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ABSTRACT We propose in this work to employ the Box-LASSO, a variation of the popular LASSOmethod,
as a low-complexity decoder in a massive multiple-input multiple-output (MIMO) wireless communication
system. The Box-LASSO is mainly useful for detecting simultaneously structured signals such as signals that
are known to be sparse and bounded. Onemodulation technique that generates essentially sparse and bounded
constellation points is the so-called generalized space-shift keying (GSSK) modulation. In this direction,
we derive high dimensional sharp characterizations of various performance measures of the Box-LASSO
such as the mean square error, probability of support recovery, and the element error rate, under independent
and identically distributed (i.i.d.) Gaussian channels that are not perfectly known. In particular, the analytical
characterizations can be used to demonstrate performance improvements of the Box-LASSO as compared
to the widely used standard LASSO. Then, we can use these measures to optimally tune the involved
hyper-parameters of Box-LASSO such as the regularization parameter. In addition, we derive optimum
power allocation and training duration schemes in a training-based massive MIMO system. Monte Carlo
simulations are used to validate these premises and to show the sharpness of the derived analytical results.

INDEX TERMS LASSO, box-constraint, performance analysis, channel estimation, spatial modulation,
power allocation, massive MIMO.

I. INTRODUCTION
The least absolute selection and shrinkage operator
(LASSO) [1] is a widely used method to recover an unknown
sparse signal s0 from noisy linear measurements r = As0+v,
by solving the following optimization problem:

ŝ = arg min
s∈Rn
‖As− r‖22 + ‖s‖1, (1)

where ‖ · ‖2, and ‖ · ‖1 represent the `2-norm and `1-norm
of a vector, respectively. Furthermore, A is the measurement
matrix, v is the noise vector, and > 0 is a regularization
parameter that balances between the fidelity of the solution
as controlled by the `2-norm on one side, and the sparsity of
the solution as enforced by the `1-norm on the other hand.
It allows for learning a sparse model where few of the entries
are non-zero. The LASSO reduces to the linear regression as
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→ 0. The LASSO has been widely used in modern data
science and signal processing applications such as in [2]–[4].

The LASSO is a special instance of a class of problems
called non-smooth regularized convex optimization prob-
lems [5]. In the past ten years, various forms of sharp analysis
of the asymptotic performance of such optimization problems
have been considered under the assumption of noisy inde-
pendent and identically distributed (i.i.d.) Gaussian measure-
ments. They mostly take one of the following approaches.

The first is the approximate message passing (AMP)
framework, which was utilized in [6]–[8] to conduct a sharp
asymptotic study of the performance of compressed sens-
ing problems with the assumption of i.i.d. Gaussian sensing
matrices.

The authors in [9]–[11] undertook a different approach that
uses the replica method from statistical physics, which is a
powerful high-dimensional analysis tool. However, it lacks
rigorous mathematical justifications in some of its steps.
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In addition, the high-dimensional error performance of dif-
ferent regularized estimators was previously explored using
some heuristic arguments and numerical simulations in [12]
and [13].

Another approach based on random matrix theory
(RMT) [14] was taken in [15], [16] to analyze the
high-dimensional squared error performance of ridge regres-
sion. One major drawback of RMT is that it requires the
involved optimization problems to admit a closed-form solu-
tion, which is not necessarily true for general non-smooth
convex optimization problems.

The most recent approach is based on a newly developed
framework that uses the convex Gaussian min-max theo-
rem (CGMT) initiated by Stojnic [17] and further extended
by Thrampoulidis et al. in [5]. It provides the analysis in
a more natural and elementary way when compared to the
previously discussed methods. The CGMT has been used to
analyze the performance of different optimization problems.
For example, in [18]–[21], the asymptotic mean square
error (MSE) for several regularized M -estimators was inves-
tigated. Sharp analysis of general performance measures such
as the probability of support recovery and `1-reconstruction
error was obtained in [22]–[24]. The asymptotic symbol
error rate (SER) of the box relaxation optimization has been
derived for various modulation schemes in [25]–[28]. The
CGMT has also been utilized in [19] and [29] to analyze non-
linear measurement models (e.g., quantized measurements).
Furthermore, the same technique has been used in cases
where the measurement matrix is not perfectly known [24],
[25] or it has correlated entries [30], [31].

A. CONTRIBUTIONS
In this paper, instead of the standard LASSO in (1), we will
use the so-called Box-LASSO [20], which is the same as the
LASSO but with an additional box-constraint. We will for-
mally define it in (12). We propose using the Box-LASSO as
a low-complexity decoder in massive MIMO communication
systems with modern modulation methods such as the gen-
eralized space-shift keying (GSSK) [32] modulation and the
generalized spatial modulation (GSM) [33]. In such systems,
the transmitted signal vector s0 is inherently sparse and have
elements belonging to a finite alphabet, which is a suitable
setting for employing the Box-LASSO as a decoding method.

Using the CGMT framework, this paper derives sharp
asymptotic characterizations of the mean square error, sup-
port recovery probability, and element error rate of the
Box-LASSO under the presence of estimation errors in
the channel matrix that has i.i.d. Gaussian entries. Our
consideration of channel estimation errors presents technical
challenges in analyzing the performance of the Box-LASSO
in comparison to previous publications that utilize the CGMT
in high-dimensional regression problems.

The key insights of this work can be listed as

1) The analysis demonstrate that the Box-LASSO outper-
forms the standard LASSO in all of the considered
metrics.

2) The derived expressions can be used to optimally tune
the involved hyper-parameters of the algorithm which
further improves the performance.

3) Furthermore, we study the application of the Box-
LASSO to GSSK modulated massive MIMO sys-
tems and optimize their power allocation and training
duration.

The additional contributions of this paper against the most
related works such as [20], [23], [26] are summarized as
follows:

• This paper considers the more practical and challenging
scenario of imperfect channel state information (CSI),
whereas [20], [26], [34] only derived the analysis for the
ideal case of perfect CSI.

• Even when the imperfect CSI case was studied in the
previous works on the LASSO and Box-Elastic Net
in [23], [24], only a theoretical imperfect CSI model
(the so-called Gauss-Markov model) was considered.
On the other hand, this work presents the analysis under
amore practical model of the imperfect CSI, which is the
linear minimum mean square error (LMMSE) channel
estimate in (8) for a massive MIMO application.

• With this massive MIMO application in mind, we derive
the asymptotically optimal power allocation and training
duration schemes for GSSK signal recovery.

• We show that the derived power allocation optimiza-
tion is nothing but the well-known scheme that maxi-
mizes the effective signal-to-noise ratio (SNR) proposed
in [35].

B. ORGANIZATION
The rest of this paper is organized as follows. The system
model, channel estimation and the proposed Box-LASSO
decoder are discussed in Section II. Section III provides the
main asymptotic results of the work. In addition, the applica-
tion of Box-LASSO to amassiveMIMO system and its power
allocation and training duration optimization is presented in
Section IV. Finally, concluding remarks and future research
directions are stated in Section V. The proof of the results is
deferred to the appendix.

C. NOTATIONS
The basic notations used throughout the paper are gathered
here. Let R be the set of real numbers, while Rn denotes
the set of n-dimensional real vectors. Bold face lower case
letters (e.g., x) represent a column vector while xj is its jth

entry. For x ∈ Rn, let ‖x‖2 =
√∑n

j=1 x
2
j , and ‖x‖1 =∑n

j=1 |xj|. Matrices are denoted by upper case letters such as
X, with In being the n× n identity matrix. (·)> and (·)−1 are
the transpose and inverse operators, respectively. We use the
standard notations E[·], and P[·] to denote the expectation of
a random variable and probability of an event respectively.
We write X ∼ px to denote that a random variable X
has a probability density/mass function px . In particular, the
notation q ∼ N (0,6q) is used to denote that the random
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FIGURE 1. Saturated shrinkage function.

vector q is normally distributed with 0 mean and covariance

matrix 6q = E[qq>], where 0 represent the all-zeros vector
of the appropriate size. The notation δχ is used to represent

a point-mass distribution at χ . We write ‘‘
P
−→’’ to denote

convergence in probability as n→∞. We also use standard
notation plimn→∞2n = 2 to denote that a sequence of ran-
dom variables 2n, [n = 1, 2, . . .], converges in probability
towards a constant 2. When writing x? = argminx f (x),
the operator argmin returns any one of the possible mini-
mizers of f . The function Q(x) = 1

√
2π

∫
∞

x e−u
2/2du is the

Q-function associated with the standard normal density.
Finally, for a, , l, u ∈ R, such that , u ≥ 0, l ≤ 0, we

define the following functions:
• The saturated shrinkage function H(a; , l, u) :=
arg min

l≤x≤u
1
2 (x − a)

2
+ |x|, which is given as:

H(a; , l, u) =



u, if a ≥ u+
a− , if < a < u+
0, if |a| ≤
a+ , if l − < a < −
l, if a ≤ l − .

