is organized as follows: Section II
reviews existing works that use deep learning-based tech-
niques for 3D object recognition. Next, Section III presents
the proposed deep learning architecture for 3D object recog-
nition based on 2D renderings from 3Dmodel cross-sections.
Section IV shows the experiments and discusses the results
obtained using our novel approach. Finally, in Section V,
we present our conclusions and directions for future work.

II. RELATED WORKS
Deep learning, in general, and CNNs, in particular, have
today surpassed traditional computer vision methods in
many tasks, including 3D object recognition [14]–[16]. This
exponential and continuous growth has been made pos-
sible by three factors: (1) the creation of large-scale 3D
object databases, (2) accessible deep learning frameworks
for designing, developing, and training CNNs, and (3) the
democratization of Graphics Processing Units (GPUs) to
accelerate such networks for both inference and training.
Although all three were equally vital to the development
of deep learning approaches, it is important to note that
challenges or benchmarks -associated with data sets- allow
researchers to objectively evaluate their proposals against
other work. As such, high-quality datasets are gathered
around a plethora of competing cutting-edge works striving
for the best recognition results. In this regard, the ModelNet
database is arguably the most significant challenge, as are
the methods that make use of it. ModelNet1 is a large-scale
database of 3D Computer Aided Design (CAD) objects with
two subsets or challenges:ModelNet10 andModelNet40with
10 and 40 classes respectively. More details on the composi-
tion of the dataset and specific information on the challenges
are provided in section IV.

This work will focus on ModelNet, and thus, in the fol-
lowing lines we report all the state-of-the-art methods for

1http://modelnet.cs.princeton.edu/

that challenge, and recent methods not therein included, but
whose novelty or results are outstanding. We introduce these
methods by grouping them into three broad categories accord-
ing to their 3D data representations.
Voxelization: Input data is a discretization of the original

point cloud, grouping points into different clusters according
to a neighborhood criteria. These points serve as an approx-
imation of the original shape. Commonly, every voxel is
represented as a binary value, 0 or 1, which indicates the
presence of points in the space represented by the voxel.

The seminal work by Wu et al. [5] introduced the Mod-
elNet dataset and a Convolutional Deep Belief Network
(CDBN) to represent and learn 3D shapes as probability
distributions of binary variables on volumetric voxel grids.
They achieved 83.50% accuracy, a somewhat inconspicuous
percentage for today’s standards, but their work paved the
way for future research.

Another approach to this problem is presented by Xu and
Todorovic in their work ‘‘Beam search for Learning a Deep
Convolutional Neural Network of 3D Shapes’’ [17], in which
a beam search for optimal CNN hyperparameters and archi-
tecture is proposed. This system models different network
configurations as states, which are connected in a directed
graph fashion. The system traverses the graph using a heuris-
tic function that produces the next best state - an improved
version of the architecture and the hyperparameters set. This
system achieves an accuracy of 88% for the ModelNet-10
classification task and 81.3 for the ModelNet-40 classifica-
tion task.

On another note, PointGrid [18] creates grid cells with a
constant number of points with a point quantization tech-
nique, saving the point coordinates to improve the represen-
tation of the local geometry of the object.

Another important work is the 3D Generative Adversarial
Network (GAN) proposed byWu et al. [19], which combines
a 3D CNN with a GAN to capture 3D shape descriptors, ini-
tially intended to generate or sample 3D objects, which can be
effectively reused for classification. By making use of these
unsupervised learned descriptors they demonstrated that their
model could achieve 91.00% accuracy in the challenge.

Maturana and Scherer proved that bringing together a pure
3D CNN and a volumetric occupancy grid representation was
helpful to recognize 3D shapes in an efficient manner. Their
proposal, VoxNet [6], achieved a 92.00% success rate on the
benchmark.

Other works, such as the Octree-based Convolutional Neu-
ral Network (O-CNN) [20] and Octree Generating Network
(OGN) [21] combine the use of octree representations with
the performance of 3D convolutions to lower memory con-
sumption and improve performance.

The next significant step forward was taken by
Sedaghat et al. [22] who introduced object orientation pre-
diction, in addition to the class label itself, to increase clas-
sification accuracy. Their ORION network is a 3D CNN
that produces class labels and orientations as outputs and
uses both to contribute to training. By adding orientation

VOLUME 10, 2022 15379



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

estimation as an auxiliary task during training, they were
able to learn orientation invariance and raise the accuracy
to 93.80%.

Voxception-ResNet (VRN) ensemble mode, presented by
Brock et al. [23], achieves a significant accuracy of 97.14%.
This architecture is based on ResNet [24], but uses inception
blocks that are produced by concatenating bottleneck and
standard ResNet blocks. A voxelized volumetric input is
fed to an ensemble of these VRNs, whose predictions are
summed to generate the output.

Finally, in order to approximate the results to real life
scenarios, Par3dnet [25] used 3D CNNs to perform object
recognition over tridimensional partial views of the objects,
and made a deep analysis of the easiest and hardest views to
classify an object.
2D Projections: In this category of methods, input data

is represented as multiple 2D projections of the tridimen-
sional data. They have traditionally been the most common
approach, and usually have a 2D CNN to carry out the
processing.

DeepPano [7] achieved 85.45% accuracy by converting
3D shapes to panoramic views, using a cylinder projection
around their principle axes, and learning them with a CNN
specifically designed for that purpose.

Sinha et al. [26] propose a system in which a geom-
etry image is created by mapping the mesh surface to a
spherical parametrization map, which is then projected onto
an octahedron and cut and assembled to create a square.
This approach achieves an accuracy of 88.4% and 83.9%
in the ModelNet-10 and ModelNet-40 classification tasks,
respectively.

Bai et al. proposed GIFT, a real-time shape matching
method that combines projective images of 3D shapes and
a CNN to extract features that are subsequently matched and
ranked to provide a candidate list; using this approach, they
improved slightly with respect to VoxNet reaching a 92.35%
recognition rate.

The method described by Johns et al. [27] exploited multi-
view image sequences to boost accuracy to 92.80%. They
used a CNN to independently classify image pairs from
sequences, and then classify them again weighting the con-
tribution of each pair.

TheMulti-ViewConvolutional Neural Network (MVCNN)
approach, introduced by Su et al. [8], used a CNN to learn to
classify objects using a collection of rendered views for each
one. However, they reported no results for the ModelNet10
challenge. In a subsequent work [28], the authors improve
their results by making modifications in the architecture and
using shaded images as input.

