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ABSTRACT One of the main concerns of agricultural financing institutions is to make sure the loans they
grant are used for the stated objective when the loan was requested. Specifically, when Banco Agrario de
Colombia grants loans for crop farmers, it schedules verification visits to the cultivation sites to check if the
crop stipulated in the loan agreement exists and assess its health. These visits are challenging to make due
to the number of visits over vast areas that they need to schedule, lack of trained personnel, and difficulty of
access. This article proposes a software tool, based on a machine learning model for processing free satellite
imagery, to support the bank’s identification of non-compliant crops with the investment plan before making
field visits, minimizing the loss of investment by focusing on those areas to prioritize the visits. Sugarcane
along the department of Boyacá, Colombia was chosen as the case of study. Free access satellite imagery
through the Colombian Data Cube (CDCol) was used and machine learning models were applied on them to
classify the land and predict the presence of the crop, a Random Forest model achieved an overall F1-score
of 91% using Landsat-8 imagery and a K-nearest Neighbors model achieved an overall F1-score of 98%
using Sentinel-2 imagery.

INDEX TERMS Investmentmonitoring, Landsat-8, machine learning, remote sensing, Sentinel-2, sugarcane
crops.

I. INTRODUCTION
Banco Agrario de Colombia (BAC) is the Colombian gov-
ernment entity in charge of implementing financial support
initiatives for the country’s farmers. One of BAC’s main
objectives is to support Colombian farmers through loans that
allow them to grow and harvest agricultural products.

Agricultural and rural credits are regulated by Colombian
state legislation and, therefore, their ‘‘processing and granting
must comply with the provisions contained in Colombian
Laws 16 of 1990 and 1731 of 2014, as well as the other regu-
lations that add or modify them. They must also comply with
the Resolutions issued by the National Agricultural Credit
Commission, the Circulars of the Financial Superintendence
of Colombia, Superfinanciera, or the Superintendency of
the Sector of Cooperatives, Supersolidaria. In addition, the
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agricultural sector development financing agency, Finagro,
has a Service Manual that states: ‘‘The credits are granted
by financial intermediaries, entities that have a direct rela-
tionship with the beneficiary, which must monitor the correct
use of monetary resources, and certify to Finagro compliance
with the regulations that govern them’’ [1].

In January 2018, Finagro modified the Title Five of its
Service Manual, adjusting its ‘‘Commitments, monitoring,
control and verification procedure’’ of those operations reg-
istered with Finagro, ‘‘which directly affects the verification
process of the investment controls and the commitments that
the beneficiaries of the credits with re-discount resources and
those who receive subsidies from the National Government
must assume’’ [2]. The new modification established that
‘‘the client must make the expenses and investments con-
templated in the financed project within the foreseen time
and report any changes, such as: financed item, investment
impact, either due to climatic or phytosanitary problems,
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among others, that may partially or totally affect the invest-
ments, in order for the BAC to evaluate the viability of
authorizing the proposed modification and present it again to
Finagro’’ [1].

Currently, BAC carries out the process called Controls
of Agricultural Investment just after the end of the credit-
granting process. The aim of this process is the follow-up and
control of the investments made by the bank’s customers in
order to detect, in time, any inconvenience in the productive
development of the investments, for timely decision making.

The monitoring process involves the following activities:
(1) Generating the list of visits according to the coverage area
established by the bank, (2) visits assignment to the staff of
the bank according to the capacity and coverage established
for each of them, (3) the assignments are checked to ensure
that they correspond to the coverage area, and the feasibility
of the visit, (4) contact the clients in order to verify the
status of the investments and scheduling the follow-up visit,
(5) carrying out the visits that involve staff travel to planned
sites, (6) collecting information about the status of the crop,
georeference points of the farm where the crop is located, and
photographic evidence of the vegetative state of the premises;
and, after the visit, (7) validating the investment status and
(8) making decisions about the investment progress [3].

The great demand for productive agricultural projects
financed by the bank represents a major problem that cur-
rently makes it impossible to effectively monitor projects
advancements which financing comes from the BAC. Cur-
rently, the BAC has one hundred and one (101) specialized
advisers in charge of monitoring around 880,000 productive
projects approved per year. They barely mange to cover
36,000 visits, which falls short of the visits required by
law - a minimum sample of 10% of the approved projects -
that must be reported to Finagro.

This imbalance makes it difficult to cover 100% of the
investment monitoring. According to projections made by
the Investment Controls and Appraisals Office of BAC,
the mentioned imbalance could be corrected increasing the
human resource capacity; this hiring would have represented
an annual payroll expense for the BAC of more than $1M
USD [1].

Concerning the visits, into a report provided by the Agri-
cultural Technical Monitoring Sub-management, the five
(5) main causes of non-compliance were: (1) The farmer did
not carry out the investment, (2) client not found, (3) diversion
of resources, (4) public order, and (5) climatic factors.

