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ABSTRACT Non-local modules have been widely studied in image restoration (IR) tasks since they can
learn long-range dependencies to enhance local features. However, most existing non-local modules still
focus on extracting long-range dependencies within a single image or feature map. On the other hand, most
IR methods simply employ a single type of non-local module in the network. A combination of various types
of non-local modules to enhance local features can be more effective. In this paper, we propose a batch-wise
non-local module to explore richer non-local dependencies within images. Furthermore, we combine various
non-local extractors (different attention modules) with the proposed batch-wise non-local module as the
Enhanced Batch-wise Non-local Attentive module (EBNA). Besides exploring richer non-local information,
we build theNon-local and Local Information extracting Block (NLIB), in whichwe combine the EBNAwith
DEformable-Convolution Block (DECB) to utilize richer non-local and adaptive local information. Finally,
We embed the NLIB within a U-net-like structure and build the Non-local Enhanced Network (NLENet).
Extensive experiments on synthetic image denoising, real image denoising, JPEG artifacts removal, and real
image super resolution tasks demonstrate that our proposed network achieves state-of-the-art performance
on several IR benchmark datasets.

INDEX TERMS Image restoration, non-local information, synthetic image denoising, real image denoising,
JPEG artifacts removal, real image super resolution.

I. INTRODUCTION
Image restoration is a classic computer vision task that
aims to restore high-quality image from its various degrada-
tion. It has been widely applied in many practical applica-
tions, such as medical image processing [1], [2], surveillance
[3]–[5], synthetic aperture radar (SAR) image processing
[6]–[8], image compression [9], and so on.

Traditional methods build handcrafted models to solve
the image restoration problem based on specific degradation
prior knowledge [10], [11]. However, such kinds of methods,
including Block-Matching and 3D filtering (BM3D) [12],
non-local means (NLM) [13], sparse coding [14], usually
have limited robustness towards real-world data. To remedy
this problem, the recent deep neural network (DNN) based
methods tend to learn the parameters of the model using mas-
sive paired data in specific degradation, such as SRCNN [15],
DnCNN [16] and RDN [17].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

SRCNN [15] first introduced the convolution neural net-
work to IR for the image super resolution task. Recent
development in DNN showed that larger receptive fields
could learn informative features from a larger neighbor-
hood in the image. Therefore, more and more researchers
try to build deeper and wider networks to improve the
restoration performance, such as RDN [17], VDSR [18],
and EDSR [19]. Another way of learning from larger recep-
tive fields is employing wavelet decomposition to generate
multi-scale inputs. Such as in divide-and-conquer frame-
work [20], authors first decomposed images to multiple sub-
spaces according to the visual importance and used different
models to preserve texture details based on prior knowledge.
In another work, authors tried to use CNN-based models
for sparse coding (DCSC) [21]. In DCSC, the features
were sparsely coded by employing CNN models instead of
the handcrafted coding method. In MWCNN [22], authors
employ wavelet decomposition and reconstruction to gener-
ate multi-scale features.

We can acquire non-local information in multiple ways,
such as employing self non-local modules (based on
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FIGURE 1. A comparison of the existing non-local modules with the proposed batch-wise non-local module in EBNA.

non-local means [13]), global pooling modules (channel-
wise and spatial-wise attention), multi-scale inputs, long-
range connections and recurrent connections in the network.
In IR approaches, for example, many networks employ global
pooling to extract long-range dependencies, such as RCAN
[23], [24] and RIDNet [25]. In these attention modules, they
squeeze the feature map (channel-wise or spatial-wise) and
generate attentive weights [26]–[28] based on the whole
channel of the feature map or the spatial location of the
feature map (which is used as the non-local features). For
networks like MemNet [29] and Rednet [30], they pass non-
local information through recurrent connections to obtain
richer features. COLA-Net [31] builds a non-local module
that uses patches from a single image (or feature map) to
extract long-range dependencies.

However, there still exist several problems in the above IR
approaches. First of all, self non-local information has been
explored in methods such as COLA-Net [31] and NLRN [32],
in which they ignore the helpful patch-wise non-local infor-
mation among multiple images. Secondly, most IR models
employ a single type of non-local module in the network,
limiting the feature extracting ability. Combining various
types of non-local modules to enhance local features can be
more effective for IR. Finally, besides the non-local features
that capture the long-range dependency, more sophisticated
local features can complement the restored local texture.

We propose the batch-wise non-local module to extract
sophisticated non-local information and build long-range
dependencies to tackle the above problems. Different from
the previous self non-local modules [31], [33], our proposed
batch-wise non-local module can fuse the prior and relevance
from a batch of images (or feature maps), which can restore
more contextual details.

To further explore diverse information from non-local
regions, we propose a novel block named EBNA, which
combines the proposed batch-wise non-local module and var-
ious existing non-local modules. In the proposed batch-wise
non-local module, we intend to extract richer information

from a batch of images instead of using only one image.
Especially in situations when self-similarity is limited within
one image, the chance of extracting more relevant informa-
tion from a batch of images is increased. Unlike the non-
local modules that employ global pooling to extract non-local
relatedness, the batch-wise non-local module generates the
non-local feature based on patch-wise relation within feature
maps. In contrast, channel-wise attention (CA) and spatial-
wise attention (SA) module extract non-local features by
global pooling weights among channels and spatial location
within the features. Combining the three could enhance each
other and generatemore diverse non-local features to improve
the restoration of the textural and contextual details in the
images.

FIGURE 1 shows the difference between our proposed
EBNA module and several existing non-local modules. The
highlighted parts in FIGURE 1 demonstrate the difference
between the self non-local module and the proposed batch-
wise non-local module. They match the patches within a sin-
gle channel of features and a batch of features, respectively.
We can observe that the batch-wise non-local modules in
EBNA can explore long-range dependencies within images
and extract more sophisticated non-local features. In EBNA,
the combination of various non-local modules can gener-
ate more diversified features compared to existing networks
which employ a single type of non-local module.

Furthermore, based on EBNA, we build a novel block
named NLIB to collaborate the local and non-local fea-
tures. In NLIB, we employ a DEformable-Convolution
Block (DECB) to extract local features. Deformable convo-
lution can learn local features from the adaptive receptive
field, but the limited receptive field size still restricts the
module from learning non-local information. Such cooper-
ation between DECB and EBNA can extract more enhanced
features from both local and non-local regions of the image.

Finally, we stack the NLIBs in a U-net-like multi-scale
structure model and build the Non-local Enhanced Net-
work (NLENet). Extensive experiments show that NLENet
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achieves state-of-the-art performance on several IR task
benchmark datasets.

The main contributions of the paper can be summarized as
follows:
• We propose a novel batch-wise non-local module to
explore non-local dependencies among images and build
a novel block called EBNA that combines various com-
plementary non-local information.