In the Multi-Loop-View Convolutional Neural Network
(MLVCNN) [29], the authors generated a view-loop-shape
3D shape representation structure, which hierarchicalñy rep-
resents 3D shapes. They analyzed the view features using
a Long Short-Term Memory (LSTM) with Loop Normal-
ization by exploring the relationship between views in each
loop.

Finally, RotationNet [30] jointly addressed the problem of
the pose and object category estimation, using a CNN over
a partial set of multi-view images. This network predicts
viewpoint-specific category likelihoods corresponding to all
predefined discrete viewpoints for each image input, and then
selects the object pose that maximizes the object category
likelihood.
Point Cloud: 3D data is represented as a raw unordered

point cloud. These methods usually extract features by ana-
lyzing the neighborhood of every point within a radius.

The most representative proposal in this case is
PointNet++ [31]. This method generates a feature vector for
the whole cloud by applying order-invariant transformations
to every point, generating local hierarchical features, which
that are sampled and grouped, and uses them to segment and
classify the scene.

Various proposals are based on the previous architecture.
This is the case of VoteNet [32], a novel technique based on
Hough voting, that uses PointNet++ layers as the backbone.
This approach selects a set of interesting points, with their
corresponding features, as seed points to generate clusters of
object instances based on their votes. Finally, these clusters
are transformed into 3D bounding boxes with their corre-
sponding categories.

Another work, SplatNet [33], extends the concept of 2D
SPLAT images into 3D. It uses hash tables as a efficient
implementation of neighborhood filtering, providing an easy
mapping of 2D points into 3D space, bilateral convolutions
are then used to extract a set of features.

In the case of SO-Net [34], the authors propose a method
to guarantee invariance to point permutations. It builds a
Self-Organizing Map (SOM) through modelling the spatial
distribution of the point cloud and using the neighborhood of
every point to extract hierarchical features. As a final step,
this method generates a global feature vector for the whole
cloud.
Alternative and Fusion Approaches: These approaches use

another type of data representation, alternative data transfor-
mations, or mix the results of different alternatives.
FusionNet [35] fuses volumetric representations (binary

voxel grids) and pixel representations (projected images).
The authors use both representations to feed two volumetric
CNNs and a MVCNN, achieving 93.11% accuracy.

The Point-Voxel Convolutional Neural Network (PVCNN)
[36] combines the sparse representation of the data with vox-
elized convolutions that increase the performance of the data
access and improve the locality of the method. In this work,
a new efficient primitive is introduced, Point-Voxel Con-
volution (PVConv), which converts points into voxel grids,
aggregates neighboring points with voxel-based convolutions
and transforms them back to points. In order to obtain features
with a higher level of detail, the work includes point-based
feature transformations.

In NurbsNet [37], the authors propose a method based on
local similarities between surfaces, modeled as nurbs. They
fit a nurb surface around the neighborhood of every point,

15380 VOLUME 10, 2022



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

calculate the similarity score with the pretrained surfaces,
select the best similarity score for every part of the object and
generate a feature vector to perform the classification.

Hypergraph Neural Networks (HGNN) [38] presents a
novel data representation in the form of a hypergraph, using
a hyperedge convolution operation to handle the data corre-
lation during representation learning. The authors generate
12 different views of each 3D object in intervals of 30 degrees
and create the hypergraph as a probability graph based on the
distance between nodes.

Finally, the Voxelized Fractal Descriptor (VFD) [39] pro-
poses a novel global descriptor based on the fractal dimen-
sion. This paper proposes the computation of the fractal
dimension for every voxel of the object and generates a
feature descriptor with the concatenation of the results. The
voxel-based computation of the fractal dimension is agnostic
to the density of points, number of points in the input cloud,
sensor of choice, and noise up to a level.

In light of this literature review, our proposed method
presents a novel approach for 3D model recognition that
bundles a multi-view object slicing approach, based on
Setio et al. [40] method for Computed Tomography (CT)
images, with a modified version of the GoogLeNet [13] CNN
architecture to achieve state-of-the-art performance while
keeping the computational cost under control.

FIGURE 1. Extracting the slices from a point cloud sample.

III. APPROACH
As mentioned above, we propose a method for 3D object
recognition using deep learning and 2D CNNs. First, for each
sample in the dataset, we take three sections of an object,
one for each 3D axis, and project the 3D points onto a plane,

FIGURE 2. A comparison of a slice before and after the dilation process.
The dilated image provides a more accurate representation the object.

so that we get three images of each sample. Each of these
three images that make up a single sample is fed into a
Convolutional Neural Network. Our novel deep architecture
features three GoogLeNets, one for each image, joined in a
layer before the classification layer. The classifier receives the
information from the previous three independent networks
and performs the classification. This gives us great expres-
siveness and a high success rate.

A. SLICING A MODEL
3DSliceLeNet takes point clouds as input, but the neural
architecture itself uses three images corresponding to three
slices. Thus, we first have to extract the slices from the 3D
point cloud.

To do this, we load the point clouds and calculate the center
point of each axis. We then make a slice in the XY, XZ and
YZ planes with a thickness of 5% of the model size. This
thickness is empirically determined, allowing the system to
capture sufficient data to produce a faithful representation.
Points that fall within these sections are isolated and pro-
jected onto their planes to generate a 500-pixel image. These
images are binary maps in which the background is black
and the projected points are white. This process is shown
in Figure 1.

Due to the inconsistent point density produced by the
sampling process described in section IV-A, the points in
some slices are very scattered, so the projection does not
faithfully represent the object. To deal with this problem,
a post-processing is performed for each projection in which
we apply 10 pixel dilations using a square as a structuring
element. This post-processing step fills the gap between the
sparse points and generates a more adequate representation
of the object, as shown in Figure 2 (right).
This process is performed for each sample present in the

dataset, so that for each point cloud there are three corre-
sponding images, one per slice.

This slice representation of the object allows us to train
and test a 3D recognition system in a 2D way. It provides the
high success rate and speed of training and testing that usu-
ally characterizes deep image recognition neural networks.
Furthermore, it preserves and exploits the 3D information
implicitly embodied in the slicing method.

VOLUME 10, 2022 15381



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

FIGURE 3. 3DSliceLeNet architecture.

B. 3DSliceLeNet ARCHITECTURE
The main architecture of 3DSliceLeNet is composed of three
isolated GoogLeNets, which are joined together at the end
in a Concatenation Layer prior to a Fully Connected Layer
which is the final classifier, as shown in Figure 3.

As mentioned, GoogLeNet is the most advanced deep
network for image recognition tasks, providing the highest
accuracy in several challenges, which is why we chose it over
the other network architectures.