Another issue in the Colombian countryside is the poor
condition of the tertiary road network, which connects munic-
ipal capitals and small towns or towns with each other; this
network represents 69% of the national road network. This
problem, joined with the public order situation in Colombia,
hinders the work of the Bank’s commercial advisers in plac-
ing loans on site and inmonitoring the agricultural investment
requested by control entities for agricultural loans, which
operate under Finagro conditions.

Last but not least, according to the National Agricultural
Census conducted in 2014 [4], 70% of the food produced
in the country comes from small producers who carry out
agricultural production work on their farms, most of which
are less than 5 hectares in size. Therefore, the crops areas are
not extensive.

To deal with these issues, an application to support the agri-
cultural investment control process is suggested. Specifically,
we propose the use of free satellite (Landsat-8 and Sentinel-
2) images through the Open Data Cube (ODC) infrastructure,
to handle the images storage and processing, and, based
on this, develop a Machine Learning model to predict the
presence of specific crops in areas of interest of the bank.

In consequence, a tool is provided to determine whether
loans given to farmers to plant a specific crop are actually
being used to fulfill the loan’s purpose, by verifying the
geospatial location of the property and identifying the crop.
The aim is to support the identification process of crops with
non-compliance in the investment plan, validate areas with
fraud problems before making field visits, minimizing the
loss of investment by focusing on the areas to be visited, and
prioritizing those visits that must be reported to Finagro.

Taking into account the diversity of crops financed by the
bank and Colombia’s territorial extension, the focus of this
case study is the identification of sugarcane crops in the
Department of Boyacá (around 23,000 km2).

According to reports presented by Agronet, sugarcane
is one of the crops with the greatest economic and social
importance for Colombia, due to the high number of peo-
ple who work in the sugarcane life cycle and its high per
capita consumption. In the same way, in a report on sectoral
indicators for the period between 2008 and 2013, published
by the Ministry of Agriculture and Rural Development in
2013, the sugarcane cultivation is the second in the country
in generation of direct and indirect jobs, after coffee, with a
contribution of 11.5% [5].

Likewise, 2018’s report from the Ministry of agricul-
ture [6] remarks the importance of sugarcane to the country’s
economy; furthermore, it showed that more than 350,000
families develop this crop. Also, it generates about 287,000
direct jobs, equivalent to 45 million wages per year and
employs 12% of the economically active rural population.
The departments with the greatest productive influence in
this subsector are: Boyacá, Cundinamarca, Cauca, Antioquia,
Santander, Nariño, Valle del Cauca, Tolima, Caldas, Norte de
Santander, Risaralda and Huila, where 83% of the cultivated
area is concentrated.

Figures provided by Fedepanela - Fondo de Fomento, for
the year 2017 the country reached a total of 228,976 hectares
planted, a harvested area of 205,156 hectares, an average
yield of 5.66 tons of panela (which is one of the final products
made from the sugarcane juice that, by successive boiling,
loses moisture and solidifies into blocks) per hectare and
a total production of 1,284,141 tons of panela, in 29 out
of 32 departments of the country covering 564municipalities.
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The planted areas were centered in the departments of
Cundinamarca, Antioquia, Santander, Boyacá, Cauca,
Nariño, Tolima, which represent 77.35% of the total sug-
arcane production; it should be noted that only 4 depart-
ments, Cundinamarca, Antioquia, Santander and Boyacá
have 53.37% of the area planted nationwide [5]. Likewise,
in [7], it was evidenced that in terms of figures related to
production, the Department of Boyacá occupied the third
place out of 29 in the country’s total production with 13.7%.

This representative place is still kept within BAC because
according to data provided by the Investment Controls and
Appraisals department of BAC, 21% out of the 1,217 mon-
itoring and control visits to the investment in 2019 were
carried out in the Department of Boyacá (251 visits). Sim-
ilarly, BAC reports that, for sugarcane, 24,282 credits were
granted through Finagro between 2018 and 2019, for a value
of 286,130 million COP and of this figure, 22,189 credits
were rediscounted, for a value of 101,920million COP;which
confirms its importance. Furthermore, sugarcane is the fourth
(4th) agricultural activity with the highest number of credits
approved by the bank after coffee, fruit trees and plantain.

This paper is organized as follows: section II describes the
state of the art in crop monitoring. In section III, we explain
the methodology used for the development of the identifi-
cation models of sugarcane in the Department of Boyacá,
emphasizing the use of data cubes for the construction of
training data and highlighting the fact that, although the
information sources are different (Landsat-8 and Sentinel-2),
the methodology for developing the models is the same. The
general discussion and insights of the process are presented
in section IV and, finally, section V presents the conclusions
and future work.