• To cooperate non-local information with adaptive local
information, we further employ EBNA together with
DEformable-Convolution Block (DECB) as a new mod-
ule NLIB. Based on the NLIB, we propose our final
model, NLENet, which utilizes various non-local infor-
mation and the adaptive local feature to improve IR
performance.

• Extensive experiments on synthetic image denoising,
real image denoising, JPEG artifacts removal and real
image super resolution tasks show that the proposed
model achieves state-of-the-art performance. Further-
more, the ablation study also demonstrates the superi-
ority of the proposed network.

The rest of this paper is organized as follows. In section II,
we introduce the related works. In section III, we present the
structural details of our proposed model. Extensive experi-
ments are conducted in section IV to evaluate the effective-
ness of the proposed network on synthetic image denoising,
real image denoising, JPEG artifacts removal and real image
super resolution tasks. Furthermore, ablation study is pre-
sented in section V. The conclusion is given in section VI.

II. RELATED WORKS
In this section, we give a brief review of the works related
to our proposed network. We first list the typical traditional
model-based and recent state-of-the-art DNN based IR meth-
ods. Then, we briefly introduce the typical non-local opera-
tions and local feature extraction approaches in IR.

A. IMAGE RESTORATION
Image restoration, as a fundamental component in the
image processing area, has been widely studied for decades.
Traditional IR methods like BM3D [12], SA-DCT [34],
and TNRD [35] have provided reasonable results on both
accuracy and robustness. However, these algorithms usu-
ally have drawbacks, such as high complexity and limited
generalization.

Recently DNN based IR methods have gained consid-
erable attention and significant performance improvement.
Researchers develop deeper, wider models to acquire larger
receptive fields and extract pixel-wise relations from a larger
region. SRCNN [15] first introduced CNN for IR tasks. Based
on the CNN structure, researchers developed VDSR [18].
In VDSR, a structure that consists of several cascading filters
was proposed to broaden the receptive field and increase the
depth of the model. In building VDSR, the authors found that
increasing the depth of the model could bring performance
improvement. To solve the gradient descent problem in

training deeper models, DRCN [36] proposed a deeper model
together with a gradient clipping and recursive-supervision
method, which increased the IR performance significantly.
DnCNN [16] introduced the residual connection to ease the
propagating of feature flow and solve the gradient vanishing
problem in deep IR models. In another work RCAN [23],
a deeper model with a residual in residual structure was
proposed. RCAN also introduced the channel-wise attention
module within the residual in residual structure to obtain
a deep network and learn more adaptive features simulta-
neously. To increase the IR model’s efficiency, RDN [17]
employed dense connection, feature fusing, and residual con-
nection to make full use of the features from different scales.
In this paper, we propose a novel network that employs
both non-local and local features to improve IR performance,
as shown in section III.

B. NON-LOCAL OPERATION
Non-local information has been explored in many areas,
such as extracting relevance in video processing [37], [38],
building long-range dependency among a sequence of words
in natural language processing [39] and text summariza-
tion [40]. Besides extracting long-range dependency in the
time domain, non-local operations also can build relevance
in the space domain, such as in computer vision tasks.

In computer vision area, non-local operations that extracts
long-range dependency among pixels, has been used formany
tasks, for example object detection [33], [41], semantic seg-
mentation [42], [43], video action recognition [44], image
compressive sensing [45], and image restoration [13], [31],
[46], [47]. To better understand the non-local operation’s
efficacy, we can observe it as an attention mechanism for
pixel-to-pixel relation modeling. This relation is modeled as
the dot-product between the features of two pixels. The larger
the dot-product value indicates more relevance of the two
pixels.

At first, traditional methods usually apply Additive White
Gaussian Noise (AWGN), TV regularization [48], Fourier
domain [49] or wavelet domain [50] coefficients transform
in different IR tasks. However, it is the idea of non-local
means (NLM) denoising [13] that brought the importance
of long-range dependencies into IR tasks. Non-local means
methods are built upon self-similarity and redundant infor-
mation over realistic images. Later on, another non-local
denoising approach BM3D [12] was developed.

As for DNN based methods, NLNet first introduced
deep neural networks to perform non-local processing for
color image denoising task which achieved remarkable per-
formance. Non-local information is also widely explored
in image super resolution area [51]–[53]. Such as in the
NLSN [51], they proposed a Non-Local Sparse Atten-
tion (NLSA) with dynamic sparse attention pattern mod-
ule to generate non-local attention with spherical locality
sensitive hashing (LSH). Furthermore, inMHNAN [52], non-
local information is extracted by a Mixed High-Order Atten-
tion (MHA) module. In another work, COLA-Net [31] tried
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FIGURE 2. An overview of the proposed NLENet.The NLIB (Non-local and Local Information extracting Block) is build upon EBNA (Enhanced Batch-wise
Non-local and Attentive modules) and DECB (DEformable-Convolution Block).

to build a learnable non-local module to extract long-range
dependencies within the degraded image. However, it only
extracts relevance within one single image, which lacks
non-local information among multiple images. In contrast,
we proposed a novel batch-wise non-local module to extract
the non-local information among multiple images, which has
not been studied in the existing non-local methods. Based
on the proposed batch-wise non-local module, we proposed
the NLENet, which combines various non-local features to
enhance the local feature and preservemore contextual details
in IR.

III. PROPOSED NETWORK
In this paper, we proposed a novel network, NLENet, for
IR tasks. Here we present an overview of the proposed IR
network, including the models for synthetic image denois-
ing, real image denoising, JPEG artifacts removal and real
image super resolution. FIGURE 2 illustrates the overall
architecture of the proposed network, which is a multi-scale
structure embedded with the proposed block NLIB. We can
observe that NLIB consists of two proposed blocks EBNA
and DECB. EBNA, based on the proposed batch-wise non-
local module, collaborates with different types of non-local
extractors to build an enhanced batch-wise non-local and
attentive module. And DECB explores the local information
by employing deformable convolution. With both modules,
NLIB can combine the local feature and non-local feature.
More concretely, (1) we propose a batch-wise non-local mod-
ule to explore the relevance among images; (2) based on the
proposed batch-wise non-local module, we propose EBNA,
which provides enriched non-local features from various
types of non-local modules; (3) to fully utilize the non-local

and local information, we propose NLIB built upon EBNA
and DECB. We stack NLIB in a U-net structure model to
build NLENet, utilizing enriched non-local and local features
to preserve better contextual details in the restored images.

A. BATCH-WISE NON-LOCAL MODULE
Following the idea of non-local means operation [13], the
generic non-local operation can be defined as:

yj =
1
S

∑
i,j∈I

f (xi, xj) · g(xj), (1)

in which the output patch yj at position j has the same size
as the input xj, S represents a normalization factor and i, j
represent different patches in image I . f () is a scalar to
compute the affinity between the patch xj and patch xi, which
represents the relationship between two patches. g() is an
embedding function that transforms the input xj to another
representation domain. In this way, the non-local operation
uses all the predictable information within a single image to
restore the current patch. Further applying this idea in the
DNN based models, the non-local module employs the same
process within each channel of the feature maps to explore
self-predictable information.

