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ABSTRACT The paper presents a control scheme for the real-time tracking problem of nonlinear
systems subjected to hard nonlinearities. The proposed tracking controller introduces a refining component
in the control input designed for the nominal plant model. The refining component compensates for
tracking performance degradation caused by modelling uncertainties and external disturbances. The refining
component is modelled as a random signal, the probability density function is expressed as a combination of
finite weights typical of particle methods. The weights are updated based on sequential tracking error data.
The proposed algorithm is simulated for an inverted pendulum affected by Coulomb friction. Comparison
with existing techniques exhibits remarkably superior tracking performance.

INDEX TERMS Control design, control refinement, particle filters, sampled data systems.

I. INTRODUCTION
Tracking of reference trajectory by a dynamic plant is one of
the fundamental challenges in control design. The complexity
of the problem is embedded in modelling inaccuracies
and external disturbances. The so-called regulation theory
provides the classical solution for tracking. The reference
signal and the disturbances are assumed to be generated
by an exosystem with known dynamics. The control law
is then designed based on plant and exosystem dynamics
employing feedback. A vast literature on the regulator for
linear dynamical systems can be found in [1]–[3].

Nonlinear tracking has been a central problem in classical
control systems research. Extension of regulator theory
for a particular class of nonlinear systems can be found
in [4]. Another significant contribution in tracking control
of Lipschitz nonlinear systems is based on extended order
high gain observer [5]. In this case, the control law includes
estimating an additional extended state of the system,
representing uncertainties of modelling and disturbances.
Similarly, higher-order sliding mode control with disturbance
observer has been proposed in [6]. The tracking control
approaches for nonlinear systems discussed thus far require
a specific structure of the nonlinear plant model. In addition,
practical nonlinear phenomena like friction, dead-zone and
backlash remain a challenge.
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A parallel, optimization-based approach is approxi-
mate/ neurodynamic programming [7] for handling systems
affected by hard nonlinearities and input constraints. In this
case, the control input is selected from the set of admissible
values that minimizes the cost function over a prediction
horizon. The design of the cost function is based on the
desired performance. If the prediction is based on a system
model, the methodology becomes the well-known Model
Predictive Control (MPC) [8]. Approximate/ neurodynamic
programming is computationally pervasive in model-based
or model-free scenarios. Application of such methodology
for fast, real-time dynamic systems faces implementation
limitations.

The primary motivation behind particles based optimiza-
tion methods is due to their ability to handle nonlinear and
especially non-Gaussian problems [9]–[11]. Particle methods
have found application in control systems in the past. The
technique has been directly adapted for state estimation
[12], [13] and for control effort [14] by converting the
deterministic system into its stochastic counterpart by adding
random measurement and observation noise. It is a necessary
step to adopt the methodology; thus, the problem itself does
not remain deterministic anymore [15], [16]. Particles based
stochastic feedback control is proposed in [17], but the use
of particles is restricted to state estimation only. The control
effort for nonlinear feedback systems has also been designed
by using the particle philosophy [18]–[21] in recent times,
but the scope of these schemes is restricted to the ideal
plants. The run-time trajectory update method using particles
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is proposed in [22]. The method suppresses the system noise
significantly by a modified weight update mechanism but is
not recommended on a large scale due to extensive memory
requirements. The graph-based method [23] suggests a
reduced memory requirement with a lesser number of
particles in a specific environment, but the approach has a
limited application and lacks generality for a large class of
nonlinear problems. The control scheme proposed in [24]
implements the conventional weighted particles approach
for a deterministic problem, but the underlying probability
density function (pdf) is required for its implementation.
The algorithm’s performance is degraded significantly in
the non-availability of accurate information. The particles
based approach to find the optimal control input in the case
of a null controller has been described in [25]. Improved
performance of particles is suggested in [26] by combining
with conventional gradient descent optimizer, but the scheme
is difficult to deploy due to the complex learning process.

The particles based methods show superior performance
over any other sub-optimal scheme if the number of
particles is sufficiently high [27]. That is why particles
are employed in fewer optimal control schemes, despite
their high-performance capability in a nonlinear environment.
The particles based methods have been primarily employed
in the tuning of classical controllers. The optimal tuning
of the linear quadratic regulator through particle swarm
optimization (PSO) is proposed in [28]. The approach is
utilized for position control only. Also, the performance
under disturbances is not considered. The optimal tuning
of a PID controller using a hybridized PSO is proposed
in [29] and a control scheme via quadratic Lyapunov function
with unknown parameters has been implemented using PSO
in [30]. The drawback of the PSO method is premature
convergence and the dependence on user experience to set
the parameter values. Thus they are usually recommended
for offline optimization to solve initial parameters for online
tuning. A Fuzzy-PID control approach is presented in [31]
employing this concept.