II. LITERATURE REVIEW
Studies on crop classification date back to 1987, when
Landsat Multispectral Scanner System (MSS) and Thematic
Mapper (TM) images were used to apply maximum likeli-
hood (probabilistic) algorithms, visual interpretation, unsu-
pervised classification, and threshold-based segmentation.
Results from studies made between 1987 and 1997 achieved
precision values between 70% and 93%, where the best pre-
cision was achieved using the active satellite ERS-1 with the
maximum likelihood algorithm for rice grading [8]. Regard-
ing the use of multispectral imaging, in 2015, a Chilean
research group analyzed the use of Landsat-8 images for the
phenological classification of fruit tree crops [9]. In this study,
they compared the performance of three classifiers applied
to the images (linear discriminant analysis (LDA), Random
forests (RF), and Support Vectorial Machine (SVM)) using
different operations on images such as NDVI, normalized
difference water index (NDWI), and time series using all
image bands. As a result, they found that using time series
with all image bands provides a more accurate classification
than using NDVI and NDWI, specifically applying LDA and
time series over reflections in each band. The same year,
Kharat and Musande used the k-means algorithm to map

cotton crops using Landsat-8 images achieving an accuracy
of 98.01% for a k-value (number of groups in the algorithm)
of 10 [10].

Concerning delimiting sugarcane crops, Wang et.al
(2020) [11] proposes the joint use of optical multispectral
images, obtained by Landsat-8 and Sentinel-2 satellites, and
SAR images, obtained by the Sentinel-1 satellites, to generate
annual maps of sugarcane at the field scale over large regions.
Through the use of geo-referenced polygons, the authors
obtain the base pixels to calculate spectral indices (NDVI,
EVI, LSWI, and mNDWI); subsequently, they proposed the
use of a pixel-phenological algorithm, supported by time
series and classification trees, to determine the presence of
sugarcane in a given region. After performing the system test,
they obtained an overall identification accuracy of 96%. The
main challenges reported in the study were: (i) the small size
of sugarcane crops in this province (< 1 ha); (ii) the presence
of other surrounding crops, such as rice or corn; (iii) the
topography of the region; and (iv) the frequent cloud cover.

Shendryk, Davy & Thorburn (2020) conducted a study to
predict field-level sugarcane yield in the northeast Queens-
land region of Australia. In this study, they used Sentinel-1
and Sentinel-2 satellite imagery in combination with climate,
soil and elevation data. Authors implemented four different
types of predictive machine learningmodels (Random Forest,
Gradient Boosting, Extreme Trees and Extreme Gradient
Boosting) in order to forecast the cane yield (t/ha), commer-
cial cane sugar (CCS, %), sugar yield (t/ha), crop varieties
and ratoon numbers. The model with the best performance
was Gradient Boosting, using this model they found that
sugarcane varieties could be mapped with an accuracy of up
to 73.4%,while the differentiation of planted and ratoon crops
exhibited the lowest accuracy of 45.4%. The main challenges
reported in the study were: (i) the climate variability in the
region; (ii) soil types; and (iii) harvesting processes in the
area.

Concerning the delimitation of the sugarcane crops in
Colombia, the Cane Research Institute, Cenicaña, published
in 2009 ‘‘Principles and Applications of Remote Sensing in
Sugarcane Crops in Colombia’’ [12]. This book constitutes
a guide for sugarcane remote sensing using different statis-
tical methods. First, it discusses the importance of spectral
vegetation indices as it generates an efficient estimation of
soil vegetation cover. In second place, statistical methods are
proposed aiming to detect sugarcane. These methods are:
Principal components analysis, linear analysis of spectral
mixtures, Tasseled cap transformation (index), and texture
treatment in the image. Physical methods, genetic algorithms,
and hybrid methods are also mentioned (hybrid methods
include decision trees, support vector machines, and neural
networks). The research that led to the publication of themen-
tioned book referred to studies that usedModerate Resolution
Imaging Spectroradiometer (MODIS), Landsat-5/7, National
Oceanic and Atmospheric Administration (NOAA) and
’Satellite pour l’Observation de la Terre’ (SPOT-4/5) sensor
images.
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Bastidas, E. et al. [13] evaluated the applicability of
MODIS data to predict the amount of harvest in Colombia;
this publication concluded that linear models in combination
with vegetation indices such as EVI had an accuracy of
74% to estimate final production at an early stage (from the
fifth month of cultivation). Murillo, P. et al. [14] analyzed
a methodology for monitoring sugarcane in the Cauca River
Valley, also using satellite images from the MODIS platform;
it was found that it is possible to monitor cultivated areas
larger than 6.25 ha with moderate resolutions (250 meters
to 1000meters). This study used a combination of regressions
with the EVI vegetation index. Other research performed
in Colombia by Murillo, S. et al. [15] used images from
the Landsat 7 ETM+ satellite to detect and discriminate
sugarcane varieties in Valle del Cauca; the method used
was a combination of vegetation indices such as NDVI,
RVI, leaf area index (LAI), atmospheric resistant vegetation
index (ARVI) and the adjusted soil vegetation index (SAVI)
in addition to a supervised classification using the maximum
likelihood algorithm, which assumed that the bands had a
normal distribution. A principal component analysis (PCA)
was also performed and revealed that the best indices were
GNDVI (green difference normalized vegetation index) and
GVI (green vegetation index). An accuracy of 80.8% was
achieved for the period between 4 and 5 months on large crop
areas.