(2)

A plot of this function is depicted in Fig. 1.
• Also, letM(a; , l, u) := min

l≤x≤u
1
2 (x − a)

2
+ |x|, which

can be rewritten as:1

M(a; , l, u)

=



1
2 (u− a)

2
+ u, if a ≥ u+

a− 1
2

2, if < a < u+
1
2a

2, if |a| ≤
− a− 1

2
2, if l − < a < −

1
2 (l − a)

2
− l, if a ≤ l − .

(3)

II. PROBLEM SETUP
A. SYSTEM MODEL
A massive MIMO system with n transmit (Tx) antennas and
m receive (Rx) antennas is considered in this paper.We herein
consider a training-based transmission that consists of a
coherence interval with T = Tt + Td symbols in which the
channel realization is assumed to be constant. During the

1This function is a generalization of the Moreau envelope function of the
`1-norm.

first part of this coherence interval, Tt symbol intervals are
used as known pilot symbols, with average power, Pt . These
pilot symbols are employed for channel estimation purposes.
The remaining Td symbols are dedicated to transmitting data
symbols with average power, Pd . Conservation of energy
implies that

PtTt + PdTd = P T , (4)

where P is the average total transmission power.
Letting ν denote the ratio of the total transmission energy

allocated to the data, we may write

PdTd = νTP, PtTt = (1− ν)TP, ν ∈ (0, 1). (5)

This system model is illustrated in Fig. 2.
The received signal for the data transmission phase can be

modeled as

r =

√
Pd
n
Hs0 + v ∈ Rm, (6)

where the following model-assumptions hold, except if oth-
erwise stated:
• H ∈ Rm×n is the MIMO CSI matrix which has i.i.d.
standard Gaussian entries (i.e., N (0, 1)).

• v ∈ Rm is the noise vector with i.i.d. standard Gaussian
entries, i.e., v ∼ N (0, Im).

• The unknown signal vector s0 is assumed to be k-sparse,
i.e., only k of its elements are sampled i.i.d. from a
distribution ps0 , which has zero-mean and unit-variance
(i.e., E[S20 ] = σ

2
s = 1), and the remaining elements are

zeros.

FIGURE 2. A training-assisted massive MIMO system.

B. ESTIMATION OF THE CHANNEL MATRIX
As indicated in the preceding subsection, a training phase in
which the transmitter sends Tt pilot symbols is used to esti-
mate the channelmatrixH, which is unknown to the receiver.2

In this training phase, the received signal is represented as

Rt =

√
Pt
n
HSt + Vt , (7)

2In communications literature, this is known as the ‘‘imperfect CSI’’ case.
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where Rt ∈ Rm×Tt is the received signal matrix, St ∈ Rn×Tt

is the matrix of transmitted pilot symbols, and Vt ∈ Rm×Tt is
a zero-mean additive white Gaussian noise (AWGN) matrix
with covariance E[VtV>t ] = TtIm.

In this paper, we consider the linear minimummean square
error (LMMSE) estimate of the channel matrix, which can be
derived based on the knowledge of Rt from (7) as [36]

Ĥ =
√
n
Pt

RtS>t

(
StS>t +

n
Pt

In

)−1
,

= H+�, (8)

where � is the channel estimation error matrix, which is
uncorrelated with Ĥ, as per the orthogonality principle of
the LMMSE estimation [35], [36]. For i.i.d. MIMO channels,
it has been proven that the optimal St that minimizes the
estimation MSE satisfies [35]

StS>t = TtIn. (9)

For the above condition to hold, it is required that

Tt ≥ n. (10)

Moreover, under (9), it can be shown that the channel estimate
Ĥ has i.i.d. zero-mean Gaussian entries with variance σ 2

Ĥ
=

1− σ 2
ω [35], where

σ 2
ω =

1

1+ Pt
n Tt

(11)

is the variance of each element in �. Furthermore, it can be
shown that the entries of � are i.i.d. N (0, σ 2

ω) distributed.
Note that the training-phase energy PtTt controls the quality
of the estimation as it appears from (11). In fact, as PtTt →
∞, σ 2

ω → 0, and Ĥ → H, which represents the case of
perfect CSI.

C. DATA DETECTION VIA THE BOX-LASSO
In this work, the problem in (1) is referred to as the standard
LASSO, and we instead introduce the following revised for-
mulation of it termed the Box-LASSO:

ŝ = arg min
s∈Bn

∥∥∥∥
√
Pd
n
Ĥs− r

∥∥∥∥2
2
+ Pd‖s‖1,

where, B = [`, µ], and ` ≤ 0, µ ≥ 0 ∈ R. (12)

When compared to (1), we use A =
√

Pd
n Ĥ here. This is due

to the fact that H is not perfectly known and we only have
its estimate Ĥ that was obtained by training. In addition, note
that the regularization parameter is scaled by a factor of Pd .
This is made such that the two terms growwith the same pace.

The only difference between (12) and (1), is that (12)
now has a ‘‘box-constraint’’. However, as we will show later,
in cases where the elements of s0 are bounded or approx-
imately so, this minor modification ensures a considerable
gain in performance. Therefore, the Box-LASSO can be
used to recover simultaneously structured signals [37], for

example, signals that are both bounded and sparse. Such sig-
nals appear in various applications including machine learn-
ing [4], wireless communications [38], image processing [2],
and so on. Although the Box-LASSO is not as well-known
as the standard LASSO, there are a few references where
it has been applied [39]–[41]. Of particular interest is the
application of the Box-LASSO in spatially modulatedMIMO
systems such as GSSK modulated signals which we will
discuss in Section IV.

D. TECHNICAL ASSUMPTIONS
In this work, we require the following technical assumptions
to hold.
Assumption 1: The analysis requires that the system

dimensions (m, n and k) grow simultaneously large (i.e.,
m, n, k →∞) at fixed ratios:

m
n
→ η ∈ (0,∞), and

k
n
→ κ ∈ (0, 1).

Assumption 2: We assume that the normalized coherence
interval, normalized number of pilot symbols and normalized
number data symbols are fixed and given as

T
n
→ τ ∈ (1,∞),

Tt
n
→ τt ∈ [1,∞), and

Td
n
→ τd ,

respectively.
Under these assumptions, the energy conservation in (4)
becomes

Ptτt + Pdτd = P τ, (13)

and the channel estimation error variance in (11) reads

σ 2
ω =

1
1+ Ptτt

. (14)

E. FIGURES OF MERIT
We measure the performance of the Box-LASSO using fol-
lowing figures of merit:

1) MEAN SQUARE ERROR
A widely used figure of merit is the estimation mean square
error (MSE), that measures the divergence of the esti-
mate ŝ from the original signal s0. Formally, it is defined as

MSE :=
1
n
‖̂s− s0‖22. (15)

2) SUPPORT RECOVERY
In sparse recovery problems, a natural performance measure
that is employed in numerous applications is support recov-
ery, that can be defined as determining whether an element of
s0 is non-zero (i.e., on the support), or if it is zero (i.e., off the
support). The decision, based on the Box-LASSO solution ŝ,
proceeds as follows: if |̂sj| ≥ ζ , then, ŝj is on the support,
where ζ > 0 is a user-defined hard threshold on the elements
of ŝ. Otherwise, ŝj is off the support.
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Essentially, we have two measures: the probability of
successful on-support recovery denoted by ψon

ζ (̂s), and the
probability of successful off -support recovery, i.e., ψoff

ζ (̂s).
Formally, these quantities are defined, respectively, as

ψon
ζ (̂s) :=

1
k

∑
j∈T (s0)

1{|̂sj|≥ζ }, (16a)

ψoff
ζ (̂s) :=

1
n− k

∑
j/∈T (s0)

1{|̂sj|≤ζ }, (16b)

where1{.} is the indicator function, and T (s0) is the support of
s0, i.e., the set of all non-zero element indices of s0. Formally,
for any vector v ∈ Rn, we define the support of v as

T (v) := {j : vj 6= 0}.