We extend this search region of predictable information
from one single image to a batch of images in our work.
Similar patches of pixels (or feature maps) are searched to
generate more abundant predictable information. We reform
the single image non-local operation to batch-wise non-local
(BNL) operation as follows:

yj =
1
S

∑
i,j∈Ibatch

f (xi, xj) · g(xj), (2)
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FIGURE 3. An overview of the proposed Enhanced Batch-wise Non-local and Attentive (EBNA) module. It combines the proposed batch-wise
non-local module with various attention modules to extract richer non-local features in the IR model.

where i, j are from patches of a batch of images Ibatch. Dif-
ferent from Equation 1, our proposed batch-wise non-local
module, in Equation 2, expand the ’non-local region’ from a
single image to a batch of images. In the existing self non-
local module, patches from a single image are cropped and
perform the patch matching process. While in the proposed
batch-wise non-local module, the patches are extracted from
a batch of images where more relevant information can be
found.

FIGURE 3 shows the batch-wise non-local module in
detail. We take a feature map of size (bs, c,w, h) as an input
and qn × bs represent as the number of patches unfolded
from a batch of feature maps (w.r.t.as Query, Key and Value).
qc represents the number of channels of the feature map, and
qw and qh are the width and height of the patches (we set
patch size as 4× 4). Then the Query feature map is reshaped
and multiplied with the Key feature map to generate a weight
matrix. As an evaluation of the relevance among patches, the
weight matrix is multiplied with the value feature map to
generate the non-local feature map.

In the batch-wise non-local module, richer information can
be extracted from a batch of images instead of only one single
image. Especially in situations when self-similarity is limited
within one image, the chance of extracting more relevant
information from a batch of images is increased.

B. ENHANCED BATCH-WISE NON-LOCAL AND ATTENTIVE
MODULE
In this section, we describe the proposed EBNA module in
detail. The main idea of developing the EBNA module is to
employ diverse non-local information to enhance the local

features. Besides the proposed batch-wise non-local module
(based on patch-wise relevance among feature maps), we use
different modules that employ global pooling operations to
extract diverse non-local information.

Non-local relevance can be extracted through various oper-
ations, such as global pooling operation (channel-wise atten-
tion [54] and spatial-wise attention [55] et al.). A set of
weights as long-range dependencies are built on a specific
channel or spatial location feature in CA and SA.

To take advantage of the above non-local modules,
we cooperate CA and SA with the proposed batch-wise non-
local module to build a novel block EBNA. FIGURE 3 shows
the overview of the proposed EBNA module.

Taking feature map xfm ∈ Rbs×c×w×h as input and yfm ∈
Rbs×c×w×h as output, the EBNA module can be defined as
follows:

yfm = Conv(Concat(FBNL(xfm),FCA(xfm),FSA(xfm)))+ xfm,(3)

where Conv() and Concat() represents the convolution oper-
ation and feature maps concatenation operation. FBNL() rep-
resents the proposed batch-wise non-local module, FCA()
and FSA() represent channel-wise and spatial-wise attention
modules, respectively.

In EBNA, the proposed batch-wise non-local module can
extract patch-wise dependencies from a batch of images and
build relevance weights among image patches. In contrast,
CA and SA modules can extract more general dependencies
across channels and spatial locations. Combining the pro-
posed batch-wise non-local module and attention modules
can generate enhanced non-local features and extract more
diverse non-local information among features.
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FIGURE 4. An overview of the proposed Non-local and Local Information extracting Block (NLIB) along with the structure details of DECB.
It combines the proposed non-local module EBNA with a adaptive local module DECB to employ adaptive local features and long range
dependencies in the feature domain.

C. NLIB
Besides using abundant non-local information, local features
are also essential in IR models. Based on the above concept
we build a block named as NLIB which combine various
non-local and adaptive local information from the degraded
image.

As shown in FIGURE 4, the proposed NLIB consists of
two parts, in which EBNA can extract various non-local
dependencies and DECB can extract local features. We build
the local feature extractor based on the deformable convo-
lution. The DECB includes the deformable convolution and
an attentive operation. The deformable convolution can learn
from adaptive receptive fields, while the attentive operation
with a residual connection can help extract adaptive fea-
tures with focus. Thus, sophisticated local features can be
acquired.

NLIB can be defined as follows:

yfm = Conv(FEBNA(xfm)+ FDECB(xfm)), (4)

where Conv() represents the convolution operation. FEBNA()
represents the proposed EBNA module, FDECB() represents
DECBmodule. The output feature maps of EBNA andDECB
are added together through a convolution layer. In NLIB,
various non-local features can enhance the local features
without the limits of the receptive field and learn from
long-range dependencies. Both non-local and local informa-
tion extracted by NLIB can help to restore more structure
and texture details. Furthermore, as the basic component

of NLENet, we apply NLIB at every down-sampling and
up-sampling stage to extract richer features at each scales.
During training, given the corrupted images {Îi}Ni=1, Îi ∈
RH×W×C (H as the height, W as the width and C as the
channel of the image) as inputs, NLENet learns a mapping
function fθ with a set of parameters θ in generating the corre-
sponding restored images {Ii}Ni=1, Ii ∈ RH×W×C , by employ-
ing `2 loss function formulated as follows:

L = argmin
θ

N∑
i=1

‖fθ (Îi)− Ii‖2. (5)

IV. EXPERIMENTS
We perform extensive experiments to demonstrate the pro-
posed NELNet’s effectiveness on four IR tasks in this section.
The evaluated IR tasks including (a) synthetic image denois-
ing, (b) real image denoising, (c) JPEG artifacts removal, and
(d) real image super resolution. We test on several benchmark
datasets in each task to give a thorough performance evalua-
tion of the proposed network.

The model is trained with the Adam optimizer under set-
ting β1 = 0.9, β2 = 0.999.We train the models with an initial
learning rate 1×10−4 and gradually decrease to 1×10−6.
During training, we apply data augmentation (including ran-
dom horizontal and vertical flipping) for better performance.
The training batch size set as 6 with the patch size 256× 256.
Similar settings are used in all four IR tasks. The experiments
are conducted on NVIDIA Tesla V100 with the PyTorch
library [56].
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FIGURE 5. Synthetic image denoising results (‘‘boats.png’’ from set12) using different denoising networks. The AWGN noise level is
(σ = 25). The best result is highlighted in bold.

We list the results comparisons in terms of PSNR, SSIM
in TABLE 1,2,3 (for methods which code and model are not
available, we can only compare their published results from
the original paper and ‘‘NA’’ is placed because of missing
results in some cases.).Wewill release the pre-trainedmodels
along with the source code upon the acceptance of the paper.