Based on the results of this and other studies, it can be con-
cluded that accurate crop mapping is possible using satellite
images [16]. However, despite progress, there are recurrent
challenges in the use of remote sensing for the purpose of
monitoring small crops with satellite remote sensing. With
the use of supervisedMachine Learningmodels, getting train-
ing data, in this case images labeled with polygons of the
crops of interest, is a constant challenge, since it is a costly
and time-consuming process [17]. Additionally, the culture
methodology, the region where it is being cultivated, and the
temperature, among other factors, entail a variability of the
characteristics among crops [18], which can cause different
reflectance values. Higher spatial and temporal resolution can
positively impact some of the challenges; however, the com-
bined use of multiple image sources also brings a challenge
to align the different bands at different resolutions.

To conclude, although the results with sugarcane are
promising, the conditions for panela sugarcane are different
and should be analyzed independently (region, crop area, and
varieties). However, with the review carried out of the most
relevant studies in Colombia around satellite remote sensing,
there are cross-cutting challenges; the following should be
highlighted:

1) Variable reflectivity due to factors such as moisture,
leaf pigments, physiological status, and morphological
characteristics of the species [19].

2) Changes in soil reflectance; this can occur due to tides
(in coastal areas), rain, and, in general, water on the
leaves, which produces a fall in the reflectance of the
red band and near infrared compared to dry soils [20].

3) Lack of standardization [WG] that can lead to duplica-
tion of efforts and increased expenditure of resources.

III. SOLUTION PROPOSAL
From the detailed analysis of the sugarcane cultivation
and a deep understanding of its climatic, morphological
and contextual factors, the methodology that allows us
to obtain sugarcane crop identification models using both
Landsat-8 and Sentinel-2 is explained in Figure 1. This
methodology is based on the Machine Learning life cycle
that includes 5 stages which are implemented as follows:
(1) Satellite Data Acquisition, (2) Ground Data acquisition,
(3) Data preparation, (4) Model training, and (5) Model eval-
uation. These steps are elaborated on the subsequent sections.

A. SATELLITE DATA ACQUISITION
Satellite images from the Landsat-8 and Sentinel-2 sen-
sors were acquired from the USGS (United States Geo-
logical Survey) and the ESA (European Space Agency)
Copernicus Open Access Hub platforms respectively. These
platforms provide analysis ready surface reflectance (SR)
products; accordingly, Landsat-8 SR images were obtained
from the Collection 1 - Level 2 repository and the Sentinel-2
SR images were obtained from the L2A repository. The
Land Surface Reflectance Code (LaSRC) applied by the
USGS platform to Landsat-8 raw images is detailed in
[21], [22], also the SR products obtained from this algorithm
are explained. On the other side, Sentinel-2 SR products are
generated by ESA through the Sentinel-2 Correction algo-
rithm (Sen2Cor) as described in [23]. Table 1 presents the
bands and vegetation indices considered for each sensor, veg-
etation indices are computed as described in the methodology
proposed in Section III.

TABLE 1. Features for the training samples in Sentinel-2 and Landsat-8
data sets.

B. GROUND DATA ACQUISITION
The activities developed in the data acquisition process
include the field visits programmed by BAC to the sugarcane
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FIGURE 1. Proposed Methodology Depicted as a Workflow.

crops. In these activities, the crops delimitations were geo-
referenced which were then turned into polygons expressed
in Keyhole Markup Language (KML). Context information
about those polygons, including age of the crop, variety,
density, and whether this was the only plant contained in the
polygon (mixing different crops is a common practice among
some farmers) was also requested.

Using the geolocated polygons, Landsat-8 and Sentinel-2
images covering the study area were collected. It is important
to note that having the goal of training a multi-class classifi-
cation algorithm, BAC provided not only sugarcane polygons
but alsomaize, forest, yucca and other coverage. The gathered
satellite imagery dates ranged from the day the visit wasmade
back to the month the crop was first planted; this was done
in order to increase the sample size and to make sure we
included all phenological stages of the crop. All these images
were stored in the data cube and studied to understand their
characteristics.

Specifically, the bank supplied 40 polygons delimiting the
areas of sugarcane crops to be analyzed. However, after the
validation process, only 28 polygons were further studied.
12 polygons were discarded since they contained multiple
crops (eg, sugarcane and maize). Figure 2 depicts the variety
types of sugarcane represented in the set of polygons. The
variety RD7511 is the most represented one with 16 polygons
of the total set. There are also 12 polygons of other varieties,
these varieties are palmireña, common, and ZC.