The next challenge is to compensate for the effect of
disturbances. Another option is to model the physical
constraints to incorporate them in controller design using
MPC to handle model uncertainties [8]. The approach
again suffers the problem of computational complexity.
Particle MPC introduced in [32] proposes model-based
reinforcement learning to handle the uncertainty. The method
is computationally efficient and based on sequential learning,
but the impact of hard nonlinearities remains unaddressed.
Active disturbance rejection control (ADRC) techniques are
being used to improve the tracking performance of the
system under disturbances in recent times. The extended
state observer (ESO) is an integral part of ADRC where the
conventional and adaptive techniques have been suggested
to improve the overall performance of the controller, and
disturbance estimation [33]. A recursive sliding mode
controller with an adaptive disturbance observer is proposed
in [34] where the high-frequency chattering is a problem

in the resultant output. An adaptive ESO in [35] and
finite time disturbance observer in [36] is proposed along
with a high order sliding mode control to compensate
the time-varying disturbances, but the plant dynamics are
transformed with certain assumptions before applying the
methodology. A standard ESO with PI-based ADRC is
proposed in [37] with limited application to linear plant
models. All the mentioned approaches employ ESO to
estimate the disturbances using the estimation error.

To summarize, the classical methods suggest observer-
based disturbance compensation where the estimation error
is minimized to estimate the disturbance. However, our
control objective is to minimize the tracking error, and
any improvement in the tracking performance cannot be
achieved by the observer on its own. Based on the separation
principle, controller and observer are separately designed
in conventional methods. Whereas our proposed scheme
jointly presents controller and observer behaviour that are
not distinct entities anymore. This idea of disturbance
compensation based on tracking error is unique among
the existing techniques and has not been a focus of
literature. Furthermore, the conventional controllers focus on
asymptotic behaviour resulting in an undesirable transient
response like jerks, spikes, peaking. The transient behaviour
is mainly ignored in the analysis as well. Our approach also
has the advantage of addressing both transient and asymptotic
behaviours.

A. MOTIVATION AND PROPOSED METHODOLOGY
The sufficient information about the plant enables the design
of a nominal control law using classical methods. The desired
trajectory corresponding to ideal asymptotic/ exponential
convergence is obtained when the nominal plant model is
subjected to this nominal controller. However, the desired
performance is not achieved when such control law is applied
to an actual plant due to the external disturbances, model
uncertainty, parameter mismatch. The expected result is a
deviation from the desired trajectory. The presence of hard
nonlinearities like Coulomb friction or constrained input
further worsens the situation.

The goal of this paper is performance recovery through
a computationally efficient and optimization-based solution.
Based on deviation from the desired response, necessary
adjustment in the control input is estimated to have resulted
in perfect tracking. The philosophy of particles is exploited
to achieve this task. The subsequent control input includes
the estimated adjustment resulting in improved tracking
performance. This phenomenon is termed control refinement.
The estimation of control adjustment can be termed as
retrospective learning.

The intuitive notion of achieving ideal tracking is to
recover the performance of the nominal system (perfectly
modelled/unperturbed) under nominal tracking control input.
We term such a response as ‘‘nominal closed-loop system
response’’. In this case, the control refinement is done based
on the difference between the measured system output and
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the nominal closed-loop system response. However, it is
observed that ideal tracking cannot be achieved by following
the nominal controller only. The major reason is that the
process inherits the weakness of the controller. Furthermore,
the controller is perturbed at each sampling instant by giving
a new transient as the refining component. Thus the controller
never settles to a steady state. To overcome these flaws,
instead of replicating the behaviour of the nominal controller,
we propose control refinement based on the difference
between measured system output and an ideal (viable)
trajectory. The ideal trajectory is the desired convergent
curve which describes the ideal system behaviour specifying
the ideal transient and steady-state response. It is the ideal
trajectory that provides a basis for nominal controller design.
The philosophy has led to remarkable tracking performance.

The main contributions are summarized as:
1) A combination of classical and particle methods and a

joint mechanism of controller and observer has led to
a remarkable performance that may exhibit an order of
magnitude reduction in tracking error.

2) The proposed method addresses both transient and
steady-state responses, thereby avoiding issues related
to both.

The organization of the remaining paper is as follows.
The problem has been described in Section II. The details of
particles based optimization with all its associated processes
are discussed in Section III. The optimization algorithm is
given in Section IV, and the stability of the proposed scheme
is discussed in Section V. To authenticate the proposed
technique, the scheme is implemented on a nonlinear
problem, and the simulation results of illustrative example
have been shown in Section VI. Finally, the conclusions are
drawn in Section VII.