A. SYNTHETIC IMAGE DENOISING
This section shows the comparison results of the proposed
NLENet for AWGN denoising on grayscale images. We train
the synthetic image denoising models with the training set
of DIV2K [66] in grayscale. Then we evaluate the trained
models on Set12, BSD68 [58], and Urban100 [59] datasets,
which are commonly used in synthetic images denoising task.
To fully validate the proposed network’s denoising ability,
we train models with AWGN under different levels of noise,
i.e., σ = 15, 25, 50, and 75 (standard deviation σ ) and com-
pared with the SOTA methods, which are listed in TABLE 1.
TABLE 1 presents quantitative comparisons of PSNR and

SSIM [57], where we can observe that the proposed NLENet
outperforms the traditional and latest SOTA CNN based
denoising methods at most noise levels. Specifically, com-
pared to the latest non-local networks COLA-Net, our algo-
rithm demonstrates a performance improvement of 0.02 to
0.1 dB in PSNR at different noise levels on all test sets.

We also give a visual compassion of the denoised results
from the proposed method and latest methods in FIGURE 5.

From the FIGURE 5, we can easily find that methods like
DnCNN lose fine details. In the visual results of RIDNet
and AINDNet, the restored images obtain blurred edges.
Compared to the latest non-local network COLA-Net, the
denoised result lose part of the lines in the zoom-in area.
While our NLENet preserves clear lines. Therefore, NLENet
is able to reconstruct the structural information and fine
texture of the noisy image.

B. REAL IMAGE DENOISING
To further demonstrate the merits of our proposed method,
we compare the proposed network with several SOTA real
image denoising approaches. Unlike synthetic image denois-
ing, real images are corrupted by realistic noise during captur-
ing, and we have no prior knowledge of the noise distribution.
We train the real image denoising model with the training set
of SIDDmedium [67]. And SIDD [67] andDND [68] test sets
are used as evaluation. The training set of SIDDmedium [67]
contains 320 very high-resolution image pairs captured by
smartphones under different environments.Moreover, the test
set of SIDD contains 1280 images of size 512 × 512. And
DND [68] which has 1000 images of size 512× 512.
Results comparisons are summarized in Table 2. We can

observe that our NLENet outperforms the latest methods on
SIDD and achieves competitive results on DND. For instance,
comparedwith another non-local networkCOLA-Net and lat-
est method GNSCNet, the PSNR results of NLENet are about
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TABLE 1. Average PSNR (dB) and SSIM [57] results of different denoising methods for grayscale synthetic image denoising (AWGN), evaluate on Set12,
BSD68 [58], Urban100 [59] with noise levels σ = {15,25,50,75}. The best results are highlighted in bold. ‘‘NA’’ means ‘‘Not Available’’ due to unavailable
code or model.

TABLE 2. Average PSNR (dB) and SSIM [57] of different methods for real image denoising evaluate on the SIDD [67] and the DND [68]. The best results
are highlighted in bold. ‘‘NA’’ means ‘‘Not Available’’ due to unavailable code or model.

FIGURE 6. Real image denoising results (‘‘11_4.png’’ from SIDD [67]) using different denoising networks. The best result (PSNR in dB) is highlighted
in bold.

0.6∼0.7 dB (in PSNR) higher on SIDD. As for SSIM, GNSC-
Net achieves the highest result in the comparing methods,
NLENet achieves the second-highest result. However, in the
synthetic image denoising task, NLENet gains over 0.1 dB in
terms of PSNR and 0.02∼0.03 in terms of SSIM higher on
all the test sets and noise levels compared to GNSCNet.

As an IR structure with generalization ability, NLENet
shows superior or comparable performance on different IR
tasks and test sets. In the DND dataset, we still achieve a
competitive denoising result, while AINDNet and COLA-Net
achieve the higher performance because of employing extra
training data. AINDNet is specially designed for real image
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FIGURE 7. Real image denoising results (‘‘0002_19.png’’ from DND [68]) using different denoising networks. The best result is
highlighted in bold.

TABLE 3. Average PSNR (dB) and SSIM [57] results of different methods for JPEG artifacts removal, evaluate on Classic5, LIVE1 [73] with quality factors
Q = {10,20,30,40}. The best results are highlighted in bold. ‘‘NA’’ means ‘‘Not Available’’ due to unavailable code or model.

denoising and trained with extra data (more data besides
the SIDD training set) for better performance. COLA-Net
also employs extra training data during training. While we
still employ only the SIDD training set as most methods
did. However, when COLA-Net and AINDNet are trained
with the same dataset as NLENet, NLENet still achieves
the highest PSNR and SSIM in all the noise level of syn-
thetic image denoising datasets. The visual comparison of
the results are shown in FIGURE 6 and FIGURE 7 in
which we can see that the NLENet recovers cleaner outlines

and preserves more textural details than other competitors’
approaches.

C. JPEG ARTIFACTS REMOVAL
In this section, we evaluate our NLENet in JPEG artifacts
removal task. We train the models with DIV2K [66] train-
ing set and test on classic JPEG artifacts removal test sets
CLASSIC5 and LIVE1 [73].

We compare the NLENet with SOTA JPEG artifacts
removal approaches in terms of PSNR and SSIM [57].
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FIGURE 8. JPEG artifacts removal (Q = 10) results (‘‘sailing3’’ from LIVE1 test set) using different JPEG artifacts removal networks.The best result
(PSNR in dB) is highlighted in bold.

TABLE 4. Average PSNR (dB) and SSIM [57] results of different methods for real-world super resolution, tested on RealSR [79] dataset with scale factors
scale = {2,3,4}. The best results are highlighted in red, respectively. ‘‘NA’’ means ‘‘Not Available’’ due to unavailable code or model.

The results are shown in TABLE 3, in which we can see
that our proposed method demonstrates the best results on
all test sets and quality factors over previous approaches
in PSNR. For instance, compared with the latest non-local
network COLA-Net, NLENet achieves superior performance
on both test sets. We can also observe that although NLENet
achieves the highest PSNR, QGAC shows a slightly higher
SSIM. Because NLENet is trained with L2 loss with one
stage. While QGAC requires two-stage training, in which it
requires L2 loss for initial training and then employs GAN
loss to finetune the model. Training with GAN loss, which
contains perception terms, will improve the SSIM results and
better visual quality but decrease in terms of PSNR.

The visual quality comparison is shown in FIGURE 8,
in which we can observe that the results from DnCNN and
RNAN show an over smoothing in preserving texture details.
In the results of MWCNN and the latest non-local networks,
COLA-Net, a blurred outline is preserved in the restored
image. In contrast, NLENet can preserve more subtle texture
details and clear edges in the restored image, which further
demonstrates its superiority.