The age of the polygons integrated in the set are mostly
represented between four and seven months with a total
of 14 polygons in this range, as shown in Figure 3.
As wementioned before, the 28 polygons collected on land

were exported to KML files; every file was associated with
its corresponding metadata located in a csv file. The files

FIGURE 2. Sugarcane polygons seed variety type.

FIGURE 3. Sugarcane polygons crop’s age in months.

describe crop’s age, variety type, KML file location in the
file system, and KML creation date, where the KML creation
date tells us the date on which the crop’s age in months was
registered.
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C. DATA PREPARATION
In this phase the data sets needed to build the classifica-
tion models were generated from the spectral bands and
the ground truth data was used to label the pixels. Then,
exploratory analysis techniques (statistical measurements
like mean, median, standard deviation, outliers and data dis-
tributions) were used to know the characteristics of these data
sets and to verify their quality. Based on this knowledge,
we resampled unrepresented classes, eliminated outliers and
standardized the values to improve data representation for
learning algorithms.

1) SPECTRAL INFORMATION EXTRACTION ALGORITHM
The 28 KML files along with a csv file containing the meta-
data of each KML were fed into the spectral information
gathering algorithm, with the aim to create the Sentinel-2 and
Landsat-8 training data sets. The algorithm carried out the fol-
lowing steps: (1) read a KMLfile and the metadata associated
with it (2) extract the KMLfile coordinates andKML creation
date (3) generate a bounding box of the KML polygon based
on its coordinates, (4) query the ODC for an image matching
the bounding box and KML creation date, (5) extract spectral
information of every point within the polygon boundaries as
a vector of features, (6) add the metadata of the polygon to
the vector of features, and (7) place the vector data of every
collected point in a row of a csv file.

In addition to the training data sets, the algorithm also
provides images serving validation purposes. These images
depict which points were collected on every satellite image so
that we can validate the correctness of the spectral informa-
tion gathering algorithm and the data sets generated. When
images were validated, we noted that low confidence cloud
points covering sugarcane polygons were part of the collected
Landsat-8 and Sentinel-2 data sets.

2) CLOUDS REMOVAL STRATEGY
Both satellite sensors, Sentinel-2 and Landsat-8, contain
quality bands that are useful to determine, in general terms,
the type of coverage that the image has at the pixel level.

Accordingly, pixels are classified by these quality bands
into several categories including cloud, vegetation, non-
vegetation, water, among others in Sentinel-2 but only clear,
clouds, water, snow and terrain occlusion pixels in Landsat-8.
Dense clouds are correctly classified by these quality bands
so, using the cloud mask provided by the quality band, these
pixels were removed from the data sets. However, with this
approximation we still found low confidence clouds or cirrus
pixels in the training data sets that were not detected as such
by the quality bands.

In Sentinel-2, sparse clouds or cirrus were being classi-
fied as non-vegetated ground as shown in Figure 4. This
observation was used to extract a second version of the
Sentinel-2 data set, filtering out pixels that were classified
as non-vegetation. This was supported by the fact that the
sugarcane crop is classified as vegetation from the second

month. With this process, only vegetated pixels within poly-
gons labeled as sugarcane were taken as part of the training
data set which yielded to the best results.

Landsat-8 images, unlike Sentinel-2 ones, do not pro-
vide pixel quality band classes such as vegetated and non-
vegetated ground, that enable cirrus clouds discrimination.

Here, a heuristic was formulated to automate the identifica-
tion of cirrus and programmatically remove those images of
the set to be considered in the spectral information gathering
procedure. The blue band provides a leeway in identifying
thin clouds. This approach consists in the calculation of the
mean for the blue band values of pixels in an image, then
replicate this calculation in the image time series and identify
particularly bright timesteps.

Figure 5 presents a time series analysis for one of the
images considered in the spectral information gathering pro-
cedure. We noted that values for the blue mean reflectance
higher than 500 reflectance units (ru) represented imageswith
cirrus or low confidence clouds. This approach is applied
after pixels classified as clouds by the quality bands are
excluded from the data to remove any remaining timesteps
that are particularly bright. Finally, images exhibiting a dis-
continuous behaviour in time were removed. Removing thin
clouds also yielded better results for the Landsat-8 data set.

3) DESCRIPTION OF THE GENERATED DATA SETS
The resulting data sets contained 35686 training examples
(pixels of satellite images that represented sugarcane crops)
in the case of Sentinel-2 imagery, and 1169 pixels in the case
of Landsat-8. These resulting numbers correspond to 22.6%
and 32% respectively of the initial total number of pixels. This
was due to clouds and defective pixels.

Other coverage such as urban zone, water, forest, bare
soil, sand, rocks, yucca and maize were also identified and
processed, for Sentinel-2 and Landsat-8 images, with the
spectral information gathering algorithm, the resulting data
sets comprise the coverage shown in Table 2. Furthermore,
Table 1 presents the bands and vegetation indices considered
for each data set. Since the vegetation indices are calculations
over the bands, we decided to add them to the data set as new
types of bands in order to have more information, increasing
the size of the training data provided to the algorithms.