In this architecture, all convolutions, including those of the
starting modules, use Rectified Linear Unit (ReLU) activa-
tion. The receptive field size in this network is 224 × 224,
taking the RGB channels with mean subtraction, although
in the 3DSliceLeNet ensemble we use binary maps without
mean normalisation. The GoogLeNet network consists of
22 layers if we consider only the layers with parameter layers
(or 27 layers if we also consider clustering layers). The total
number of layers (independent building blocks) used for the
construction of the network is approximately 100. However,
this number depends on the machine learning system used.
The use of the average pooling step prior to the classifier is
based on [41], although this implementation differs in the use
of an extra linear layer. This allows the network to be adapted
and tuned for other datasets.

3DSliceLeNet has three independent GoogLeNet (we will
refer to them as ‘‘branches’’), which learn the features that
define an object for each slice. Thus, we force each branch
to specialize the filters on particular features of each slice.
By isolated, we mean that the hyperparameters of each are
different, and are affected independently by the backpropaga-
tion stage. Finally, the responses from each branch are con-
catenated into a single output that is fed to a fully connected
layer acting as a classifier.

IV. EXPERIMENTS
In order to validate the precision of 3DSliceLeNet, we tested
our approach in the ModelNet challenge. The Prince-
ton ModelNet project intends to provide researchers with

FIGURE 4. From CAD models to point clouds. The object is placed in the
center of a tessellated sphere, views are rendered placing a virtual
camera in each vertex of the icosahedron, the z-buffer data of those
views is used to generate point clouds, and the point clouds are
transformed and merged at last.

a comprehensive clean collection of 3D CAD models for
objects and sets a framework to test and compare the dif-
ferent approaches to the 3D object recognition task. First,
we describe how to convert this dataset frommeshes to a point
cloud format, and then we present the methodology and our
testing bench. Finally, we show how 3DSliceLeNet performs
the ModelNet-10 and ModelNet-40 classification tasks and
draw some conclusions. We also use a model obtained by
training with the ModelNet-10 dataset to perform inference
over the IKEA dataset and describe the results.

A. DATASETS FROM MESHES TO POINT CLOUDS
The ModelNet and the IKEA databases [1] provide CAD
models in either Object File Format (OFF) or Object File
(OBJ) format as polygonal meshes. However, our architec-
ture takes point clouds as an input to generate the slice-
based representation – the point cloud representation format
is closer to the typical input data provided by consumer
depth sensors. To bridge this gap, an adapter or converter
stage is performed to shift the OFF and OBJ mesh repre-
sentation to Point Cloud Data (PCD) clouds. This process
involves placing eachmesh inside a 3D truncated icosahedron

15382 VOLUME 10, 2022



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

TABLE 1. ModelNet-10 samples per class distribution.

(tessellated sphere). A virtual camera is then placed on each
vertex pointing to the sphere’s center. Raytracing is used to
capture a snapshot from each virtual camera, keeping the
z-buffer data (depth information) to generate partial point
clouds from each view. These point clouds are merged to
generate a full model. Additionally, a voxel grid filter is
applied to downsample the clouds (uniform point density).
Subsequently, those model clouds are sliced and provided
as input to the network for training (randomized order), and
testing using the corresponding splits provided by ModelNet.
Figure 4 illustrates the aforementioned conversion process.

B. METHODOLOGY AND MATERIALS
All timings and results were obtained by conducting the
experiments in the following test setup: Intel Core i7-5820K
with 32 GiB of Kingston HyperX 2666 MHz and CL13
DDR4 RAM on an Asus X99-A motherboard (Intel X99
chipset). Secondary storage was provided by a Sam-
sung 850 EVO SSD. Additionally, the system included two
NVIDIA Tesla K40c GPUs used for training and inference.

The framework of choice was Caffe RC2 running on
Ubuntu 14.04.02. It was compiled using CMake 2.8.7,
g++ 4.8.2, CUDA 7.5, and cuDNN v3.

We trained and tested 3DSliceLeNet with theModelNet-10
and ModelNet-40 datasets, as described earlier in the subsec-
tion IV-A. It is worth noting that the training and test splits are
defined by the dataset itself and that the number of samples
per class is not balanced, as seen in Table 1 (both subsets,
ModelNet-10 and ModelNet-40 are unbalanced). This fact
harms the accuracy of the system, biasing the learning and
the classification toward the classes with more number of
samples, as stated by [42].

C. RESULTS FOR ModelNet-10
Regarding the parameters that affect the learning process,
we trained the architecture with a base learning rate of
0.00001, multiplying the current learning rate by 0.75 every
10000 iterations. To compute the weight update, we use the
ADAM [43] solver with β1 = 0.9 and β2 = 0.999. In the
ModelNet-10 experiment, the training process was executed
for 20000 iterations, but the best weight set was produced on
iteration #18300, which yielded a test accuracy of 94.3709%,

the second best score in the leaderboard of the ModelNet10
challenge.

It is also worth noting the low run-time of our architecture.
One training iteration with a batch size of 30 samples takes
an average of 2.25 seconds. Moreover, classification of new
samples only takes 0.0896 seconds.

We cannot compare 3DSliceLeNet with the VRN Ensem-
ble method, which provides a success rate of 97.14% in the
ModelNet-10 challenge, because no timemeasurements were
provided in the paper. Nonetheless, we contacted Andrew
Brock (author of the mentioned method), who said he did
not recall the test time/batch, and all his logs were buried
in an external hard drive somewhere and in inference mode
would probably take several seconds per batch. In light of this
information, VRN Ensemble is, in fact, impractical in a real-
time application.

Figure 6 shows the classification rate per class. It can be
seen that the classes with the lower success rates are the very
same classes that have a lower number of samples, that is, the
desk and nightstand classes. Accordingly, we can expect that
if we were able to have a balanced dataset, the error rate of
these classes would decrease significantly.

Figure 5 shows the confusion matrix of the classification
accuracy for the test split of ModelNet-10. The aforemen-
tioned confusionmatrix, alongside the precision-recall curves
presented in Figure 7, confirms the stability and reliability of
the system, which fails only on samples that look very similar
from a visual perspective. Our system achieves an AUC of
0.978 on this test.

This is the case for the desk and table classes, which
the system confuses, but not the other way around. This
is arguably caused by the fact that a desk is a type of
table, meaning the desks have minor differences (visual
features) that go unnoticed in some samples, making such
samples hard to distinguish from the table ones, as shown in
Figures 8a and 8b. In addition, Table 1 shows that the desk
class has a reduced number of samples compared with to
classes such as sofa or chair.