D. REAL IMAGE SUPER RESOLUTION
We apply the proposed NLENet to the real image super
resolution task and compare with the SOTA SR algorithms

(VDSR [18], SRResNet [80], RCAN [23], LP-KPN [79]) and
CDC [82] on the RealSR test dataset with upscaling factors
of ×2,×3 and ×4. Note that all the comparing algorithms
are trained on the training set of RealSR [79] (the comparing
results are also provided from RealSR [79] and CDC [82]).
RealSR [79] is a real image super resolution dataset,
which contains LR-HR real-world image pairs captured by
adjusting the cameras’ focal length. RealSR has 183 (×2),
234 (×3), 178 (×4) very high resolution image pairs for
training and 30 images pairs for testing in each scales. In the
experiment, we compute the PSNR and SSIM [57] using
the Y channel (in YCbCr color space), which is a common
practice in SR [18], [23], [80]. The results are summarized in
Table 4, and we can observe that NLENet shows a superior
performance among the competitive methods. The PSNR
improvement is around 0.06 to 0.19 dB, compared with the
latest SOTA methods and 0.4∼0.5 dB compared with the
classic methods like RCAN and LP-KPN. The visual com-
parison in FIGURE 9 proves more advantages of NLENet
on restoring clear structural details, while the comparing
methods restore blurry edges.

V. ABLATION STUDY
In this section, we further explore and investigate the effec-
tiveness of the proposed NLENet. Here we study the impact
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FIGURE 9. Super resolution results of a typical image (‘‘00100.png’’ from RealSR [79] test set) using different super resolution methods.

TABLE 5. Ablation study results on the proposed modules in NLENet for synthetic image denoising task.

FIGURE 10. Ablation on batch-wise non-local module.

and effectiveness of each proposed component on the final
model performance. The ablation experiments are performed
for the grayscale image synthetic denoising task with noise
level σ = 25.

A. ABLATION ON THE PROPOSED MODULES
We apply different combinations of the proposed mod-
ules to test their effectiveness in the proposed NLENet.
TABLE 5 shows the comparison results test on Set12. In the

experiment, the performance of a baseline multi-scale archi-
tecture (mostly based on stacked convolution layers) without
using any proposed components are shown in case1.

In case2 and case3, we apply only the non-local mod-
ule proposed by COLA-Net [31] (self non-local) and our
proposed batch-wise non-local module respectively in the
multi-scale structure to compare their influence on the IR
performance. Case2 shows good performance gain, demon-
strating the effectiveness of building long-range dependen-
cies. The comparison of case2 and case3 demonstrates the
superior performance of our proposed batch-wise non-local
module compared to the self non-local module.

Subsequently, from case3 to case5, we add the proposed
components gradually to explore the performance changes.
In case4, we apply the proposed EBNA in the multi-scale
model. We can observe that combining various non-local
modules achieves better performance than using only one
type of non-local module (compare to case3). Case5 is our
proposed NLENet, which achieves the highest performance.
To further compare the self non-local and the proposed batch-
wise non-local module, we replace the batch-wise non-local
module in NLENet with the self non-local module [31] in
case6. In case7, we remove the CA, SA module in EBNA
and remain the other part in NLENet to explore the impact
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FIGURE 11. Feature visualization of different proposed modules in NLENet.

of combining CA, SA with the batch-wise non-local mod-
ule. We can observe that without the CA and SA modules,
NLENet still achieves superior performance.

Based on the results from the TABLE 5, we can summarize
the following observations:

(1) Our proposed batch-wise non-local module can achieve
better performance than the existing self non-local module
(used in COLA-Net), as shown in case2 and case3.

(2) Adding the proposed EBNA and NLIB modules in the
model can improve the performance, as shown in case4 and
case5. Also, case5, as our proposed NLENet, achieves the
best performance among all the cases.

(3) We replace the batch-wise non-local in NLENet with
self non-local in case6, which further illustrates the superi-
ority of our proposed batch-wise non-local module against
COLA-Net [31] ’s self non-local module.

(4) Removing the CA and SA modules in EBNA, our
NLENet still achieves competitive performance in case7.

B. ABLATION ON BATCH-WISE NON-LOCAL MODULE
To further explore the impact of the proposed batch-wise non-
local module, we train several models with a different number
of images b = 1, 2, 4, 6 which are employed in the batch-
wise non-local module. The results of loss and PSNR test on

Set12 are shown in FIGURE 10. We can observe that larger b
accelerates the convergence of the model and achieves better
performance. We can also find that when the b increases the
performance gain is getting moderate. However, larger b also
leads to more memory consumption in the patch matching
process during training. In this case we set the b = 6 because
the memory consumption reaches the limit capacity of the
GPU we use. So we choose the largest b we can to improve
the performance.

C. FEATURE VISUALIZATION OF THE PROPOSED
MODULES
To further explore the proposed modules’ influence, we visu-
alize their feature map output in Figure 11. We can observe
that the feature map extracted by our batch-wise non-local
module (in (a)) is more clear and abundant compared to self
non-local module (in (d)). We can also find that compared
to the batch-wise non-local module, the CA and SA modules
extract non-local features with a clear focus area in the feature
map. Thus, we collaborate these modules to build EBNA
(in (e)), which generates more sparsed non-local features.
To further preserve more delicate local details in the restored
images, we add a deformable convolution block (DECB) to
cooperate with EBNA. We can see from (f) that the DECB
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FIGURE 12. Parameters and inference time study on image of size 480× 320 (from BSD68 test set). (a) Parameter size comparison
and (b) Inference time comparison.

extract more sophisticated local features. With the EBNA and
DECB, NLIB can combine non-local and local features to
generate more enriched features, as shown in (c). As men-
tioned in reference [83] that feature map with lower chan-
nel weight contains more noise-like information. Therefore
NLIB can preserve more texture and structural information,
since it generates higher channel weight feature maps (in (c))
after combining the non-local and local features.

D. PARAMETERS AND INFERENCE TIME STUDY
FIGURE 12 shows the model parameter size and the GPU run
time of the competing methods on synthetic denoising task.
The Nvidia cuDNN-v7.0 deep learning library is adopted
under Ubuntu 16.04 system.

From (a) in FIGURE 12, we can observe that despite the
superior performance of NLENet, its parameter size is larger
compared to RIDNet, SADNet, and COLA-Net. Because in
NLENet, the proposed non-local module includes several
extra convolution layers and attention modules.

While from (b) in FIGURE 12, the run-time evaluation
demonstrates that our proposed model still achieves a com-
petitive speed with an outstanding performance. Especially
compared with COLA-Net, our NLENet can achieve sig-
nificant speed improvement. We achieve such effectiveness
because NLENet employs amulti-scale structure, saving time
at a low-resolution scale. Furthermore, in COLA-Net, over-
lapping non-local patches are extracted and will cost more
time in the non-local process. NLENet has a longer inference
time than SADNet because NLENet has a more sophisti-
cated structure. Besides the deformable convolution modules
that explore adaptive local information, the EBNA module
employs various non-local modules to generate enriched non-
local features, which takes more time. Therefore, our multi
non-local enhanced module can achieve better performance
while keeping a competitive inference speed at the same time.