III. MAIN RESULTS
A. PERFORMANCE CHARACTERIZATION
In this subsection, we summarize the main theoretical results
regarding the asymptotic performance of the Box-LASSO.
The first theorem gives the sharp performance analysis of the
MSE of the Box-LASSO.
Theorem 1: Let ŝ be a minimizer of the Box-LASSO prob-

lem in (12), whereH, v and s0 satisfy the model assumptions
in Section II-A. In addition, assume that the optimization
problem: maxβ>0minλ>0 G(β, λ) has a unique3 optimizer
(β?, λ?), where

G(β, λ)

:=
β
√
η

2λ
+
βλ
√
η

2

(
1+ κPdσ 2

ω

)
−
β2

4
−

β

2λ
√
η

+βλ
√
ηPdσ 2

ĤE
[
M
(
S0+

Z

λ
√
ηPdσ 2

Ĥ

;
βλ
√
ησ 2

Ĥ

,`,µ

)]
,

(17)

and Z ∼ N (0, 1) is independent of S0 ∼ ps0 .
Then, under Assumption 1 and Assumption 2, and for a

fixed > 0, it holds:

plim
n→∞

MSE =
1

Pdσ 2
Ĥ

(
1
λ2?
− 1− κPdσ 2

ω

)
. (18)

Proof: The proof is relegated to the appendix. �
Remark 1 (Finding Optimal Scalars): The scalars β? and

λ? can be numerically evaluated by solving the first-order
optimality conditions, i.e.,

∇G(β, λ) = 0. (19)

Remark 2 (Design of Practical Systems): The asymptotic
result of Theorem 1 depends only on the system parameters
such as the regularizer , the ratio of Rx to Tx antennas η, the
data power Pd , and the variance of the channel estimation
error σ 2

ω, etc. Given the derived MSE expression, one can
predict in advance the error performance of a communication

3The uniqueness proof is similar to the proof given in [25, Appendix B]
and [5, Lemma 18].

system as a function of these parameters, which allows to
design efficient and optimized systems. See Section IV for
more details.
Remark 3 (Roles of λ? and β?): From Theorem 1 above,

we can see that the optimal scalar λ? is related to the asymp-
totic MSE. However, the role of β? is not evident from the
above theorem.

Based on our derivations, it turns out that β? is related to
another performance metric called the residual [42] between
r and the estimate r̂, which is also called the prediction error.
Formally, it is defined as

R :=
1
n

∥∥∥∥
√
Pd
n
Ĥ̂s︸ ︷︷ ︸

:=̂r

−r
∥∥∥∥2
2
. (20)

Then, as we will prove in the Appendix, under the same
assumptions in Theorem 1, it holds

plim
n→∞

R =
1
4
β2? . (21)

The above expression clearly shows the role β? in predicting
the asymptotic value of the residual, and Fig. 3b illustrates its
high accuracy.

The residual metric is irrelevant to the MIMO application
considered in this paper, but it is of great interest in other
practical data science problems, where you only have an
access to the measurement vector r, and not the true vector s0.
Remark 4 (Optimal MSE Regularizer): Theorem 1 can be

used to find the optimal regularizer MSE
? that minimizes the

MSE. See for example Fig. 3a. Particularly, MSE
? can be

found as follows

MSE
? = argmin

>0

1
λ?
,

= argmax
>0

λ?. (22)

The above expression can be easily proven, by noting that
appears in the MSE expression of (18) only implicitly

through λ?.
In the next theorem, we sharply characterizes the support

recovery metrics introduced earlier in (16).
Theorem 2: Under the same settings of Theorem 1, for any

fixed ζ > 0, and under Assumption 1 and Assumption 2,
the on-support and off-support probabilities converge as in
(23) and (24), as shown at the bottom of the next page,
respectively.

Proof: The proof of Theorem 2 to a great extent follows
the proof of Theorem 1, but is omitted for briefness of the
presentation. See [27], [30] for similar proof techniques. �
Remark 5 (Regularizer’s Strength): It is easy to see from

Theorem 2 that when grows larger, ψoff
ζ (̂s) converges to

1 whereas ψon
ζ (̂s) converges to 0. When approaches 0,

opposite behavior is exhibited. This is expected since large
values of emphasize the `1-norm term, resulting in a sparser
solution. This is illustrated clearly in Fig. 4.
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Remark 6 (Optimal regularizer): A sensible measure of
performance to trade-off between the on-support and
off-support recovery probability is

ψζ (̂s) := θ ψon
ζ (̂s)+ (1− θ ) ψoff

ζ (̂s), for θ ∈ [0, 1]. (25)

The behavior of this metric as a function of is sharply
characterized by Theorem 2. As a result, Theorem 2 can
also be utilized to determine the optimal value of which
optimizes ψζ (̂s).

B. NUMERICAL ILLUSTRATIONS
For the sake of illustration, wewill simply look at the instance
when s0 has elements that are only allowed to take one of
two possible values: 0, or E > 0. For a normalized sparsity
level κ ∈ (0, 1), such prior knowledge is typically modeled
using a sparse-Bernoulli distribution on the elements of s0,
i.e., S0 ∼ (1 − κ)δ0 + κδE . This model is frequently seen
in MIMO communication systems using generalized space-
shift keying (GSSK) modulation [32]; we go over the role of
the Box-LASSO in such systems in Section IV. In this case,
setting ` = 0, and µ = E as the box-constraint values is a
natural choice.

Therefore, in our numerical simulations, we assume that s0
has elements that are sampled i.i.d. from a sparse-Bernoulli
distribution with P[S0 = 0] = 0.8, P[S0 = 1] = 0.2 (i.e.,
κ = 0.2) and E = 1; to satisfy the unit-variance assumption.

Fig. 3 shows the close match between Theorem 1 asymp-
totic prediction of the MSE and residual of the Box-LASSO
and the Monte Carlo (MC) simulations. For the simulations,
we used η = 1.5, n = 100, T = 500,Tt = n, ν = 0.5, and
P = 15 dB. These results are averaged over 100 independent
realizations of s0,H and v. From this figure, it can be seen that
the Box-LASSO outperforms the standard LASSO. We can
also see in Fig. 3a that as the regularization parameter
is varied, a pronounced minimum for a certain > 0 is
observed.

The analytical expressions of Theorem 2 for the support
recovery probabilities are compared to the MC simulations
and displayed in Fig. 4 with the same simulation settings as
in the preceding figure. Once again, this figure demonstrates
the great accuracy of the provided theoretical expressions.
Remark 7: For the previously mentioned sparse-Bernoulli

distributed signal, the support recovery probabilities in (23),
and (24) simplify to

plim
n→∞

ψon
ζ (̂s) = Q

(
(ζ − E)λ?

√
ηPdσ 2

Ĥ
+

√
Pd

β?σĤ

)
, (26)

and

plim
n→∞

ψoff
ζ (̂s) = 1−Q

(
ζλ?

√
ηPdσ 2

Ĥ
+

√
Pd

β?σĤ

)
. (27)

These expressions are used in the numerical simulations
above with E = 1 therein.
Remark 8 (Unbounded Elements): In instances when the

elements of the original signal are unbounded but take values
in a specific range with high probability, the Box-LASSO
can be a valuable decoder as well. To demonstrate this, let us
take the example in which the elements of s0 are i.i.d. sparse-
Gaussian distributed, i.e., S0 ∼ (1−κ)δ0+κ N (0, σ 2

s ). Fig. 5
illustrates a case in which the Box-LASSO outperforms the
standard LASSO. We used ` = −σs and µ = σs as the
box-constraints in this example.
Remark 9 (Universality): Even without the Gaussianity

assumption on the elements of the channel matrix H, our
extensive simulations strongly indicate that the statements of
Theorem 1 and Theorem 2 are still valid. This is especially
helpful in MIMO applications where the channel matrix ele-
ments can be represented beyond the typical fading model
(Gaussian), such as in the more involved fading models, e.g.,
Weibull and Nakagami [43]. The same asymptotic statements
appear to hold regardless of whether the distribution of H
is Gaussian, Binary, or Laplacian (as illustrated in Fig. 6).
Rigorous proofs, known as universality results, in [44]–[46]
support such a claim.
Remark 10 (Efficient Implementation): It is worth noting

that the Box-LASSO can be efficiently implemented via
quadratic programming (QP) as in [39], where it was used to
implement an efficient algorithm of the constrained LASSO.
We applied the same algorithm to the Box-LASSO decoder in
the above numerical simulations utilizing MATLAB built-in
function quadprog.

IV. GSSK MODULATED MASSIVE MIMO SYSTEMS
Traditional linear modulation schemes become expensive in
modern massive MIMO systems. This is due to the large
required number of radio frequency (RF) chains needed for
the massive number of antennas. One promising modulation
technique is the so-called spatial modulation (SM), where
only the antenna’s location relays information and only a
small subset of the antennas is active at each time [47].
This significantly reduces the system complexity since the
required number of RF chains is less now. This modulation
scheme saves energy; since using fewer RF chains, we have
less power dissipation through the power amplifiers, etc.

plim
n→∞

ψon
ζ (̂s) = P

[∣∣∣∣H(S0 + Z

λ?

√
ηPdσ 2

Ĥ

;
β?λ?
√
ησ 2

Ĥ

, `, µ

)∣∣∣∣ ≥ ζ], (23)

plim
n→∞

ψ
off
ζ (̂s) = P

[∣∣∣∣H( Z

λ?

√
ηPdσ 2

Ĥ

;
β?λ?
√
ησ 2

Ĥ

, `, µ

)∣∣∣∣ ≤ ζ]. (24)

15850 VOLUME 10, 2022



A. M. Alrashdi et al.: Optimum GSSK Transmission in Massive MIMO Systems Using Box-LASSO Decoder

FIGURE 3. MSE/Residual performance of the Box-LASSO and the standard LASSO vs. the regularizer. The analytical prediction is based on
Theorem 1 with ps0 = (1− κ) δ0 + κ δE . We used κ = 0.2, η = 1.5,n = 128, T = 500, Tt = n, ν = 0.5,E = 1, and P = 15 dB.