In order to corroborate the desk and table ambiguity, a user
study was conducted involving humans, who where required
to classify random desk and tables samples. This experiment
is detailed later in Section IV-D.
In addition, the proposed system fails to distinguish

between the nightstand and dresser classes. This kind of
problem is common in Convolutional Neural Network archi-
tectures because their learned features are mainly based on
visual features of an object and, as seen in Figures 8c and 8d,
these two classes are visually similar.

Figure 8 shows the ambiguity of the visual features
between the desk and table, nightstand and dresser classes
and shows the difficulty of the problem.

D. EXPLORING DESK AND TABLE AMBIGUITY
WITH HUMANS
Reviewing the desk and table samples of the ModelNet
dataset, we noticed there was no substantial contrast in the

VOLUME 10, 2022 15383



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

FIGURE 5. Confusion matrix of the classification results achieved by 3DSliceLeNet after 18300 training
iterations using the ModelNet-10 dataset (solver type is ADAM, learning rate is 0.00001, β1 is 0.9 and
β2 is 0.999). It is worth noting the confusion between the classes Desk and Table and Nightstand and Dresser.
The values shown in the table are percentages.

FIGURE 6. Success rate per class for the test split of the ModelNet-10
dataset achieved by 3DSliceLeNet.

visual features that describe each class, so 3DSliceLeNet (and
any other visual features-based system) would understand-
ably tend to fail when classifying samples of these classes.

In order to evaluate the scope of the aforementioned desk
and table ambiguity, we carried out a new experiment involv-
ing humans. This experiment was conducted by displaying
20 random samples of tables and desks (10 of each class)
to a set of 9 humans of different professional and academic
profiles. Each test subject was asked to classify the samples
into either the desk or table class. These results are shown
in Table 2. With an overall accuracy of 83.75%, the subjects
were unable to successfully guess all samples. Specifically,
the humans achieved an accuracy of 88.89% for the desk class
and, as expected, 3DSliceLeNet performed similarly with an
accuracy of 79.56%.

These results show there are no definitive visual features
that allow 3DSliceLeNet to precisely discriminate samples
from the desk and table classes. It is therefore prone to fail,
as are humans.

When the test participants were questioned about the rea-
sons leding them to classify an object either in the desk or

FIGURE 7. Precision-recall curves (classification accuracy) for every class
of the ModelNet-10 test split.

table class, several of them stated that the desks usually have
some kind of drawer and tables do not. However, there are
samples of tables with drawers and samples of desks without
them in theModelNet dataset, as seen in Figure 8a, and hence
this is not a discriminative feature.

The intention of this experiment was to demonstrate the
main reason for the lack of accuracy of 3DSliceLeNet on the
desk and table classes: their visual features are not sufficiently
clear for these two classes, not even by humans.

E. RESULTS FOR ModelNet-40
We also trained and tested our system with the extended
version of the ModelNet dataset (40 classes). The neural
architecture remained the same with a minor modification:
the number of neurons in the output layer was modified from
10 to 40 in order to match the number of classes of the
ModelNet-40 dataset. No further modifications were applied
to the 3DSliceLeNet architecture.

15384 VOLUME 10, 2022



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

FIGURE 8. Similarity between two objects of different classes: Table and
Desk, and Nightstand and Dresser. The point cloud shown in
(a) represents an object of the Table class, whilst the point cloud in
(b) represents an object whose class is Desk but is misclassified as a
Table due to the resemblance. Point clouds (c) and (d) illustrate the same
problem with the nightstand and dresser classes.

TABLE 2. Human desk and table classification accuracy. The overall
human accuracy of this experiment was 83.75%.

The training hyperparameters are the same of those used
for the ModelNet-10 experiment: a base learning rate of
0.00001, multiplying the current learning rate by 0.75 every
10000 iterations. To compute the weights update we use the
ADAM [43] solver with β1 = 0.9 and β2 = 0.999.
In the ModelNet-40 experiment, the training process was

executed for over 250000 iterations, obtaining the best
weights set on the iteration #144500 which yielded a test
success rate of 79.8529%. The timings for this experiment
are approximately the same as those used for the ModelNet-
10 experiment: a training iteration of 30 samples took longr
than 2.25 seconds, whilst classifying a new sample only took
0.0893 seconds.

Our method is reasonably competitive achieving a high
success rate, but it is highly dependent on the orientation of
the samples. Whilst in the ModelNet-10 version, the models
share the same pose, in the ModelNet-40, they do not. This
is caused by the slicing method described in Section III-A,
which implicitly captures the clearly counterproductive pose
in this case.

Reviewing the confusion matrix obtained in this exper-
iment (Figure 9) and the accuracy per class (Figure 10)
we can confirm the overall accuracy of the 3DSliceLeNet
architecture. We also observed that several samples across all
classes are often wrongly classified as bottles. The misclas-
sified samples of the bowl, cup, flowerpot or stool classes
are reasonably comprehensible, as these classes look very
similar to a bottle, that is, they have a narrow neck and a
wider bottom. As shown in Figure 10, these classes have the
lowest success rate. Other classes also share some features,
but in a different scale that makes them look very similar once
converted to the slice-based representation.

Moreover, we can identify some punctual and scattered
confusion errors, such as previously described ambiguity
between the desk and table, bookshelf and wardrobe or flow-
erpot and bottle. These pairs of classes look very similar to
each other, leading to a high probability of misclassifying
them as explained in Section IV-C.

F. RESULTS FOR THE IKEA DATASET
The IKEA dataset consists of furniture CADmodels gathered
from the Google 3D Warehouse, alongside aligned RGB
images took from Flickr. This dataset contains 7 classes:
bed, bookcase, chair, desk, sofa, table and wardrobe. It was
originally intended to validate fine 3D pose estimation, but we
used the 3D models of the dataset to validate our 3D model
recognition system: 3DSliceLeNet.

As we did with the ModelNet dataset, we firstly had to
convert the meshes to point clouds following the method
explained in Section IV-A and then the obtained point
clouds to the sliced representation proposed in Section III-A.
Wemanually aligned the point clouds tomatch theModelNet-
10 poses. Additionally, several meshes contained more than
one object, and so we split them in order to obtain single
object meshes. The samples from the bookcase class were
removed as this class is not present in the ModelNet-10
dataset. A number of other meshes were removed due to
incompatibilities between the given format and our mesh to
point cloud method. Finally, the refined IKEA dataset con-
tained 87 samples distributed in 6 classes. The exact number
of samples per class can be seen in Table 3.
Finally, we took 3DSliceLeNet and the best ModelNet-10

model, and tested it with the converted IKEA samples achiev-
ing an accuracy of 70.4545%. This success rate is promis-
ingly high bearing inmind that we trained our systemwith the
ModelNet dataset and then tested it with a completely differ-
ent one, which means that the trained model is not overfitted
to the ModelNet dataset. Figure 11 shows the results of the
classification process.