VI. CONCLUSION
In this paper, we propose a batch-wise non-local module to
explore long-range dependencies. We further build an EBNA

module based on our proposed batch-wise non-local module,
in which various non-local modules are combined to extract
more enriched non-local features. Besides EBNA, we build
a novel block named NLIB, which collaborates various non-
local features with adaptive local features to acquire the capa-
bility of preserving fine contextual details. Finally, we embed
the NLIB in a U-net-like structure named as NLENet. Exten-
sive experiments show that NLENet consistently achieves
state-of-the-art performance for several image restoration
tasks, such as synthetic image denoising, real image denois-
ing, JPEG artifacts removal and real image super resolution.

REFERENCES

[1] L. Gondara, ‘‘Medical image denoising using convolutional denoising
autoencoders,’’ in Proc. IEEE 16th Int. Conf. Data Mining Workshops
(ICDMW), Dec. 2016, pp. 241–246.

[2] L. Wu, M. Xu, L. Sang, T. Yao, and T. Mei, ‘‘Noise augmented double-
stream graph convolutional networks for image captioning,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 8, pp. 3118–3127, Aug. 2021.

[3] H. Jiang, G. Zhai, H. Cai, and J. Yang, ‘‘Scalable motion analysis based
surveillance video de-noising,’’ in Proc. IEEE Int. Conf. Multimedia Expo.
Workshops (ICMEW), Oct. 2018, pp. 1–6.

[4] L. Zhang, S. Vaddadi, H. Jin, and S. K. Nayar, ‘‘Multiple view image
denoising,’’ in Proc. IEEEConf. Comput. Vis. Pattern Recognit., Jun. 2009,
pp. 1542–1549.

[5] S. Hao, X. Han, Y. Guo, X. Xu, and M. Wang, ‘‘Low-light image enhance-
ment with semi-decoupled decomposition,’’ IEEE Trans. Multimedia,
vol. 22, no. 12, pp. 3025–3038, Dec. 2020.

[6] Z. Huang, Y. Zhang, Q. Li, T. Zhang, N. Sang, and H. Hong, ‘‘Progressive
dual-domain filter for enhancing and denoising optical remote-sensing
images,’’ IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 759–763,
May 2018.

[7] J. Zhang, Y. Liu, S. Zhang, R. Poppe, and M. Wang, ‘‘Light field saliency
detection with deep convolutional networks,’’ IEEE Trans. Image Process.,
vol. 29, pp. 4421–4434, 2020.

[8] G. Li, Y. Yang, X. Qu, D. Cao, and K. Li, ‘‘A deep learning based image
enhancement approach for autonomous driving at night,’’ Knowl.-Based
Syst., vol. 21, Feb. 2020, Art. no. 106617.

[9] Z. Chen, X. Hou, L. Shao, C. Gong, X. Qian, Y. Huang, and S. Wang,
‘‘Compressive sensing multi-layer residual coefficients for image coding,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 4, pp. 1109–1120,
Apr. 2020.

[10] P. Zhuang, Y. Huang, D. Zeng, and X. Ding, ‘‘Mixed noise removal based
on a novel non-parametric Bayesian sparse outlier model,’’ Neurocomput-
ing, vol. 174, pp. 858–865, Jan. 2016.

29540 VOLUME 10, 2022



Y. Huang et al.: Non-Local Enhanced Network for Image Restoration

[11] Y. Wei, Z. Zhang, Y. Wang, M. Xu, Y. Yang, S. Yan, and M. Wang,
‘‘DerainCycleGAN: Rain attentive CycleGAN for single image deraining
and rainmaking,’’ IEEE Trans. Image Process., vol. 30, pp. 4788–4801,
2021.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ‘‘Image denoising by
sparse 3D transform-domain collaborative filtering,’’ IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[13] A. Buades, B. Coll, and J. M. Morel, ‘‘A non-local algorithm for
image denoising,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Dec. 2005, pp. 60–65.

[14] M. Elad and M. Aharon, ‘‘Image denoising via sparse and redundant
representations over learned dictionaries,’’ IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[15] Y. Gao, H. Li, J. Dong, and G. Feng, ‘‘A deep convolutional network for
medical image super-resolution,’’ in Proc. Chin. Autom. Congr. (CAC),
Oct. 2017, pp. 184–199.

[16] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,’’ IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[17] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, ‘‘Residual dense network
for image restoration,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 7, pp. 2480–2495, Jul. 2021.

[18] J. Kim, J. Kwon Lee, and K. Mu Lee, ‘‘Accurate image super-resolution
using very deep convolutional networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Oct. 2016, pp. 1646–1654.

[19] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Enhanced deep residual
networks for single image super-resolution,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 136–144.

[20] P. Zhuang and X. Ding, ‘‘Divide-and-conquer framework for image
restoration and enhancement,’’ Eng. Appl. Artif. Intell., vol. 85,
pp. 830–844, Oct. 2019.

[21] X. Fu, Z. J. Zha, F. Wu, X. Ding, and J. Paisley, ‘‘Jpeg artifacts reduction
via deep convolutional sparse coding,’’ in Proc. Int. Conf. Comput. Vis.,
2019, pp. 1230–1239.

[22] P. Liu, H. Zhang, K. Zhang, L. Lin, andW. Zuo, ‘‘Multi-level wavelet-CNN
for image restoration,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2018, pp. 773–782.

[23] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, ‘‘Image super-
resolution using very deep residual channel attention networks,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 286–301.

[24] Z. Chen, W. Guo, Y. Feng, Y. Li, C. Zhao, Y. Ren, and L. Shao, ‘‘Deep-
learned regularization and proximal operator for image compressive sens-
ing,’’ IEEE Trans. Image Process., vol. 30, pp. 7112–7126, 2021.

[25] S. Anwar and N. Barnes, ‘‘Real image denoising with feature atten-
tion,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 3155–3164.

[26] X. Wang, L. Zhu, Y. Wu, and Y. Yang, ‘‘Symbiotic attention for
egocentric action recognition with object-centric alignment,’’ IEEE
Trans. Pattern Anal. Mach. Intell., early access, Aug. 11, 2020, doi:
10.1109/TPAMI.2020.3015894.

[27] H. Fan, L. Zhu, Y. Yang, and F. Wu, ‘‘Recurrent attention network with
reinforced generator for visual dialog,’’ ACM Trans. Multimedia Comput.,
Commun., Appl., vol. 16, no. 3, pp. 1–16, 2020.

[28] D. Yu, J. Fu, X. Tian, and T. Mei, ‘‘Multi-source multi-level attention net-
works for visual question answering,’’ ACM Trans. Multimedia Comput.,
Commun., Appl., vol. 15, no. 2s, pp. 1–20, Apr. 2019.

[29] Y. Tai, J. Yang, X. Liu, andC.Xu, ‘‘MemNet: A persistentmemory network
for image restoration,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2017,
pp. 4539–4547.