FIGURE 4. Probability of successful support recovery of the Box-LASSO and LASSO. The analytical prediction is based on Theorem 2 with
ps0 = (1− κ) δ0 + κ δE . We used κ = 0.2, η = 1.5,n = 128, T = 500, Tt = n, ν = 0.5,E = 1, and P = 15 dB.

Modern SM techniques include the generalized space-shift
keying (GSSK) modulation [32], [38], and the generalized
spatial modulation (GSM) [33].

A. BOX-LASSO FOR DETECTING
GSSK MODULATED SIGNALS
As mentioned above, recently developed modulation
techniques such as GSM and GSSK modulation, generate
signals that are essentially sparse and have elements belong-
ing to a finite alphabet (i.e., bounded). Hence, when such
modulations are employed, we will use the Box-LASSO as
low-complexity decoding method, instead of the previously
proposed standard LASSO decoders [48], [49].

For the sake of simplicity, we will focus on GSSK mod-
ulated systems. Considering a modulation setup, where a
fixed-size set I ⊂ {1, · · · , n} of active antennas transmit
s0,j = 1, j ∈ I at each transmission, while the remaining

antennas stay inactive, i.e., s0,j = 0, j /∈ I. Hence, only active
antennas positions convey information.

To decode s0, firstly, get a solution ŝ of the Box-LASSO
in (12), with ` = 0 and µ = 1. Then, map ŝ into a vector s?

which has elements either 0 or 1. In the GSSK context, this
typically entails sorting ŝ and setting its largest k entries to 1
and the remaining to 0 [48].

In order to evaluate the performance of the Box-LASSO in
this application, we will use the so-called element error rate
(EER) [20] as a performance measure. Similar to the support
recovery metric, we first hard-thresholding ŝ by a constant
ζ ∈ (0, 1), in order to map each of its element to either 0 or 1.
Then, the EER can be defined as

EERζ :=
1
|I|

∑
j∈I

1{|̂sj|≤ζ } +
1

n− |I|
∑
j/∈I

1{|̂sj|≥ζ }. (28)
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FIGURE 5. MSE of the Box-LASSO and standard LASSO. The analytical
prediction is based on Theorem 1 with a sparse-Gaussian s0 signal.
We used κ = 0.1, η = 1.2,n = 400, T = 1000, Tt = 456, ν = 0.5, σ2

s = 1,
and P = 10 dB.

FIGURE 6. MSE of the Box-LASSO for different measurement matrices.
The theoretical prediction is based on Theorem 1 with a sparse-Bernoulli
s0 signal. We used κ = 0.1, η = 0.8,n = 200,
T = 700, Tt = 256, ν = 0.6,P = 5 dB.

The next proposition gives a sharp asymptotic prediction of
the EER in the GSSKmodulated MIMO systems application.
Proposition 1: Let EERζ be as defined in the above equa-

tion with |I| = κn, for κ ∈ (0, 1). Also, let β?, and λ? be
solutions to the minimax optimization in (17), with ps0 =
(1− κ)δ0 + κδ1 therein. Then, for a fixed ζ ∈ (0, 1), it holds

plim
n→∞

EERζ = Q
(
(1− ζ )λ?

√
ηPdσ 2

Ĥ
−

√
Pd

β?σĤ

)
+Q

(
ζλ?

√
ηPdσ 2

Ĥ
+

√
Pd

β?σĤ

)
. (29)

Proof: The proof follows from Theorem 2 by observing
that the EER in (28) may be rewritten as

EERζ = 2− ψon
ζ (̂s)− ψoff

ζ (̂s), (30)

with the on/off support probability expressions of the
sparse-Bernoulli distribution derived earlier in (26) and (27)
for E = 1. �

On the receiving side of some MIMO systems, there may
not be sufficient number of antennas. This is owing to the
receiver’s small size, limited cost or weight, and low power
consumption. Such MIMO systems, where the number of
receive antennas m is less than that of the transmitters n (i.e.,
m < n), are known as overloaded (or underdetermined)
MIMO systems [50]. Fig. 7 illustrates the accuracy of the
derived EER expression for a case of an overloaded system,
with an overloading ratio of 1/η = 1.25. This figure shows
that the Box-LASSO outperforms the standard one in the
EER sense as well.

FIGURE 7. Element Error Rate of the Box-LASSO and the standard LASSO
for GSSK signal recovery. Here, we used
T = 500,m = 120,n = Tt = 150,k = 15, ζ = 0.1, ν = 0.5, and P = 10 dB.
The data are averaged over 100 independent iterations.

B. POWER ALLOCATION AND TRAINING
DURATION OPTIMIZATION
The overall performance of a large MIMO system can be
enhanced by optimizing the power allocation between trans-
mitted pilot and data symbols as compared to equal power
distribution [35]. Power optimization problems in MIMO
systems have been presented on the basis of several perfor-
mance measures. The authors in [51], [52] developed a power
allocation strategy based on minimizing the MSE, while
bit error rate (BER) and SER minimization was addressed
in [25], [53], [54]. In addition, [35], [55], [56] investigated the
training optimization based on channel capacity maximiza-
tion. Furthermore, the authors in [57]–[59] presented power
allocation techniques based on maximizing the sum rates.
Because power allocation optimization research includes a
large body of literature, the list of references above is not
exhaustive. We did, however, cite the most relevant works to
this paper.

1) OPTIMAL POWER ALLOCATION
In this subsection, we will use the previously derived asymp-
totic results for the MSE and EER to find an optimal power
allocation scheme, in a GSSK modulated system, that mini-
mizes these error measures.
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FIGURE 8. This figure shows the MSE/EER of Box-LASSO/LASSO as functions of ν. We used T = 1000,n = 400, Tt = 456,P = 12 dB, η = 1.5, κ = 0.1,
and ζ = 0.01.

For fixed τt and τ , the power allocation optimization prob-
lem can be caste as

min
Pt ,Pd

MSE

subject to: Ptτt + Pd (τ − τt ) = Pτ,

Pt = (1− ν)Pτ, Pd = νPτ, 0 < ν < 1.

It can be shown that the above optimization problem boils
down to only optimizing the data energy ratio ν. The results
are summarized next.

For fixed τt and τ , and using Box-LASSO with an optimal
regularizer MSE

? as in (22), the optimal power allocation that
minimizes the MSE is given by

νMSE? = argmin
0<ν<1

MSE, (31)

whereMSE is the asymptotic MSE expression in (18).
Similarly, when using the EER as a performance metric,

we have

νEER? = argmin
0<ν<1

EERζ ( ?), (32)

where EERζ ( ?) is the asymptotic EER expression in (29)
with the optimal regularizer ? that minimizes the EER.
For the Box-LASSO decoder, finding νMSE? or νEER? in
closed-form expressions seems to be a difficult task, but by
using a bisection method we can numerically find the optimal
power allocation scheme.

In Fig. 8, we plotted the MSE and EER of the Box-LASSO
and standard LASSO as functions of the data energy ratio ν.
This figure shows that optimizing the MSE and EER are
equivalent with ν? ≈ 0.5373. Furthermore, it shows that
the optimal power allocation is nothing but the well-known
scheme ν̄? which was shown in [25], [35] to maximize the

effective SNR, where ν̄? is given as ( [25, Eq. (35)]):

ν̄? =


ϑ −
√
ϑ(ϑ − 1) if τd > 1,

1
2

if τd = 1,

ϑ +
√
ϑ(ϑ − 1) if τd < 1,

(33)

where

ϑ =
1+ P · τ

P · τ (1− 1
τd
)
. (34)

This result is significant, since it showed again that the
optimal power allocation scheme is nothing but the celebrated
one that maximizes the effective SNR of the MIMO system,
i.e., ν̄?. The power allocation actually does not depend on the
type of the modulation constellation used, the used detector,
or the other problem parameters such as η and κ . For example,
in [25], the same power allocation scheme was obtained
for a massive MIMO system with M -ary pulse amplitude
modulated (M -PAM) signals and a Box-regularized least
squares (Box-RLS) detector, while this work employs the
Box-LASSO decoder for GSSK signal recovery.

2) OPTIMAL TRAINING DURATION
In order to optimize the training duration, we introduce the
following performance metric, which is called the goodput.
The goodput is calculated by dividing the amount of useful
transmitted data by the time it takes to send it success-
fully [25], [60]. Formally, it can be defined as

Goodput(τt , τ ) =
(
1−

τt

τ

)
(1− EER). (35)

The optimal value T ?t that maximizes the goodput is deter-
mined in the following Corollary. For a fixed power alloca-
tion, the goal is to identify the optimal number of training
symbols out of the total coherence interval symbols. From
(10), we must have T ?t ≥ n (or, τ ?t ≥ 1), and obviously,
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FIGURE 9. Goodput performance of Box-LASSO vs. Tt . We used
T = 1000,P = 12 dB,n = 200, ν = 0.5, η = 1.5, κ = 0.1, and ζ = 0.01.