In this case, the overall accuracy is slightly lower than that
achieved by testing over the ModelNet-10 test split shown in
Section IV-C. Although 3DSliceLeNet performedwell for the
table, dresser, sofa or chair classes, it often failed to correctly
classify the desk and bed samples. Once more, we found
3DSliceLeNet classifies the desk samples as tables, as in the
former experiments. In addition, the desk samples of this

VOLUME 10, 2022 15385



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

FIGURE 9. Confusion matrix of the classification results achieved by 3DSliceLeNet and the ModelNet-40 dataset after 144500 training iterations (solver
type is ADAM, learning rate is 0.00001, β1 is 0.9 and β2 is 0.999).The values shown in the table are percentages.

FIGURE 10. Success rate per class for the test split of the ModelNet-40 dataset achieved by 3DSliceLeNet.

dataset are somewhat odd to the system, as they do not only
include the desk, but the models also include bookcases or
other furniture attached to them, as shown in Figure 12.
The bed class only contains 3 samples. Although it fails to

classify all of them, we cannot draw conclusions from this
result, due to the reduced size of the set.

It is worth noting that we could have improved classifica-
tion accuracy by training over this dataset, but this is not the
purpose of this experiment. Our target is to state and deter-
mine the reliability, stability and generalization capabilities of
3DSliceLeNet, training with a certain dataset and then testing
the generated model with a wholly different one.

15386 VOLUME 10, 2022



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

TABLE 3. Refined IKEA samples per class distribution.

FIGURE 11. Success rate per class for the refined IKEA dataset achieved
by 3DSliceLeNet using the best model generated by the training process
over the ModelNet-10 dataset. Note that the IKEA dataset does not
contain samples for classes 3, 5, 7 or 9.

FIGURE 12. Some samples of desks in the IKEA dataset do not contain
only the desk itself but bookcases and other furniture pieces attached to
them.

G. RESULTS FOR THE ShapeNet v2 CORE DATASET
ShapeNetCore is a subset of the full ShapeNet dataset, which
is an ongoing effort to establish a richly-annotated, large-
scale dataset of 3D shapes, with single clean 3D models and
manually verified category and alignment annotations. It cov-
ers 55 common object categories with about 51,300 unique
3D models. Table 4 shows the number of samples per
category.

The samples of this dataset come in a mesh format, and
so they had to be converted to point clouds following the
method described in Section IV-A in order to be used with
3DSliceLeNet.

Next, 3SliceLeNet was trained on this dataset. This exper-
iment was again conducted on the machine described in
Section IV-B. The test split ratio was 20% of the dataset. Once
the training process was done, the test yielded an accuracy of
88.45%. The overall accuracy, although high, is not as high
as that achieved in the ModelNet-10 test. Both datasets are

TABLE 4. ShapeNet v2 Core samples per class distribution.

manually aligned but, in this case, the number of samples per
class is highly unbalanced. In fact, some classes contain fewer
than 100 samples, whilst others contain more than 8000.
This causes the learning process to skew to the categories
with more samples, as it is more likely to make a correct
prediction if it predicts the class with more samples. This
effect harms the overall accuracy. As seen in Figure 13, the
classes with lower accuracy are those with a lower number
of samples (Table 4). Figure 14 shows the confusion matrix
for this experiment. The diagonal confirms that the algorithm
performs as expected, with minor failing cases. For instance,
almost every cellphone sample is classified as telephone. This
is understandable as the telephone class includes samples of
cellphone or isolated telephone handsets that are very similar
to cellphone. Furthermore, some examples of microphone
are classified as lamp, which is also understandable as both
classes share common visual features, namely a tall post with
a larger artifact on top. Finally, the accuracy of the tower class
is low, as the system tends to classify its samples as lamp.
Once again, tower and lamp share common visual features,
namely a thin tall structure.

H. TESTING OTHER BRANCH ARCHITECTURES
All the experiments thus far presented were executed on a
topology that features three GoogLeNet branches, but other
architectures were also considered. This subsection compiles
and details these experiments. They evidence that the cho-
sen GoogLeNet architecture outperforms several others and

VOLUME 10, 2022 15387



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

justifies the inclusion of GoogLeNet in the 3DSliceLeNet
topology.

All the experiments were conducted with the parame-
ters detailed in Section IV-B and trained and tested on the
ModelNet-10 dataset.

First, ResNet50 [24] was tested. This architecture intro-
duces the ‘‘residual’’ term, which consists of the aggregation
of the input image to the output image of a convolution block.
As a result, the output of a convolution block can be seen as
the input image where the features activated by the filters are
highlighted. In contrast, the output of a convolution layer in a
default convolutional neural network is only the result of the
neuron activation. If a neuron is not triggered on a certain
region of the input image, the output remains with lower
activation values. When the network computes the weight
updates in the backpropagation stage, the values on non-
activated regions lead to very low updates, eventually even
provoking no update at all, which causes the learning to stop.
This issue is known as the vanishing gradient problem. The
inclusion of the ‘‘residual’’ term helps tackle the vanishing
gradient problem and allows the creation of even deeper
architectures.

A 3DSliceLeNet with ResNet50 branches was trained and
tested on the ModelNet-10 dataset. This topology achieved
an accuracy of 92.2822% and a runtime of 0.1053 seconds
on inference mode. The confusion matrix of this experiment
is shown in Table 5.

In addition, the Xception [44] architecture was tested. This
architecture introduces the depthwise separable convolution,
which consists in applying convolutions across channels and
then a 1×1 convolution. This feature makes the network learn
spatial dependencies and relations across channels.

A 3DSliceLeNet with Xception branches was trained and
tested on the ModelNet-10 dataset. This topology achieved
an accuracy of 91.9514% and a runtime of 0.0942 seconds.
The confusion matrix of this experiment is shown in Table 6.