[30] L.-F. Dong, Y.-Z. Gan, X.-L. Mao, Y.-B. Yang, and C. Shen, ‘‘Learning
deep representations using convolutional auto-encoders with symmetric
skip connections,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Apr. 2018, pp. 2810–2818.

[31] C. Mou, J. Zhang, X. Fan, H. Liu, and R. Wang, ‘‘COLA-Net: Collabo-
rative attention network for image restoration,’’ IEEE Trans. Multimedia,
early access, Mar. 4, 2021, doi: 10.1109/TMM.2021.3063916.

[32] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, ‘‘Non-local recurrent
network for image restoration,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 1673–1682.

[33] X. Wang, R. Girshick, A. Gupta, and K. He, ‘‘Non-local neural networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7794–7803.

[34] Y. Li, F. Guo, R. Tan, and M. Brown, ‘‘A contrast enhancement framework
with JPEG artifacts suppression,’’ in Proc. Eur. Conf. Comput. Vis. Berlin,
Germany: Springer, 2014, pp. 174–188.

[35] Y. Chen, W. Yu, and T. Pock, ‘‘On learning optimized reaction diffusion
processes for effective image restoration,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 5261–5269.

[36] J. Kim, J. Kwon Lee, and K. Mu Lee, ‘‘Deeply-recursive convolutional
network for image super-resolution,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Apr. 2016, pp. 1637–1645.

[37] A. Davy, T. Ehret, J.-M. Morel, P. Arias, and G. Facciolo, ‘‘A non-local
CNN for video denoising,’’ inProc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2019, pp. 2409–2413.

[38] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang, ‘‘End-to-end learnt
image compression via non-local attention optimization and improved
context modeling,’’ IEEE Trans. Image Process., vol. 30, pp. 3179–3191,
2021.

[39] P. Liu, S. Chang, X. Huang, J. Tang, and J. C. K. Cheung, ‘‘Contextualized
non-local neural networks for sequence learning,’’ in Proc. AAAI Conf.
Artif. Intell., vol. 33, Jul. 2019, pp. 6762–6769.

[40] R. Jia, Y. Cao, H. Tang, F. Fang, C. Cao, and S. Wang, ‘‘Neural extractive
summarization with hierarchical attentive heterogeneous graph network,’’
in Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2020,
pp. 3622–3631.

[41] Z. Tu, Y. Ma, C. Li, J. Tang, and B. Luo, ‘‘Edge-guided non-local fully
convolutional network for salient object detection,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 31, no. 2, pp. 582–593, Feb. 2021.

[42] Z. Wang, N. Zou, D. Shen, and S. Ji, ‘‘Non-local u-nets for biomedical
image segmentation,’’ in Proc. AAAI Conf. Artif. Intell., vol. 34, 2020,
pp. 6315–6322.

[43] Z. Zhu, M. Xu, S. Bai, T. Huang, and X. Bai, ‘‘Asymmetric non-local
neural networks for semantic segmentation,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 593–602.

[44] G. Hu, B. Cui, and S. Yu, ‘‘Skeleton-based action recognition with syn-
chronous local and non-local spatio-temporal learning and frequency atten-
tion,’’ in Proc. IEEE Int. Conf. Multimedia Expo. (ICME), Jul. 2019,
pp. 1216–1221.

[45] Z. Chen, X.Hou, X.Qian, andC.Gong, ‘‘Efficient and robust image coding
and transmission based on scrambled block compressive sensing,’’ IEEE
Trans. Multimedia, vol. 20, no. 7, pp. 1610–1621, Jul. 2018.

[46] J. Yu, J. Liu, L. Bo, and T. Mei, ‘‘Memory-augmented non-local attention
for video super-resolution,’’ 2021, arXiv:2108.11048.

[47] X. Gao, Y. Wang, J. Cheng, M. Xu, and M. Wang, ‘‘Meta-learning based
relation and representation learning networks for single-image deraining,’’
Pattern Recognit., vol. 120, Dec. 2021, Art. no. 108124.

[48] L. I. Rudin, S. Osher, and E. Fatemi, ‘‘Nonlinear total variation based noise
removal algorithms,’’ Phys. D, Nonlinear Phenomena, vol. 60, nos. 1–4,
pp. 259–268, 1992.

[49] Y. Shen, Q. Liu, S. Lou, and Y.-L. Hou, ‘‘Wavelet-based total variation
and nonlocal similarity model for image denoising,’’ IEEE Signal Process.
Lett., vol. 24, no. 6, pp. 877–881, Jun. 2017.

[50] W. Liu, Q. Yan, and Y. Zhao, ‘‘Densely self-guided wavelet network
for image denoising,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 432–433.

[51] Y. Mei, Y. Fan, and Y. Zhou, ‘‘Image super-resolution with non-local
sparse attention,’’ in Proc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 3517–3526.

[52] X. Du, S. Jiang, Y. Si, L. Xu, and C. Liu, ‘‘Mixed high-order non-local
attention network for single image super-resolution,’’ IEEE Access, vol. 9,
pp. 49514–49521, 2021.

[53] X. Du, J. Niu, and C. Liu, ‘‘Expectation-maximization attention cross
residual network for single image super-resolution,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Oct. 2021, pp. 888–896.

[54] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7132–7141.

[55] S. Woo, J. Park, and J. Lee, ‘‘CBAM: Convolutional block attention
module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 3–19.

[56] A. Paszke, S. Gross, F. Massa, and A. Lerer, ‘‘PyTorch: An imperative
style, high-performance deep learning library,’’ in Advances in Neural
Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook, NY, USA:
Curran Associates, 2019, pp. 8024–8035.

[57] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

VOLUME 10, 2022 29541

http://dx.doi.org/10.1109/TPAMI.2020.3015894
http://dx.doi.org/10.1109/TMM.2021.3063916


Y. Huang et al.: Non-Local Enhanced Network for Image Restoration

[58] D. Martin, C. Fowlkes, D. Tal, and J. Malik, ‘‘A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,’’ in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2, Jul. 2001, pp. 416–423.

[59] J. Huang, A. Singh, and N. Ahuja, ‘‘Single image super-resolution from
transformed self-exemplars,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Dec. 2015, pp. 5197–5206.

[60] M. Chang, Q. Li, H. Feng, and Z. Xu, ‘‘Spatial-adaptive network for single
image denoising,’’ in Proc. Eur. Conf. Comput. Vis. Berlin, Germany:
Springer, 2020, pp. 171–187.

[61] Y. Kim, J. W. Soh, G. Y. Park, and N. I. Cho, ‘‘Transfer learning from
synthetic to real-noise denoising with adaptive instance normalization,’’ in
Proc. Conf. Comput. Vis. Pattern Recognit., 2020, pp. 3482–3492.