T ?t < T (or, τ ?t < τ ). Therefore, τ ?t is a solution to the
maximization problem:

τ ?t = arg max
1≤τt<τ

Goodput(τt , τ ), (36)

where

Goodput(τt , τ ) :=
(
1−

τt

τ

)
[1− plimn→∞ EERζ ( ?)]

(37)

is the asymptotic value of the goodput.
Corollary 1 (Optimal Training Duration): Under imper-

fect CSI, the optimal training duration that maximizes the
goodput in (36) is given by:

τ ?t = 1 (or T ?t = n), (38)

for all P and τ (or T ).
Proof: This result can be proven in a similar manner

to [25], details are thus omitted. �
Fig. 9 shows the goodput performance of Box-LASSO

versus the training duration Tt , which confirms the result of
Corollary 1. It shows that at Tt = n = 200, the goodput is
maximized.

V. CONCLUSION AND FUTURE WORK
In this work, we derived sharp asymptotic characterizations
of the mean square error, probability of support recovery and
element error rate of the Box-LASSO under the presence of
uncertainties in the channel matrix in the form of channel
estimation errors. The analytical tool used in the analysis
is the recently developed CGMT framework. The derived
expressions can be used to optimally tune the involved
hyper-parameters of the algorithm such as the regularizer.
Then, we used the Box-LASSO as a low complexity decoder
in an application of massive MIMO detection using GSSK
modulation, and optimize the power allocation between train-
ing and data symbols to minimize the MSE or EER of the
system. Furthermore, we derived the optimal training dura-
tion that maximizes the system’s goodput. Numerical simu-
lations show very close agreement to the derived theoretical

predictions. Moreover, we showed that the Box-LASSO out-
performs standard one in all of the considered performance
metrics.

Finally, we highlight that the generalized spatial modula-
tion (GSM) is more involved than the considered GSSKmod-
ulation since it uses the positions of active antenna in addition
to a constellation symbol (e.g., M -QAM, M -PSK, etc.) to
encode information [33]. However, we focused in this paper
on GSSK systems since the analysis framework, namely the
CGMT, requires real-valued quantities (signals and chan-
nels). An interesting possible future work is to extend the
results of this paper to systems involving complex-valued
data such as GSM and investigate their power allocation opti-
mization. Moreover, this paper assumes Gaussian channels
matrices with i.i.d. entries, but in numerous wireless com-
munication applications, there are usually spatial correlations
between the antennas. Therefore, another possible extension
is to study correlated massive MIMO systems, where the
matrix entries are no longer i.i.d.

APPENDIX. SKETCH OF THE PROOF
In this appendix, we derive the asymptotic analysis of the
considered Box-LASSO problem’s performancemetrics. Our
analysis is based on the CGMT, which is discussed more
below.

A. TECHNICAL TOOL: CGMT
Firstly, we summarize the CGMT framework [5] before prov-
ing our main results. For a comprehensive list of technical
requirements, please see [5], [27]. Consider the following
two optimization problems, which we call the primal opti-
mization (PO) and auxiliary optimization (AO) problems,
respectively.

8(C) := min
x∈Sx

max
y∈Sy

y>Cx+ ξ (x, y), (39a)

φ(g1, g2) := min
x∈Sx

max
y∈Sy
‖x‖g>1 y+ ‖y‖g

>

2 x+ ξ (x, y),

(39b)

where C ∈ Rm̃×ñ, g1 ∈ Rm̃, g2 ∈ Rñ,Sx ⊂ Rñ,Sy ⊂ Rm̃

and ξ : Rñ
×Rm̃

7→ R. Moreover, the function ξ is assumed to
be independent of the matrixC. Denote by x8 := x8(C), and
xφ := xφ(g1, g2) any optimal minimizers of (39a) and (39b),
respectively. Further let Sx, and Sy be convex and compact
sets, ξ (x, y) is convex-concave continuous on Sx × Sy, and
let C, g1 and g2 all have i.i.d. standard normal entries.
The PO-AO relationship is formally stated in the next

theorem, the proof of which can be found in [5].
Theorem 3 (CGMT [5]): Under the above assumptions,

the CGMT shows that the following statements hold true:
(i) For any c ∈ R and t > 0, the following holds

P
[∣∣8(C)− c∣∣ > t

]
≤ 2P

[
|φ(g1, g2)− c| > t

]
. (40)

In words, if the optimal cost of the AO problem is
concentrated around c, the optimal cost of the associated
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PO problem is also concentrated around the same value
c. According the CGMT, this will finally imply that
the original optimal cost (e.g., the optimal value of
Box-LASSO cost in (12) considered in this paper) will
concentrate around c as well. Please see Fig. 10 for a
numerical illustration.

(ii) Let S be any arbitrary open subset of Sx, and Sc =
Sx \ S. Denote φSc (g1, g2) the optimal cost of the
optimization in (39b), when the minimization over x is
constrained over x ∈ Sc. Consider the regime m̃→∞,
and ñ → ∞ such that m̃ñ → η. Moreover, suppose that
there exist constants φ and φSc such that

a) φ(g1, g2)
P
−→ φ,

b) φSc (g1, g2)
P
−→ φSc ,

c) φ < φSc .
Then, if in addition, limñ→∞ P[xφ ∈ S] = 1, it also
holds that

lim
ñ→∞

P[x8 ∈ S] = 1. (41)

When the assumptions of Theorem 3 are met, the
CGMT-based proof proceeds in general as follows:

• Identifying the PO and the associated AO: This step
involves transforming the original optimization problem
into the desired minimax PO form, and then identify its
corresponding AO problem.

• Simplifying the AO: In this step, the AO is reduced into
a scalar optimization problem.

• Probabilistic analysis of the AO: In this step, we prove
that the AO converges to a deterministic) asymp-
totic optimization problem which involves only scalar
variables.

• Choice of S: The set S should be selected properly
based on themeasure of interest. For instance, if wewant
to analyze theMSE or the EER,S will be the set inwhich
the MSE or the EER concentrates, respectively.

After introducing the CGMT framework, we prove
Theorem 1 next. For the sake of clarity, the steps of the proof
are divided into the following various subsections.

B. PO AND AO IDENTIFICATION
To obtain the result of Theorem 1 using CGMT, we need first
to rewrite the Box-LASSO optimization problem (12) as a
PO problem. Let us begin by considering a simple change of
variables

e := s− s0, (42)

to directly handle the error vector e. Also, for all j ∈
{1, 2, · · · , n}, we define the following modified Box-set:

D =
{
ej ∈ R : `− s0,j ≤ ej ≤ µ− s0,j

}
. (43)

Then, recalling that r =
√

Pd
n Hs0 + v, the problem in (12)

can be reformulated as

ê = arg min
e∈Dn

∥∥∥∥
√
Pd
n
Ĥe+

√
Pd
n
�s0 − v

∥∥∥∥2
2

+ Pd‖e+ s0‖1. (44)

This minimization is not in the PO form as it is missing the
max part. So to fix this, let us express the loss function using
its Legendre-Fenchel transformation4:

‖x‖22 = max
y∈Rm

y>x−
1
4
‖y‖22. (45)

Hence, the problem above is equivalent to the following

min
e∈Dn

max
y∈Rm

√
Pd
n
y>Ĥe+

√
Pd
n
y>�s0 − y>v

−
1
4
‖y‖22 + Pd‖e+ s0‖1. (46)

One technical requirement of the CGMT is the compactness
of the feasibility set over y. This can be handled following the
approach in [5, Appendix A], by introducing a sufficiently
large artificial constraint set

Sy =

{
y ∈ Rm

: ‖y‖2 ≤ Cy

}
, (47)

for some sufficiently large constant (independent of n) Cy >
0. This will not asymptotically affect the optimization prob-
lem. Then, we obtain

8(H̃) := min
e∈Dn

max
y∈Sy

√
Pdσ 2

Ĥ

n
y>H̃e+

√
Pdσ 2

ω

n
y>�̃s0

−y>v−
1
4
‖y‖22 + Pd‖e+ s0‖1, (48)

where H̃ and �̃ are independent matrices with i.i.d. N (0, 1)
entries each. The above problem is now in a PO form of the
CGMT, with

ξ (e, y) =

√
Pdσ 2

ω

n
y>�̃s0 − y>v−

1
4
‖y‖22 + Pd‖e+ s0‖1.

(49)

Thus, its associated AO is given as

φ(g, z) := min
e∈Dn

max
y∈Sy

√
Pdσ 2

Ĥ

n
‖e‖2g>y

+

√
Pdσ 2

Ĥ

n
‖y‖2z>e+ ξ (e, y), (50)

where g ∼ N (0, Im) and z ∼ N (0, In) are independent
random vectors.