Lastly, the VGG16 [45] architecture was also considered
for inclusion in the 3DSliceLeNet topology. This architecture
features a stack of convolutional layers (with a different
depth in different architectures) and is followed by three fully
connected layers: the first two have 4096 neurons each, the
third performs classification and thus contains 1000 channels
(one for each class). The final layer is the soft-max layer.
The configuration of the fully connected layers is the same
in all networks. To integrate VGG16 in 3DSliceLeNet, the
fully connected layers were removed so the outputs of the
last convolution blocks of the three branches are fed to the
3DSliceLeNet classification block.

A 3DSliceLeNet with VGG16 branches was trained and
tested on the ModelNet-10 dataset. This topology achieved
an accuracy of 90.6284% and a runtime of 0.2248 seconds.
The confusion matrix of this experiment is shown in Table 7.

Although the accuracy gain is marginal, the 3DSliceLeNet
with VGG16 branches is totally discarded because of its
elevated number of parameters (over 400.000). This causes
the network to run much slower and takes more memory to

work than the other tested architectures. What is more, the
main novelty of Xception lies in the intra-channel convo-
lutions. Since the point cloud projections are binary maps,
it cannot take advantage of this feature, so this architecture
was discarded regardless of its accuracy. Finally, 3DSlice-
LeNet with ResNet50 branches performed similarly to the
GoogLeNet branch incarnation, yet its accuracy is slightly
lower. As described, all the considered architectures achieved
similar accuracies but GoogLeNet was the best performer on
both inference time and accuracy, and was thus chosen to be
part of the 3DSliceLeNet final topology.

I. IMPACT OF THE NUMBER OF SLICES ON THE
ACCURACY AND RUNTIME
As stated, using only three slices to feed our architec-
ture involves discarding much potentially useful informa-
tion. However, our chosen topology for 3DSliceLeNet with
GoogLeNet branches cannot be tested any further due to the
memory limitations of our current hardware set up. In order
to establish the gain when increasing the number of slices,
the branches of the 3DSliceLeNet topology were replaced by
the simpler LeNet5 [46], a much shallower and naive archi-
tecture, but which is also less memory greedy. In this way,
up to six slices fit in our system with no memory problems.
These experiments were intended to show the improvement
in accuracy by using more than three slices.

The experiments were again conducted with the parame-
ters detailed in Section IV-B and trained and tested on the
ModelNet-10 dataset.

First, a 3DSliceLeNet with three LeNet5 branches was
tested. This topology achieved a test accuracy of 82.24% and
a runtime of 0.0122 seconds at inference time.

A 3DSliceLeNet with six LeNet5 branches was then tested.
This topology achieved an accuracy of 82.02% and a runtime
of 0.0178 seconds at inference time.

As expected, the overall accuracy dropped compared to the
3DSliceLeNet chosen topology as the LeNet5 architecture
is shallower than the GoogLeNet one. The aim of these
experiments, however, was not to improve the accuracy but
to ascertain how much gain is yielded by using more slices to
classify 3D objects.

These experiments also do not allow us to conclude
whether the inclusion ofmore slices could lead to an improve-
ment. In fact, the accuracy of 3DSliceLeNet with three or
six slices is approximately the same while the inference time
is increased by a 45%. Nonetheless, this conclusion is not
definitive. It is worth recalling that the LeNet5 architecture
expressiveness is limited compared to deeper architectures,
such as GoogLeNet. Nevertheless, there would likely be room
to improve the classification accuracy when feeding more
slices if the architectures in the branches were more powerful.

J. DISCUSSION
Using our current architecture, we reached a top-5 place in the
leaderboard of the challenge, with an accuracy of 94.37% in

15388 VOLUME 10, 2022



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

FIGURE 13. Success rate per class for the test split of the ShapeNet v2 Core dataset achieved by 3DSliceLeNet.

FIGURE 14. Confusion matrix of the classification results achieved by 3DSliceLeNet and the Shapenet v2 Core dataset after 144500 training iterations
(solver type is ADAM, learning rate is 0.00001, β1 is 0.9 and β2 is 0.999). Darker shades of blue represent higher values.

the ModelNet-10 classification task and reached an accuracy
of 79.85% in the ModelNet-40 classification task.

Nevertheless, we also tested another approach for this
problem. This approach consisted in concatenating several
slices for each 3D axis into a single image, thus gener-
ating 3 × N slices for each sample. Each slice is under-
stood as a tile, and so this approach relies on images of
a high resolution. If more slices are considered, images of
a grater resolution are generated. This approach is much

more memory consuming than the other approach tested with
3 convolutional branches.We converted the meshes to this 2D
representation and fed it into a state-of-the-art GoogLeNet.
We noticed that better classification results were obtained
as we increased the N value, i.e., the number of slices per
3D axis. This approach was tested with 3 × 3, 3 × 5 and
3 × 7 slices observing an improvement on each test over
the one before. We could not test any further due to memory
limitations.

VOLUME 10, 2022 15389



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

TABLE 5. Confusion matrix of the classification results achieved by 3DSliceLeNet with ResNet50 branches using the ModelNet-10 dataset (solver type is
ADAM, learning rate is 0.00001, β1 is 0.9 and beta2 is 0.999). The values shown in the table are percentages.

TABLE 6. Confusion matrix of the classification results achieved by 3DSliceLeNet with Xception branches using the ModelNet-10 dataset (solver type is
ADAM, learning rate is 0.00001, β1 is 0.9 and beta2 is 0.999). The values shown in the table are percentages.

TABLE 7. Confusion matrix of the classification results achieved by 3DSliceLeNet with VGG16 branches using the ModelNet-10 dataset (solver type is
ADAM, learning rate is 0.00001, β1 is 0.9 and beta2 is 0.999). The values shown in the table are percentages.

These findings lead us to think that if we were able to
feed 3DSliceLeNet with more slices, we could expect an
improvement in the accuracy rate. However, we cannot test
this case due to the memory limitations of our hardware
(GPU memory consumption above 12 GBytes).

V. CONCLUSION
This paper presents a novel architecture for 3D object recog-
nition, 3DSliceLeNet. Our system takes three slices of the
input point cloud (one per 3D axis), projects the points to a
plane, generating three images, and uses these images as an

15390 VOLUME 10, 2022



F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

input for the proposed deep network. The architecture con-
sists of three independent GoogLeNet branches, the activa-
tions of which are concatenated and fed into a fully connected
layer. Each of these branches learns particular features of a
slice. This method allows us to take advantage of the fast 2D
computation whilst preserving the 3D information. 3DSlice-
LeNet achieved a success rate of 94.37% in the ModelNet-10
classification task and reached an accuracy of 79.85% in the
ModelNet-40 classification task, while providing extremely
fast computation times: once the model is trained, classifying
a 3D object only takes 0.0896 seconds.