[62] C. Wang, C. Ren, X. He, and L. Qing, ‘‘Deep recursive network for image
denoising with global non-linear smoothness constraint prior,’’ Neurocom-
puting, vol. 426, pp. 147–161, Oct. 2021.

[63] C. Tian, Y. Xu, W. Zuo, B. Du, C.-W. Lin, and D. Zhang, ‘‘Designing and
training of a dual CNN for image denoising,’’Knowl.-Based Syst., vol. 226,
Aug. 2021, Art. no. 106949.

[64] D. Valsesia, G. Fracastoro, and E. Magli, ‘‘Deep graph-convolutional
image denoising,’’ IEEE Trans. Image Process., vol. 29, pp. 8226–8237,
2020.

[65] C.Mou, J. Zhang, and Z.Wu, ‘‘Dynamic attentive graph learning for image
restoration,’’ in Proc. Int. Conf. Comput. Vis., Oct. 2021, pp. 4328–4337.

[66] E. Agustsson and R. Timofte, ‘‘NTIRE 2017 challenge on single image
super-resolution: Dataset and study,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 1230–1239.

[67] A. Abdelhamed, S. Lin, and M. S. Brown, ‘‘A high-quality denoising
dataset for smartphone cameras,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 1230–1239.

[68] T. Plotz and S. Roth, ‘‘Benchmarking denoising algorithms with real
photographs,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2750–2759.

[69] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ‘‘Color image denois-
ing via sparse 3D collaborative filtering with grouping constraint in
luminance-chrominance space,’’ in Proc. IEEE Int. Conf. Image Process.,
Sep. 2007, pp. 313–316.

[70] H. C. Burger, C. J. Schuler, and S. Harmeling, ‘‘Image denoising: Can plain
neural networks compete with BM3D?’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 2392–2399.

[71] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, ‘‘Toward convolutional
blind denoising of real photographs,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 1712–1722.

[72] Z. Yue, H. Yong, Q. Zhao, D. Meng, and L. Zhang, ‘‘Variational denoising
network: Toward blind noise modeling and removal,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 1688–1699.

[73] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, ‘‘A statistical evaluation of
recent full reference image quality assessment algorithms,’’ IEEE Trans.
Image Process., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.

[74] K. Yu, C. Dong, C. Change Loy, and X. Tang, ‘‘Deep convolution networks
for compression artifacts reduction,’’ 2016, arXiv:1608.02778.

[75] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, ‘‘Residual non-local attention
networks for image restoration,’’ in Proc. Int. Conf. Learn. Represent.,
2019, pp. 1230–1239.

[76] M. Ehrlich, L. Davis, S.-N. Lim, and A. Shrivastava, ‘‘Quantization guided
JPEG artifact correction,’’ in Proc. Eur. Conf. Comput. Vis. Berlin, Ger-
many: Springer, 2020, pp. 293–309.

[77] C. Ren, Q. Teng, X. He, L. Qing, and T. Q. Nguyen, ‘‘Compressed image
restoration via deep deblocker driven unified framework,’’ Knowl.-Based
Syst., vol. 228, May 2021, Art. no. 107268.

[78] X. Fu, M. Wang, X. Cao, X. Ding, and Z.-J. Zha, ‘‘A model-
driven deep unfolding method for JPEG artifacts removal,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Jun. 3, 2021, doi:
10.1109/TNNLS.2021.3083504.

[79] J. Cai, H. Zeng, H. Yong, Z. Cao, and L. Zhang, ‘‘Toward real-world single
image super-resolution: A new benchmark and a new model,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Oct. 2019, pp. 3086–3095.

[80] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, and Z. Wang, ‘‘Photo-realistic single image
super-resolution using a generative adversarial network,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Oct. 2017, pp. 4681–4690.

[81] Y. Shi, H. Zhong, Z. Yang, X. Yang, and L. Lin, ‘‘DDet: Dual-path dynamic
enhancement network for real-world image super-resolution,’’ IEEE Signal
Process. Lett., vol. 27, pp. 481–485, 2020.

[82] P. Wei, Z. Xie, H. Lu, Z. Zhan, Q. Ye, W. Zuo, and L. Lin, ‘‘Component
divide-and-conquer for real-world image super-resolution,’’ in Proc. Eur.
Conf. Comput. Vis., vol. 2020, pp. 101–117.

[83] Y. Zhang, K. Li, K. Li, G. Sun, Y. Kong, and Y. Fu, ‘‘Accurate and
fast image denoising via attention guided scaling,’’ IEEE Trans. Image
Process., vol. 30, pp. 6255–6265, 2021.

YUAN HUANG is currently pursuing the Ph.D.
degree with Xi’an Jiaotong University, under the
supervision of Prof. X. Hou. Her research interests
include image denoising, image super-resolution,
and image retrieval.

XINGSONG HOU received the Ph.D. degree from
Xi’an Jiaotong University, Xi’an, China, in 2005.
From 2010 to 2011, he was a Visiting Scholar with
Columbia University, New York, USA. He is cur-
rently a Professor with the School of Electronics
and Information Engineering, Xi’an Jiaotong Uni-
versity. His research interests include video/image
coding, wavelet analysis, sparse representation,
compressive sensing, and radar signal processing.

YUJIE DUN (Member, IEEE) received the Ph.D.
degree in information and communication engi-
neering from Xi’an Jiaotong University (XJTU),
Xi’an, China, in 2016. After the Ph.D. degree, she
visited Washington University in St. Louis, USA,
as a Visiting Scholar, in 2017 and 2018, and a
Postdoctoral Researcher, in 2018 and 2019. She is
currently working as an Associate Professor with
the School of Information and Communication,
Xi’an Jiaotong University. Her research interests

include audio/speech signal processing and coding, statistical signal process-
ing and modeling, biomedical signal processing, and machine learning.

ZAN CHEN received the B.S. and Ph.D. degrees
from Xi’an Jiaotong University, in 2012 and 2019,
respectively. He was a Visiting Scholar with the
University of East Anglia (UEA), Norwich, U.K.,
in 2018. He is currently an Associate Profes-
sor with the College of Information Engineering,
Zhejiang University of Technology. His research
interests include compressive sensing, computer
vision, and medical image processing.

XUEMING QIAN received the B.S. and M.S.
degrees from the Xi’an University of Technol-
ogy, Xi’an, China, in 1999 and 2004, respectively,
and the Ph.D. degree in electronics and infor-
mation engineering from Xi’an Jiaotong Univer-
sity, Xi’an, in 2008. He was a Visiting Scholar
with Microsoft Research Asia, Beijing, China,
from 2010 to 2011. He was an Assistant Professor
with Xi’an Jiaotong University, where he was an
Associate Professor, from 2011 to 2014, and is

currently a Full Professor. He is also the Director of the Smiles Laboratory,
Xi’an Jiaotong University. His research interests include social media big
data mining and search.

29542 VOLUME 10, 2022

http://dx.doi.org/10.1109/TNNLS.2021.3083504