4For any convex function f , we may write: f (x) = maxy y>x − f ?(y),
where f ? is the Fenchel (convex) conjugate of f .

VOLUME 10, 2022 15855



A. M. Alrashdi et al.: Optimum GSSK Transmission in Massive MIMO Systems Using Box-LASSO Decoder

C. AO SIMPLIFICATION
In order to simplify the AO, we first let

g̃ :=

√
Pdσ 2

Ĥ

n
‖e‖2g− v+

√
Pdσ 2

ω

n
�̃s0.

It can be shown that g̃ ∼ N (0,6g̃), where

6g̃ =

(
Pdσ 2

Ĥ

n
‖e‖22 + 1+

Pdσ 2
ω

n
‖s0‖22

)
Im. (51)

Then, the AO can be rewritten as

min
e∈Dn

max
y∈Sy

g̃>y+

√
Pdσ 2

Ĥ

n
‖y‖2z>e−

‖y‖22
4
+ Pd‖e+ s0‖1.

(52)

Fixing the norm of y to α := ‖y‖2, we can easily optimize
over its direction. This simplifies the AO to

min
e∈Dn

max
α>0

α‖̃g‖2 +

√
Pdσ 2

Ĥ

n
α z>e−

α2

4
+ Pd‖e+ s0‖1.

(53)

D. ASYMPTOTIC ANALYSIS OF THE AO
Next, we need to normalize the above objective function by
1
n , to have all of its terms of the same order, O(1), and also
define

β :=
α
√
n
. (54)

Then, after a change of the order of the min-max,5 we obtain:

max
β>0

min
e∈Dn

β

√
Pdσ 2

Ĥ

n
‖e‖22 + 1+

Pdσ 2
ω

n
‖s0‖22

‖g‖2
√
n

+

√
Pdσ 2

Ĥ
β
1
n
z>e−

β2

4
+

Pd
n
‖e+ s0‖1. (55)

Note the abuse of notation for g to represent another standard
normal vector.

To have a separable optimization problem, we use the
following variational identity:

√
x = min

λ>0

1
2λ
+
λx
2
, for x ≥ 0, (56)

with optimum solution λ̂ = 1
√
x . Using this trick, with

x =
Pdσ 2

Ĥ

n
‖e‖22 + 1+

Pdσ 2
ω

n
‖s0‖22, (57)

the optimization in (55) becomes

max
β>0

min
λ>0

β‖g‖2
2λ
√
n
+
βλ‖g‖2
2
√
n

(
1+

Pdσ 2
ω

n
‖s0‖22

)
−
β2

4

+ min
e∈Dn

{
βλ‖g‖2
2
√
n

Pdσ 2
Ĥ

n
‖e‖22

5It has been shown in [5, Appendix A] that flipping the order of the min-
max is possible for large dimensions.

+

√
Pdσ 2

Ĥ
β
z>e
n
+

Pd
n
‖e+ s0‖1

}
. (58)

Using the weak law of large numbers (WLLN) [61,
Theorem 5.14], we have

‖g‖2
√
n

P
−→
√
η, (59)

and
1
n
‖s0‖22

P
−→ κ. (60)

Next, using the above convergence results, and working with
the original optimization variable s instead of e, we get

max
β>0

min
λ>0

β
√
η

2λ
+
βλ
√
η

2

(
1+ Pdσ 2

ωκ
)
−
β2

4

+
1
n

n∑
j=1

min
`≤sj≤µ

{
βλ
√
η

2
Pdσ 2

Ĥ (sj − s0,j)
2

+

√
Pdσ 2

Ĥ
βzj(sj − s0,j)+ Pd |sj|

}
. (61)

After a completion of squares in sj, and noting that 1n z
>s0

P
−→

0, the above problem becomes

max
β>0

min
λ>0

β
√
η

2λ
+
βλ
√
η

2

(
1+ Pdσ 2

ωκ
)

−
β2

4
−

1
n

n∑
j=1

β

2λ
√
η
z2j

+βλ
√
ηPdσ 2

Ĥ

1
n

n∑
j=1

min
`≤sj≤µ

×

{
1
2

(
sj −

(
s0,j +

zj

λ
√
ηPdσ 2

Ĥ

))2

+
βλ
√
ησ 2

Ĥ

|sj|
}

= max
β>0

min
λ>0

G(β, λ, z, s0). (62)

The optimization over sj could be obtained in closed-form
using the saturated shrinkage function H(a; , l, u) which
is defined in (2). Also, let its optimal objective be
M(a; , l, u) = minl≤s≤u 1

2 (s − a)
2
+ |s| as defined in (3).

Now, again, using the WLLN, we have

1
n

n∑
j=1

z2j
P
−→ 1, (63)

and for all β > 0, and λ > 0:

1
n

n∑
j=1

M

s0,j + zj

λ
√
ηPdσ 2

Ĥ

;
βλ
√
ησ 2

Ĥ

, `, µ


P
−→ E

M
S0 + Z

λ
√
ηPdσ 2

Ĥ

;
βλ
√
ησ 2

Ĥ

, `, µ

 , (64)

where the expectation is taken over S0 ∼ ps0 and Z ∼
N (0, 1).
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Consequently, the objective function in (62), i.e.,
G(β, λ, z, s0), converges point-wise to the quantity G(β, λ),
defined in (17), in the limit of n→ ∞. Afterwards, observe
thatG(β, λ, z, s0) is convex in λ and concave in β. With these,
and using Theorem 2.7 in [62], it follows that

max
β>0

min
λ>0

G(β, λ, z, s0)
P
−→ max

β>0
min
λ>0

G(β, λ). (65)

Finally, the optimization problem in (62) simplifies to the
following scalar optimization (SO) problem:

max
β>0

min
λ>0

β
√
η

2λ
+
βλ
√
η

2

(
1+ Pdσ 2

ωκ
)
−
β2

4
−

β

2λ
√
η

+βλ
√
ηPdσ 2

ĤE
[
M
(
S0+

Z

λ
√
ηPdσ 2

Ĥ

;
βλ
√
ησ 2

Ĥ

,`,µ

)]
= max

β>0
min
λ>0

G(β, λ) := φ. (66)

It is worthwhile to mention that in the above equation,
G(β?, λ?), where (β?, λ?) is the unique solution of (66), rep-
resents the the asymptotic value of the objective function in
(12) for a minimizer ŝ, i.e.,

plim
n→∞

1
n

(∥∥∥∥
√
Pd
n
Ĥ̂s− r

∥∥∥∥2
2
+ Pd ‖̂s‖1

)
= G(β?, λ?). (67)

Fig. 10 shows the great accuracy of the above result when
compared to numerical simulations.

After deriving the SO problem, we are now in a position to
study the asymptotic convergence of the MSE. The analysis
is given in the next subsection.

E. ERROR ANALYSIS VIA THE CGMT
(PROOF OF THEOREM 1)
In this part, we study the asymptotic convergence of the MSE
of the Box-LASSO. First, using the fact that λ̂ = 1

√
x and

recalling from (57) that

1
n
‖̃e‖22 =

1

Pdσ 2
Ĥ

(
1

λ̂2n

− 1−
Pdσ 2

ω

n
‖s0‖22

)
, (68)

where ẽ is the AO solution in (55), and λ̂n is the solution
to (58) in λ. Using [5, Lemma 10], it can be shown that

λ̂n
P
−→ λ?, where λ? is the solution to (66). Then, by the

WLLN, 1
n‖s0‖

2
2

P
−→ κ , and hence

1
n
‖̃e‖22

P
−→

1
Pdσ 2Ĥ

(
1
λ2?
− 1− Pdσ 2

ωκ
)
. (69)

Recall that ẽ = s̃ − s0, so the last step is to use the CGMT
to prove that the quantities ŝ− s0 and s̃− s0 are concentrated
in the same set with high probability. However, we first need
to check that all the CGMT conditions (a)-(c) are satisfied.
Formally, for any fixed ε > 0, we define the set:

Sε =

q ∈ Rn
:

∣∣∣∣∣∣‖q‖
2
2

n
−

( 1
λ2?
− 1− Pdσ 2

ωκ)

Pdσ 2
Ĥ

∣∣∣∣∣∣ < ε

 . (70)

FIGURE 10. Optimal objective function value of the Box-LASSO vs. the
regularizer for a sparse-Bernoulli vector. We used
κ = 0.2, η = 1.5,n = 128, T = 500, Tt = n, ν = 0.5,E = 1, and P = 15 dB.

Next, consider the perturbed version of the AO in (50) as
follows:

φSc
ε
(g, z) := min

e/∈Sε
max
y∈Sy

√
Pdσ 2

Ĥ

n
‖e‖2g>y

+

√
Pdσ 2

Ĥ

n
‖y‖2z>e+ ξ (e, y), (71)

From (66), we can see that the AO value in (50) converges

to some constant φ, i.e., φ(g, z)
P
−→ φ. Furthermore, the

same line of arguments can be used to show that φSc
ε
(g, z)

converges to another constant φSc
ε
.