Figures 6 and 7 describe the Landsat-8 and Sentinel-2
sugarcane final data sets by age respectively. From these
figures we can see that crops between one and two moths
of age are best represented in the Landsat-8 data set and
crops between one and six months are best represented in the
Sentinel-2 data set.

D. MODEL TRAINING
In this process, multiple classification algorithms such
as Random Forests, K-Nearest-Neighbors, Support vector
Machine (SVM), Neural Networks and Gradient Boosting
were applied. Before applying data pre-processing tech-
niques, data sets were divided into training set and test set
(80 % for training and 20 % for testing). The pre-processing
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FIGURE 4. Scene classification over sparse cloud in Sentinel-2.

FIGURE 5. Blue mean calculation time series.

TABLE 2. Classes considered in Sentinel-2 and Landsat-8 data sets and
number of samples per class.

included balancing the unrepresented classes using resam-
pling. The resampling rate was obtained by applying cross
validation; however, experiments were also conducted with

FIGURE 6. Sugarcane Landsat-8 data set crop’s age count.

FIGURE 7. Sugarcane Sentinel-2 data set crop’s age count.

imbalanced data to determine their effect on the performance
of the algorithm. In addition, to determine how vegetation
indexes influenced the model’s ability to identify sugarcane
we also used data sets without that excluding such indexes.

As we mentioned before, five learning algorithms were
used for the construction of the classification models. To cal-
ibrate these algorithms a search for the best values of
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hyperparameters was made; for this purpose, k-fold cross
validation technique was applied to training set using k= 10.
Once the hyperparameter values were obtained, a model was
built based on them and applied to the test set to determine
its generalization performance on new data. The mentioned
hyperparameters include for Landsat-8 and Sentinel-2 mod-
els are detailed in Table 3.

TABLE 3. hyperparameter configuration of the models.

E. MODEL EVALUATION
The models were evaluated on the test set using standard
classifier metrics. Based on this analysis, the best model was
selected and tested on new polygons provided later by BAC.

1) PERFORMANCE METRICS
Performance of the classifiers obtained was measured using
the well-known recall, precision and F1-score metrics; Recall
measures positive accuracy, indicating how many examples
of this class are correctly classified (is also known as the
True Positive rate or Sensitivity); Precision measures how
many examples qualified as positive actually belong to this
class; and F1-score provides the geometric mean of these two
measurements.

Recall =
True positives

(True positives+ False negatives)

Precision =
True positives

(True positives+ False positive)

F1 =
(2 ∗ recall ∗ precision)
(recall + precision)

2) EVALUATION OF CLASSIFICATION PERFORMANCE
In this section, we present the results obtained for the clas-
sifiers (Random Forests, SVM, Nearest Neighbors, and Gra-
dient Boosting) generated from the Landsat-8 and Sentinel-2
training data sets along their variations; unbalanced without
vegetation indices, and balanced with vegetation indices. The
classification performance is evaluated on the corresponding
test data sets. The average values for recall, precision, and

f1-score are shown for different validations of the classifiers
on the test sets.

a: ABOUT LANDSAT-8 CLASSIFIERS
Recall, precision and F1-score metrics for the Landsat-8 clas-
sifiers are depicted in Tables 4 and 5. The first table describes
the performance of the classifiers that were generated from
the unbalanced data set; the second describes the performance
of the classifiers generated from the balanced counterpart of
the data set.

TABLE 4. Results from Landsat-8 models, Unbalanced data set.

TABLE 5. Results from Landsat-8 models, Balanced data set.

As shown in Table 4 RandomForest algorithm achieved the
best overall F1-score classification performance, 91% trained
with and without vegetation indexes. However, the one clas-
sifier generated with the imbalanced-without-indices data set
was the best sugarcane classifier, since it delivered 72%
F1-score for sugarcane classification against 70%. In terms
of individual classes, 9 out of 11 classes achieved a F1-score
higher than 84% in both classifiers. The confusion matrix of
the best sugarcane classifier is shown in Table 6.

To conclude, we found that the use of vegetation indices
such as; NDVI, EVI, EVI2 and RVI did not improve the
sugarcane classification accuracy. Although it was expected
that the use of the NDVI would improve the classification
accuracy as reported on related reports [24], the combination
of this index with others caused a negative incidence in the
classification. As a result of this observation, the use and
evaluation of alternative combination of vegetation indices is
proposed as future work. At the same time, considering the
amount of sugarcane data that we managed to obtain from
Landsat-8, 1416 samples, and the sensor resolution per pixel
30 m2, data about 4.248 ha was collected which is short in
comparison with the sentinel-2 data set and other Landsat-8
sensor related reports [24]. The low representation of the sug-
arcane class may cause the model to have reduced capacity
to generalize to new data, since the spectral variability in the
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TABLE 6. Confusion matrix for Random Forest On Landsat-8.

cane found in crops is large and this variability could not be
sufficiently represented in the data set.