VI. FUTURE WORK
Following on from this work, we plan to address the gen-
eralization problem caused by inconsistent poses across the
models. This problem was revealed during the ModelNet-40
experiments. This issue can be addressed by applying data
augmentation methods, amd so further research in this line
should be conducted.

In addition, we plan to extend this system to a 3D object
recognizer for point clouds captured in the real world with
low cost depth sensors, such as the Microsoft Kinect device.
This involves new challenges, as these sensors do not obtain
a whole point cloud representation of the scene, but only a
partial view of. The real world also presents certain pecu-
liarities that affect the classification process, such as dealing
with complete scenes, filled with different objects, and with
occlusion problems.

In addition, we plan to test a new version of 3DSliceLeNet
that uses several slices per 3D axis. Hence, we are currently
exploring methods to circumvent GPU memory limitations.

REFERENCES
[1] J. J. Lim, H. Pirsiavash, and A. Torralba, ‘‘Parsing IKEA objects: Fine

pose estimation,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 2992–2999.

[2] S. Song, S. P. Lichtenberg, and J. Xiao, ‘‘SUN RGB-D: A RGB-D scene
understanding benchmark suite,’’ inProc. IEEEConf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 567–576.

[3] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mottaghi,
L. Guibas, and S. Savarese, ‘‘ObjectNet3D: A large scale database for
3D object recognition,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2016,
pp. 160–176.

[4] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q.-X. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, ‘‘ShapeNet: An information-rich 3D model repository,’’ CoRR,
vol. abs/1512.03012, Dec. 2015.

[5] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
‘‘3D ShapeNets: A deep representation for volumetric shapes,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1912–1920.

[6] D. Maturana and S. Scherer, ‘‘VoxNet: A 3D convolutional neural network
for real-time object recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2015, pp. 922–928.

[7] B. Shi, S. Bai, Z. Zhou, and X. Bai, ‘‘DeepPano: Deep panoramic repre-
sentation for 3-D shape recognition,’’ IEEE Signal Process. Lett., vol. 22,
no. 12, pp. 2339–2343, Dec. 2015.

[8] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, ‘‘Multi-view con-
volutional neural networks for 3D shape recognition,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 945–953.

[9] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, ‘‘Volumetric
and multi-view CNNs for object classification on 3D data,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Apr. 2016, pp. 5648–5656.

[10] A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez,
S. Orts-Escolano, M. Cazorla, and J. Azorin-Lopez, ‘‘PointNet:
A 3D convolutional neural network for real-time object class
recognition,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016,
pp. 1578–1584.

[11] F. Gomez-Donoso, ‘‘Contributions to 3D object recognition and 3D hand
pose estimation using deep learning techniques,’’ Ph.D. dissertation, Dept.
Comput. Sci. Artif. Intell., Univ. Alicante, Alicante, Spain, 2020.

[12] F. Gomez-Donoso, A. Garcia-Garcia, J. Garcia-Rodriguez,
S. Orts-Escolano, and M. Cazorla, ‘‘LonchaNet: A sliced-based CNN
architecture for real-time 3D object recognition,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 412–418.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[14] W. Wang, Y. You, W. Liu, and C. Lu, ‘‘Point cloud classification with
deep normalized Reeb graph convolution,’’ Image Vis. Comput., vol. 106,
Feb. 2021, Art. no. 104092.

[15] W. Li, F.-D. Wang, and G.-S. Xia, ‘‘A geometry-attentional network for
ALS point cloud classification,’’ ISPRS J. Photogramm. Remote Sens.,
vol. 164, pp. 26–40, Jun. 2020.

[16] C. Wen, L. Yang, X. Li, L. Peng, and T. Chi, ‘‘Directionally constrained
fully convolutional neural network for airborne LiDAR point cloud clas-
sification,’’ ISPRS J. Photogramm. Remote Sens., vol. 162, pp. 50–62,
Apr. 2020.

[17] X. Xu and S. Todorovic, ‘‘Beam search for learning a deep convolutional
neural network of 3D shapes,’’ 2016, arXiv:1612.04774.

[18] T. Le and Y. Duan, ‘‘PointGrid: A deep network for 3D shape understand-
ing,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 9204–9214.

[19] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, ‘‘Learning
a probabilistic latent space of object shapes via 3D generative-adversarial
modeling,’’ 2016, arXiv:1610.07584.

[20] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, ‘‘O-CNN: Octree-
based convolutional neural networks for 3D shape analysis,’’ ACM Trans.
Graph., vol. 36, no. 4, pp. 1–11, 2017.

[21] M. Tatarchenko, A. Dosovitskiy, and T. Brox, ‘‘Octree generating net-
works: Efficient convolutional architectures for high-resolution 3D out-
puts,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2088–2096.

[22] N. Sedaghat, M. Zolfaghari, E. Amiri, and T. Brox, ‘‘Orientation-boosted
voxel nets for 3D object recognition,’’ 2016, arXiv:1604.03351.

[23] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, ‘‘Generative and dis-
criminative voxel modeling with convolutional neural networks,’’ 2016,
arXiv:1608.04236.

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ 2015, arXiv:1512.03385.

[25] F. Gomez-Donoso, F. Escalona, and M. Cazorla, ‘‘Par3DNet: Using
3DCNNs for object recognition on tridimensional partial views,’’ Appl.
Sci., vol. 10, no. 10, p. 3409, May 2020.

[26] A. Sinha, J. Bai, and K. Ramani, Deep Learning 3D Shape Surfaces Using
Geometry Images. Cham, Switzerland: Springer, 2016, pp. 223–240, doi:
10.1007/978-3-319-46466-4_14.

[27] E. Johns, S. Leutenegger, and A. J. Davison, ‘‘Pairwise decompo-
sition of image sequences for active multi-view recognition,’’ 2016,
arXiv:1605.08359.

[28] J.-C. Su, M. Gadelha, R. Wang, and S. Maji, ‘‘A deeper look at 3D shape
classifiers,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops, 2018,
pp. 1–16.

[29] J. Jiang, D. Bao, Z. Chen, X. Zhao, and Y. Gao, ‘‘MLVCNN: Multi-loop-
view convolutional neural network for 3D shape retrieval,’’ in Proc. AAAI
Conf. Artif. Intell., 2019, vol. 33, no. 1, pp. 8513–8520.

[30] A. Kanezaki, Y. Matsushita, and Y. Nishida, ‘‘RotationNet: Joint object
categorization and pose estimation using multiviews from unsupervised
viewpoints,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 5010–5019.