Using Lemma 9 (iii) from [5], it can be shown that φSc
ε
> φ.

Thus, the conditions of the CGMT statement in Theorem 3
(ii) are all satisfied.

Then, we proceed by observing that equation (69) proves
that for any ε > 0, s̃− s0 ∈ Sε with probability approaching
one. Then, we conclude by applying the CGMT that ŝ− s0 ∈
Sε with probability approaching one. This proves the asymp-
totic prediction of the MSE as summarized in equation (18)
of Theorem 1.

The residual prediction in Remark 3, equation (21), can be
proven in a similar way. First, note that

‖ŷ‖22 = 4nR, (72)

where ŷ is the PO solution of (46). Using the definition:

β2n =
‖̃y‖22
n , where βn, and ỹ are the solutions of (52), and

(55) respectively, and following the same steps as in the MSE
proof above, one can show that ŷ and ỹ concentrate in the
same set with probability approaching one, and then apply
the CGMT to reach the proof of the residual result in (21).
Details are thus omitted.

REFERENCES
[1] R. Tibshirani, ‘‘Regression shrinkage and selection via the LASSO,’’

J. Roy. Stat. Soc., Ser. B (Methodol.), vol. 58, no. 1, pp. 267–288, Jan. 1996.

VOLUME 10, 2022 15857



A. M. Alrashdi et al.: Optimum GSSK Transmission in Massive MIMO Systems Using Box-LASSO Decoder

[2] M. Ting, R. Raich, and A. O. Hero, ‘‘Sparse image reconstruction
for molecular imaging,’’ IEEE Trans. Image Process., vol. 18, no. 6,
pp. 1215–1227, Jun. 2009.

[3] G. Gui, W. Peng, and L. Wang, ‘‘Improved sparse channel estimation for
cooperative communication systems,’’ Int. J. Antennas Propag., vol. 2012,
pp. 1–7, Jan. 2012.

[4] C. M. Bishop, ‘‘Pattern recognition,’’ Mach. Learn., vol. 128, pp. 1–58,
Jul. 2006.

[5] C. Thrampoulidis, E. Abbasi, and B. Hassibi, ‘‘Precise error analysis of
regularized M -estimators in high dimensions,’’ IEEE Trans. Inf. Theory,
vol. 64, no. 8, pp. 5592–5628, Aug. 2018.

[6] D. L. Donoho, A.Maleki, andA.Montanari, ‘‘Message-passing algorithms
for compressed sensing,’’ Proc. Nat. Acad. Sci. USA, vol. 106, no. 45,
pp. 18914–18919, Jul. 2009.

[7] M. Bayati and A. Montanari, ‘‘The dynamics of message passing on dense
graphs, with applications to compressed sensing,’’ IEEE Trans. Inf. Theory,
vol. 57, no. 2, pp. 764–785, Feb. 2011.

[8] M. Bayati and A. Montanari, ‘‘The LASSO risk for Gaussian
matrices,’’ IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 1997–2017,
Apr. 2012.

[9] D. Guo, D. Baron, and S. Shamai (Shitz), ‘‘A single-letter characterization
of optimal noisy compressed sensing,’’ in Proc. 47th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Sep. 2009, pp. 52–59.

[10] Y. Kabashima, T. Wadayama, and T. Tanaka, ‘‘Statistical mechanical anal-
ysis of a typical reconstruction limit of compressed sensing,’’ inProc. IEEE
Int. Symp. Inf. Theory, Jun. 2010, pp. 1533–1537.

[11] S. Rangan, A. K. Fletcher, and V. K. Goyal, ‘‘Asymptotic analysis
of MAP estimation via the replica method and applications to com-
pressed sensing,’’ IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1902–1923,
Mar. 2012.

[12] D. Bean, P. J. Bickel, N. E. Karoui, and B. Yu, ‘‘Optimal M-estimation in
high-dimensional regression,’’ Proc. Nat. Acad. Sci. USA, vol. 110, no. 36,
pp. 14563–14568, 2013.

[13] N. El Karoui, D. Bean, P. J. Bickel, C. Lim, and B. Yu, ‘‘On robust
regression with high-dimensional predictors,’’ Proc. Nat. Acad. Sci. USA,
vol. 110, no. 36, pp. 14557–14562, Sep. 2013.

[14] R. Couillet and M. Debbah, Random Matrix Methods for Wireless Com-
munications. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[15] N. El Karoui, ‘‘On the impact of predictor geometry on the performance
on high-dimensional ridge-regularized generalized robust regression esti-
mators,’’ Probab. Theory Rel. Fields, vol. 170, nos. 1–2, pp. 95–175,
Feb. 2018.

[16] N. El Karoui, ‘‘Asymptotic behavior of unregularized and ridge-
regularized high-dimensional robust regression estimators: Rigorous
results,’’ 2013, arXiv:1311.2445.

[17] M. Stojnic, ‘‘A framework to characterize performance of LASSO algo-
rithms,’’ 2013, arXiv:1303.7291.

[18] C. Thrampoulidis, S. Oymak, and B. Hassibi, ‘‘Regularized linear regres-
sion: A precise analysis of the estimation error,’’ in Proc. Conf. Learn.
Theory, 2015, pp. 1683–1709.

[19] C. Thrampoulidis, E. Abbasi, and B. Hassibi, ‘‘LASSO with non-linear
measurements is equivalent to one with linear measurements,’’ inAdvances
in Neural Information Processing Systems. Cambridge, MA, USA: MIT
Press, 2015, pp. 3420–3428.

[20] I. B. Atitallah, C. Thrampoulidis, A. Kammoun, T. Y. Al-Naffouri,
M.-S. Alouini, and B. Hassibi, ‘‘The BOX-LASSO with application to
GSSK modulation in massive MIMO systems,’’ in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2017, pp. 1082–1086.

[21] C. Thrampoulidis, A. Panahi, and B. Hassibi, ‘‘Asymptotically exact error
analysis for the generalized equation-LASSO,’’ in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2015, pp. 2021–2025.

[22] E. Abbasi, C. Thrampoulidis, and B. Hassibi, ‘‘General performance
metrics for the LASSO,’’ in Proc. IEEE Inf. Theory Workshop (ITW),
Sep. 2016, pp. 181–185.

[23] A. M. Alrashdi, I. Ben Atitallah, T. Y. Al-Naffouri, and M.-S. Alouini,
‘‘Precise performance analysis of the LASSO under matrix uncertainties,’’
in Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP), Nov. 2017,
pp. 1290–1294.

[24] A. M. Alrashdi, I. B. Atitallah, and T. Y. Al-Naffouri, ‘‘Precise perfor-
mance analysis of the box-elastic net under matrix uncertainties,’’ IEEE
Signal Process. Lett., vol. 26, no. 5, pp. 655–659, May 2019.

[25] A. M. Alrashdi, A. Kammoun, A. H. Muqaibel, and T. Y. Al-Naffouri,
‘‘OptimumM-PAM transmission for massiveMIMO systems with channel
uncertainty,’’ 2020, arXiv:2008.06993.

[26] R. Hayakawa and K. Hayashi, ‘‘Asymptotic performance of discrete-
valued vector reconstruction via box-constrained optimization with sum
of `1 regularizers,’’ IEEE Trans. Signal Process., vol. 68, pp. 4320–4335,
2020.

[27] C. Thrampoulidis, W. Xu, and B. Hassibi, ‘‘Symbol error rate performance
of box-relaxation decoders in massive MIMO,’’ IEEE Trans. Signal Pro-
cess., vol. 66, no. 13, pp. 3377–3392, Jul. 2018.

[28] I. B. Atitallah, C. Thrampoulidis, A. Kammoun, T. Y. Al-Naffouri,
B. Hassibi, and M.-S. Alouini, ‘‘BER analysis of regularized least squares
for BPSK recovery,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2017, pp. 4262–4266.

[29] C. Thrampoulidis and W. Xu, ‘‘The performance of box-relaxation decod-
ing in massive MIMO with low-resolution ADCs,’’ in Proc. IEEE Stat.
Signal Process. Workshop (SSP), Jun. 2018, pp. 821–825.

[30] A. M. Alrashdi, H. Sifaou, A. Kammoun, M.-S. Alouini, and
T. Y. Al-Naffouri, ‘‘Precise error analysis of the LASSO under correlated
designs,’’ 2020, arXiv:2008.13033.

[31] A. M. Alrashdi, H. Sifaou, A. Kammoun, M.-S. Alouini, and
T. Y. Al-Naffouri, ‘‘Box-relaxation for BPSK recovery in massive
MIMO: A precise analysis under correlated channels,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[32] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, ‘‘Generalized space shift
keying modulation for MIMO channels,’’ in Proc. IEEE 19th Int. Symp.
Pers., Indoor Mobile Radio Commun., Sep. 2008, pp. 1–5.