Despite these limitations, we consider that the resulting
classifier proof a significant performance in cane classifica-
tion. This model can be improved as more data for sugarcane
and other coverage surrounding the crop is available. Also,
the use of other vegetation indices and combination of them
should be considered for the improvement.

b: ABOUT SENTINEL-2 CLASSIFIERS
As with the Landsat-8 classifiers, recall, precision and
F1-score metrics generated for the Sentinel-2 classifiers, for
both the unbalanced and balanced data sets were analyzed and
are presented in Tables 7 and 8.

TABLE 7. Results from Sentinel-2 models, Unbalanced data set.

TABLE 8. Results from Sentinel-2 models, Balanced data set.

The model that achieved the best overall F1-score is the
KNN algorithm as shown in table 7. In terms of individ-
ual classes, this model achieved over 84% for every class
and 7 out of 9 classes achieved an F1-score of 94% or more.
Specifically, the F1-score of this model over sugar cane is
98%, the classes that achieved the lowest F1-score were
Maize and Yucca with 88% and 85% respectively. However,
it is worth noting that these were the least represented classes
in the training data set, as shown in Table 2.

A result of classification over a Yucca crop is shown in
Figure 8. On the other hand, there were classes that achieved
a 100% F1-score on the test data set, these were urban zone,
water, forests and bare soil.

As it was the case with the Landsat-8 classifiers, the
best Sentinel-2 classifier was trained without the vegetation
indexes; Including the vegetation indexes in the training data
set not only did not improve the performance of themodel, but
it negatively impacted its accuracy. Performance of models
trained with and without vegetation indexes can be contrasted
in tables 7 and 8.

Also, as we can see in tables 7 8, for KNN and Random
forests algorithms an unbalanced data set enhances their
performance and, in contrast, SVM and gradient boosting
algorithms achieve better results when trained with balanced
data sets.

Results of classification over other images are shown in
Figure 9 and Figure 10. The first figure shows a classification
over a sugar cane crop area, and the second figure shows
the classification over a cloudy area that contains a maize
crop.

It is important to note that the clouds and cloud shadows
classified in the second figure are classes that, as mentioned
in section III-C2, are contained in the sentinel scene classifi-
cation band. Table 9 shows the confusion matrix of the types
of cover the algorithm was trained for.

IV. DISCUSSION
A. CONCERNING THE USE OF REMOTE SENSING DATA
Intrinsic features in remote sensing such as temporal, spatial,
spectral, and radiometric resolution introduce several chal-
lenges when considering land cover detection and classifica-
tion tasks, in particular, crop detection. It is important to note
that these tasks strongly depend on the quantity and quality
of the information obtained from the scenes of the different
remote sensors.

Regarding temporal resolution, Landsat-8 sensor offers up
to 2 scenes per month, while Sentinel 2A and 2B sensors
provide 6 scenes per month. By increasing the temporal
resolution, the number of scenes per month may require more
storage capacity. For Sentinel the required capacity is around
6GB (1GB per scene); therefore, obtaining the information of
a specific scene from Sentinel-2 for a whole year represents
to the users a 72GB storage requirement.
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FIGURE 8. Scene classification over yucca polygon in Sentinel-2.

FIGURE 9. Scene classification over cane polygon in Sentinel-2.

FIGURE 10. Scene classification over cloudy maize polygon in Sentinel-2.

Specifically, for the department of Boyacá, approxi-
mately 90% of the territory can be covered using 6 scenes
from Sentinel-2, which corresponds to 432GB of storage

per year. The above panorama proposes challenges related
to the storage and processing for this increasing data
volume.
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TABLE 9. Confusion matrix for Nearest Neighbors on Sentinel-2.

Concerning radiometric resolution, slight changes on the
crop are difficult to perceive by a sensor.

The atmosphere is composed of gases that cause distortion
of the image by the interaction of light with the gases (diffrac-
tion). This challenge can be divided into two: the first, related
to the distortion of the images due to the gases that make up
the atmosphere, even though they allow light to pass through;
and the second, related to the appearance of clouds that block
the passage of light towards the earth’s surface.

To face the first challenge, we developed an algorithms to
calculate the impact of this layer of gases, to correct distor-
tions on the satellite image that these gases produce. These
algorithms are usually based on the use of a dark surface to
determine how an area should look without the atmospheric
effects; taking this type of surfaces as a base, the algorithm
can predict and counteract the effect of gases on the image.

Secondly, the appearance of clouds in images avoids the
correct detection of the ground. To mitigate this inconve-
nience, algorithms are used to detect their presence and,
in this way, only those pixels that have a low probability of
clouds are used. Also, radar images like Sentinel-1, provided
by active sensors, help to avoid this kind of problems.