[31] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘PointNet++: Deep hierarchical
feature learning on point sets in a metric space,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5099–5108.

[32] C. R. Qi, O. Litany, K. He, and L. Guibas, ‘‘Deep Hough voting for 3D
object detection in point clouds,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9277–9286.

VOLUME 10, 2022 15391

http://dx.doi.org/10.1007/978-3-319-46466-4_14


F. Gomez-Donoso et al.: 3DSliceLeNet: Recognizing 3D Objects Using Slice-Representation

[33] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang, and
J. Kautz, ‘‘SPLATNet: Sparse lattice networks for point cloud processing,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2530–2539.

[34] J. Li, B. M. Chen, and G. H. Lee, ‘‘SO-Net: Self-organizing network
for point cloud analysis,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 9397–9406.

[35] V. Hegde and R. Zadeh, ‘‘FusionNet: 3D object classification using multi-
ple data representations,’’ CoRR, vol. abs/1607.05695, Nov. 2016.

[36] Z. Liu, H. Tang, Y. Lin, and S. Han, ‘‘Point-voxel CNN for efficient 3D
deep learning,’’ inProc. Adv. Neural Inf. Process. Syst., 2019, pp. 963–973.

[37] F. Escalona, D. Viejo, R. B. Fisher, and M. Cazorla, ‘‘NurbsNet: A nurbs
approach for 3D object recognition,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2020, pp. 1–7.

[38] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, ‘‘Hypergraph neural
networks,’’ in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, no. 1,
pp. 3558–3565.

[39] J. F. Domenech, F. Escalona, F. Gomez-Donoso, and M. Cazorla, ‘‘A vox-
elized fractal descriptor for 3D object recognition,’’ IEEE Access, vol. 8,
pp. 161958–161968, 2020.

[40] A. A. A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. J. van Riel,
M. M. W. Wille, M. Naqibullah, C. I. Sánchez, and B. van Ginneken,
‘‘Pulmonary nodule detection in CT images: False positive reduction using
multi-view convolutional networks,’’ IEEE Trans. Med. Imag., vol. 35,
no. 5, pp. 1160–1169, May 2016.

[41] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ CoRR,
vol. abs/1312.4400, Dec. 2013.

[42] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009, doi:
10.1109/TKDE.2008.239.

[43] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
CoRR, vol. abs/1412.6980, Dec. 2014.

[44] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convolu-
tions,’’ CoRR, vol. abs/1610.02357, Oct. 2016.

[45] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ CoRR, vol. abs/1409.1556, Sep. 2014.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

FRANCISCO GOMEZ-DONOSO received the
B.S. degree in computer science and the mas-
ter’s degree in robotics and automatic from the
University of Alicante, Spain, in 2014 and 2015,
respectively, where he is currently pursuing the
Ph.D. degree in computer science. Regarding
his experience as a Scientist, he has published
more than 35 papers in high-impact journals
and conferences. His main research interests
include human–computer interaction, deep learn-

ing, machine learning, and tridimensional data processing.

FELIX ESCALONA was born in Alicante, Spain,
in 1994. He received the B.S. degree in com-
puter science and the M.S. degree in robotics from
the University of Alicante, Spain, in 2016 and
2017, respectively, where he is currently pursuing
the Ph.D. degree in computer science, with an
FPU Scholarship. His research interests include
3D object recognition, segmentation and scene
understanding, as well as domestic and social
robotics. He received the Extraordinary End-of-

Degree Prize from the University of Alicante.

SERGIO ORTS-ESCOLANO received the B.Sc.,
M.Sc., and Ph.D. degrees in computer science
from the University of Alicante, Spain, in 2008,
2010, and 2014, respectively. He is currently an
Assistant Professor with the Department of Com-
puter Science and Artificial Intelligence, Univer-
sity of Alicante. Previously, he was a Researcher
at Microsoft Research, where he was one of the
leading members of the Holoportation Project
(virtual 3D teleportation in real-time). He has

authored more than 50 publications in journals and top conferences, such
as CVPR, SIGGRAPH, 3DV, BMVC, Neurocomputing, Neural Networks,
and Applied Soft Computing. His research interests include computer vision,
3D sensing, real-time computing, GPU computing, and deep learning. He is
also member of European Networks, such as HiPEAC and Eucog.

ALBERTO GARCIA-GARCIA received the Ph.D.
degree in machine learning and computer vision
from the University of Alicante, in 2019. He was
a Postdoctoral Researcher at the Institute of Space
Sciences (ICE-CSIC, Barcelona) working on the
MAGNESIA ERC Consolidator Project. He was
an Intern at NVIDIA Research/Engineering, Face-
book Reality Labs, and Oculus Core Tech. He is
currently a Researcher at Facebook Reality Labs,
Zürich. His main research interests include deep

learning, virtual reality, 3D computer vision, and parallel computing on
GPUs.

JOSE GARCIA-RODRIGUEZ (Senior Member,
IEEE) received the Ph.D. degree with specializa-
tion in computer vision and neural networks from
the University of Alicante, Spain. He is currently
a Full Professor with the Department of Computer
Technology, University of Alicante. His research
interests include computer vision, machine learn-
ing, pattern recognition, robotics, man-machine
interfaces, ambient intelligence, and parallel and
multi-core architectures.

MIGUEL CAZORLA (Senior Member, IEEE)
received the Ph.D. degree in computer engineering
from the University of Alicante, in 2000.

In 1995, he started as an Assistant Professor at
the University of Alicante. He was a Computer
Engineer with the University of Alicante, in 1995.
Since 2017, he has been a Full Professor with the
University of Alicante. He has completed several
stays at foreign institutions (Carnegie Mellon Uni-
versity, University of Sydney, and The University

of Edinburgh). He has published more than 50 articles indexed in JCR
(with more than 20 in Q1) and more than 100 publications in national
and international conferences. He has supervised 11 Ph.D. theses and is
a principal investigator in several national projects (CICYT, Challenges),
as well as having completed multiple transfer contracts with the industry. His
research line has always focused on computer vision. From the beginning,
he applied these skills to try to solve robotic tasks. Almost since his inception
in research, he worked in the processing of 3D data. In recent years, he has
diversified his lines to apply deep learning techniques to different areas
(medical image, object recognition, depth estimation, and identification of
traffic objects). All his research in recent years has focused on social robotics,
that is, applying these techniques to help dependent persons.

Dr. Cazorla is a member of different program committees of national and
international conferences.

15392 VOLUME 10, 2022

http://dx.doi.org/10.1109/TKDE.2008.239