[33] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, ‘‘Generalised spa-
tial modulation,’’ in Proc. Conf. Rec. 44th Asilomar Conf. Signals, Syst.
Comput., Nov. 2010, pp. 1498–1502.

[34] A. Bereyhi, S. Asaad, B. Gäde, R. R. Müller, and H. V. Poor, ‘‘Detection
of spatially modulated signals via RLS: Theoretical bounds and applica-
tions,’’ 2020, arXiv:2011.06890.

[35] B. Hassibi and B. M. Hochwald, ‘‘How much training is needed in
multiple-antenna wireless links?’’ IEEE Trans. Inf. Theory, vol. 49, no. 4,
pp. 951–963, Apr. 2003.

[36] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, vol. 1. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

[37] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi, ‘‘Simul-
taneously structured models with application to sparse and low-rank
matrices,’’ IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2886–2908,
May 2015.

[38] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, ‘‘Space shift
keying modulation for MIMO channels,’’ IEEE Trans. Wireless Commun.,
vol. 8, no. 7, pp. 3692–3703, Jul. 2009.

[39] B. R. Gaines, J. Kim, and H. Zhou, ‘‘Algorithms for fitting the con-
strained LASSO,’’ J. Comput. Graph. Statist., vol. 27, no. 4, pp. 861–871,
Oct. 2016.

[40] G. M. James, C. Paulson, and P. Rusmevichientong, ‘‘The constrained
LASSO,’’ in Proc. Refereed Conf., vol. 31, 2012, pp. 4945–4950.

[41] M. Stojnic, ‘‘Recovery thresholds for `1 optimization in binary com-
pressed sensing,’’ in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2010,
pp. 1593–1597.

[42] R. Hayakawa, ‘‘Noise variance estimation using asymptotic residual in
compressed sensing,’’ 2020, arXiv:2009.13678.

[43] M. K. Simon and M.-S. Alouini, Digital Communication Over Fading
Channels, vol. 95. Hoboken, NJ, USA: Wiley, 2005.

[44] E. Abbasi, F. Salehi, and B. Hassibi, ‘‘Universality in learning from linear
measurements,’’ 2019, arXiv:1906.08396.

[45] S. Oymak and J. A. Tropp, ‘‘Universality laws for randomized dimen-
sion reduction, with applications,’’ Inf. Inference, J. IMA, vol. 7, no. 3,
pp. 337–446, 2018.

[46] A. Montanari and P.-M. Nguyen, ‘‘Universality of the elastic net error,’’ in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2338–2342.

[47] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, ‘‘Spatial
modulation,’’ IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241,
Jul. 2008.

[48] C.-M. Yu, S.-H. Hsieh, H.-W. Liang, C.-S. Lu, W.-H. Chung, S.-Y. Kuo,
and S.-C. Pei, ‘‘Compressed sensing detector design for space shift keying
in MIMO systems,’’ IEEE Commun. Lett., vol. 16, no. 10, pp. 1556–1559,
Oct. 2012.

[49] W. Liu, N. Wang, M. Jin, and H. Xu, ‘‘Denoising detection for the gener-
alized spatial modulation system using sparse property,’’ IEEE Commun.
Lett., vol. 18, no. 1, pp. 22–25, Jan. 2014.

[50] K. K. Wong, A. Paulraj, and R. D. Murch, ‘‘Efficient high-performance
decoding for overloaded MIMO antenna systems,’’ IEEE Trans. Wireless
Commun., vol. 6, no. 5, pp. 1833–1843, May 2007.

15858 VOLUME 10, 2022



A. M. Alrashdi et al.: Optimum GSSK Transmission in Massive MIMO Systems Using Box-LASSO Decoder

[51] T. Ballal,M. A. Suliman, A.M.Alrashdi, and T. Y. Al-Naffouri, ‘‘Optimum
pilot and data energy allocation for BPSK transmission over massive
MIMO systems,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2019, pp. 1–6.

[52] P. Zhao, G. Fodor, G. Dan, and M. Telek, ‘‘A game theoretic approach to
setting the pilot power ratio in multi-user MIMO systems,’’ IEEE Trans.
Commun., vol. 66, no. 3, pp. 999–1012, Mar. 2018.

[53] K.Wang, Y. Chen,M.-S. Alouini, and F. Xu, ‘‘BER and optimal power allo-
cation for amplify-and-forward relaying using pilot-aided maximum like-
lihood estimation,’’ IEEE Trans. Commun., vol. 62, no. 10, pp. 3462–3475,
Oct. 2014.

[54] A. M. Alrashdi, I. Ben Atitallah, T. Ballal, C. Thrampoulidis, A. Chaaban,
and T. Y. Al-Naffouri, ‘‘Optimum training forMIMOBPSK transmission,’’
in Proc. IEEE 19th Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), Jun. 2018, pp. 1–5.

[55] V. K. V. Gottumukkala and H. Minn, ‘‘Optimal pilot power allocation for
OFDM systems with transmitter and receiver IQ imbalances,’’ in Proc.
IEEE Global Telecommun. Conf., Nov. 2009, pp. 1–5.

[56] A. P. Kannu and P. Schniter, ‘‘Capacity analysis of MMSE pilot-aided
transmission for doubly selective channels,’’ in Proc. IEEE 6th Workshop
Signal Process. Adv. Wireless Commun., Jun. 2005, pp. 801–805.

[57] H. T. Dao and S. Kim, ‘‘Pilot power allocation for maximising the
sum rate in massive MIMO systems,’’ IET Commun., vol. 12, no. 11,
pp. 1367–1372, Jul. 2018.

[58] R. Muharar, ‘‘Optimal power allocation and training duration for uplink
multiuser massive MIMO systems with MMSE receivers,’’ IEEE Access,
vol. 8, pp. 23378–23390, 2020.

[59] S. Lu and Z. Wang, ‘‘Training optimization and performance of single cell
uplink systemwithmassive-antennas base station,’’ IEEE Trans. Commun.,
vol. 67, no. 2, pp. 1570–1585, Feb. 2019.

[60] W. Grote, A. Grote, and I. Delgado, ‘‘IEEE 802.11 goodput analysis for
mixed real-time and data traffic for home networks,’’ Ann. Telecommun.-
Annales Télécommun., vol. 63, nos. 9–10, pp. 463–471, Oct. 2008.

[61] A. Klenke, Probability Theory: A Comprehensive Course. Berlin,
Germany: Springer, 2013.

[62] W. K. Newey and D. McFadden, ‘‘Large sample estimation and
hypothesis testing,’’ in Handbook of Econometrics, vol. 4. Amsterdam,
The Netherlands: Elsevier, 1994, pp. 2111–2245.

AYED M. ALRASHDI (Member, IEEE) received
the B.S. degree (Hons.) in electrical engineering
from the University of Ha’il, Ha’il, Saudi Arabia,
in 2014, and theM.S. degree in electrical engineer-
ing and the Ph.D. degree in electrical and computer
engineering from the King Abdullah University
of Science and Technology (KAUST), Thuwal,
Saudi Arabia, in 2016 and 2021, respectively.

He joined the University of Ha’il, in 2014,
where he is currently an Assistant Professor with

the Electrical Engineering Department. From 2017 to 2020, he was
a Research Assistant with the Information System Laboratory (ISL),
KAUST. His research interests include statistical signal processing, high-
dimensional statistics, compressed sensing, statistical learning, and wireless
communications.

ABDULLAH E. ALRASHDI (Graduate Student
Member, IEEE) received the B.S. degree in elec-
trical engineering from the University of Ha’il,
Ha’il, Saudi Arabia, in 2014, where he is cur-
rently pursuing the master’s degree in electrical
engineering. He has been working as an Electri-
cal Engineer with Saudi Aramco Company, since
2015. His research interests include wireless com-
munications, signal processing, and power system
analysis.

AMER ALGHADHBAN (Member, IEEE) received
the B.S. and M.Sc. degrees in computer engineer-
ing from the King Fahd University of Petroleum
and Minerals (KFUPM) and the Ph.D. degree
from the Electrical Engineering Department,
King Abdullah University of Science and Tech-
nology (KAUST). He is currently an Assistant
Professor with the Electrical Engineering Depart-
ment, University of Ha’il. His research interests
include multiple areas in networked systems and

cybersecurities. During his academic career, he achieved several professional
certificates, such as the Cisco Certified Network Associate (CCNA), Cisco
Wireless, the SANS-GIAC Certified Firewall Analyst (GCFW-Gold), the
Certified Ethical Hacker (CEH), the Security Certified Network Engineer
(SCNP), and the SANS Local Mentor.

MOHAMED A. H. ELEIWA received the Ph.D.
degree from The University of Sheffield, in 1992.
He is currently a Professor of electrical engineer-
ing at the University of Ha’il, Saudi Arabia. His
research interests include applied electromagnet-
ics, computational electromagnetics, microwave
communications, and radar systems.

VOLUME 10, 2022 15859