B. CONCERNING THE USE OF MACHINE LEARNING
ALGORITHMS
The comparative analysis carried out with four learning algo-
rithms and different data sets revealed that the best algorithms
were Random Forest and KNN. From these results we can
conclude that it is possible to usemachine learning techniques
to build models that allow the identification of sugarcane
crops in the Boyacá region, using data from free access
satellite images (Landsat-8 and Sentinel-2).

However, in order to build the labeled data sets needed
to apply the modeling techniques, BAC had to reprocess
information the had already gathered and include new steps
in their visits that were new to their staff. It is important then
to establish mechanisms that facilitate the generation of data
sets from the moment a loan is granted.

C. CONCERNING THE USE OF THE OPEN DATA CUBE
The use of the python-based API ODC allowed a fast analysis
of the remote sensing information. Using this API enabled
users to request the pixels that were interesting for analysis
directly, instead of manually individual satellite files. Before
using the ODC, merging different bands for spectral analysis
required a manual resampling method due to the different

resolutions of bands coming from different remote sensing
sensors. In contrast, requesting information of different bands
with the ODC automatically resamples the bands into a
desired resolution and returns them into a single variable
ready for analysis.

A process was created in Jupyter notebooks for analysing
areas of interest which had multiple options for requesting
the information to the ODC. One of the most used ones
was requesting pixels by polygon, which returned a square
surrounding the desired polygon. This is a highly replicable
process, and analysts can change the desired polygons, dates
and bands by only specifying them in a set of variables, new
analysts can change the variable values to classify a new area.

D. CONCERNING THE FUTURE USE OF GENERATED
MODELS FOR CROP MONITORING IN
THE CONTROLS OF AGRICULTURAL
INVESTMENT PROCESS AT BAC
Although to the problems identified, satellite images consti-
tute a valuable source of information on land surface data.
For instance, they would allow with great agility and preci-
sion, the geospatial location of the properties presented as a
guarantee of credits, as well as the identification of the crop
developed in the mentioned property.

In this way, this solution facilitates to the area of Control
and Appraisals of BAC, directly responsible for the monitor-
ing and control process, the verification of effective compli-
ance with the conditions agreed in the loan origination stage.
Such verification would allow to identify deviations from the
investment plan established for the crop, making a filter to
identify crops with non-compliance in the investment plan,
validating areas with fraud problems, before making a field
visit, thus minimizing the loss of the investment by focusing
on the areas to visit, prioritizing field visits to those that will
be reported to Finagro.

Additionally, it allows the monitoring of crops of products
sown with resources disbursed by the Bank in a specific
area, by recognizing the area and identifying anomalies in
the crops that are the object of investment. This can be done
at a property level but also at a regional and even national
levels, optimizing the use of resources and the establishment
of informed policies within the Bank.

V. CONCLUSION AND FUTURE WORK
This paper presents the development of a software tool, based
on a machine learning model for processing free satellite
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imagery, with the aim to support the BAC in the Controls of
Agricultural Investment process in order to identificate crops
with non-compliance in the investment plan before making
field visits and thus prioritize those visits. As a case study,
we selected the identification of ‘‘panela’’ sugar cane crops
since it is one of the most important economic and social
crops for Colombia.

Based on the results obtained of this work, we found that it
is possible to generate reliable models that identify ‘‘panela’’
sugarcane crops in the Boyacá region from free access satel-
lite images. These results reinforce the aim of the BAC to con-
tinue the exploration of remote sensing imagery in order to
identify the characteristics of production projects supporting
the investing control process. However, the generated models
are susceptible to many improvements. Some of them are:
• To improve the acquisition of field information, through
the capture of crop lots from origination and a protocol
more focused on getting useful information for training
the Machine Learning models.

• To improve the schedule of visits, in order to get better-
balanced information collected training the model. This
includes the age of the crops, the variety of cane grown,
and whether there are combinations of crops, among
others.

• Generate more information on other elements on land
that are not cane, as they help the model distinguish
between cane and other land covers. This exercise
included some cassava and maize, correctly identified
by the model, but with more examples, we will obtain
better results. Specifically, we propose the inclusion of
grasslands into the training data set. This is based on the
fact that grass is from the same family as sugar cane,
‘‘Poaceae’’, and the high probability of presence of grass
areas in the region of study.

• Include among the model variables the altitude
of the lot being cultivated, which determines its
development.

More strategically, other useful actions for BAC can be:
• Apply this methodology to productive systems with sim-
ilar phenologies and homologous growth habits (rice, cut
pastures, maize, among others).

• Generate models for other productive systems. The data
used in this project for maize and cassava is a good
start.

• Retrain the model periodically, every six months, for
example, since in any case, the visits are still carried out
and information is collected in each of them

Finally, since cloud cover is one of the constant problems in
the use of optical images, it is possible to consider the use of
active sensor images, in particular Sentinel 1, which, being
based on radar signals, do not present disadvantages with
cloud coverage.
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