II. PROBLEM STATEMENT
Consider the following nonlinear system equations

xk = f (xk−1)+ buk−1 + bdk−1
yk = h(xk )+ vk (1)

where xk ∈ Rn is the state vector and f (·) is a deterministic
transition function, uk is a known and deterministic input
vector that drives the system dynamics, bn×1 is a vector
connecting the input to the system and dk is the process
noise that models external unknown disturbance. yk is the
observation vector and h(·) is a deterministic observation
function that is a known analytical link between the state
vector and observation. vk is the observation noise which is
assumed to be zero mean and additive as well. The SISO
system is considered for simplicity. The methodology can
be extended to MIMO systems without much difficulty. It is
assumed that the exact knowledge about the plant {f , h} is not
available. Instead we have a nominal model

xk = fo(xk−1)+ buk−1
yk = h(xk ) (2)

where f (xk−1) and fo(xk−1) are reasonably close. Notice the
absence of process and observation noise in the above system.
It is worth-mentioning that this framework is general enough
to handle a variety of control problems including stabilization
and tracking. For the later case a reference rk and possibly
its derivatives {ṙk , r̈k , . . .} etc would be required. Our control
objective is to track a time varying reference rk , where the
tracking error is given as:

εr,k = yk − rk (3)

For a wide variety of practical problems, inaccuracies
like model uncertainty (including the presence of hard
nonlinearities like Coulomb friction) and discretization errors
(in the case of sampled data systems) can be absorbed as a
component of external disturbance. From this point onwards,
we assume such cases only. On the other hand, sufficiently
accurate information about h(·) is a requirement; otherwise,
it will not be easy to measure the deviation of the closed-
loop system from the desired response. In this framework, the
assumption of controllability (and observability in the case of
output feedback) is implicit.

It is assumed that a nominal controller uk−1 = ψ(xk−1),
or uk−1 = ψ(x̂k−1) in case of output feedback where x̂k−1 is
the state estimate obtained from some observer is available.
The designed nominal controller is based on the ideal control
behavior ( i.e. the desired behavior is exponentially or
asymptotically convergent) that enables yk to follow an ideal
trajectory yi,k for k = {1, 2, 3, . . .}.

The term ‘‘ideal trajectory’’ is indicative of the ideal
control behaviour and the term ‘‘nominal controller’’ is the
controller designed for the nominal model and applied to the
actual model. Moreover, both the ideal trajectory and nominal
controller include the transient response and the asymptotic
behaviour.

The controller ψ(·) designed for the nominal system has
to be applied to the actual plant. Deteriorated performance
is expected due to various factors mentioned above. Worst-
case scenarios may even lead to instability or oscillations.
Particle methods have been suggested for this purpose to
handle difficult situations for the classical approach.

The dynamic nature of the problem requires corrective
measures for each sample. The nominal controller generates
a control input at each sample that is refined to minimize the
deviation of the output from the desired response. Hence the
method is called ‘‘control refinement’’.

A. NOMINAL CONTROLLER
This section aims to recover the desired controller perfor-
mance when applied to the actual system. The system’s block
diagram with the proposed refinement of the control input is
shown in Fig. 1, where x̂k is the estimated state through the
observer. It is clear from the block diagram that the effect of
disturbances is being compensated using the tracking error,
whereas only the states are estimated at the observer. Also,
the refinement process is performed at each sampling instant,
where uk is given by the nominal control law. The nominal
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FIGURE 1. System Block Diagram for Nominal Controller Tracking.

plant model given in (2) is available for control refinement
to evaluate the deviation from nominal closed-loop system
response, defined as yo,k , where ũk is the refined input
calculated at instant k to be applied to plant for subsequent
measurement.

With the application of uk−1, it was expected that system
output will reach yo,k in the next sample. However, the
presence of unwanted effects deviates the system, whose
output comes out to be yk . As discussed above this deviation
can be collectively attributed to the disturbance dk−1. The
deviation is given as

εo,k = yk − yo,k (4)

We need to first estimate the disturbance dk−1 that caused
εo,k . Once the estimate d̂k−1 is obtained, a non-causal
solution is to cancel the actual disturbance with d̂k−1. Hence
a refined control

ũk−1 = uk−1 − d̂k−1 (5)

is applied instead of uk−1. In the special case when we are
able to find d̂k−1 that forces εo,k = 0, perfect results are
achieved as yk = yo,k . Despite the performance of this
controller, its non-causal form makes it little useful except
in evaluation and assessment. A transition from d̂k−1|k to
d̂k|k is required to make the controller causal, where the
notation is self explanatory. One may be tempted to introduce
dynamics in the disturbance model. However, this approach
considerably, complicates the solution and is left for future
consideration. With these limitations, only the following
choice is left for the transition function

d̂k|k = d̂k−1|k (6)

Due to the nature of control, it is termed ‘‘retrospective
learning’’. The term indicates that a lesson from the past is
applied in the present. Thus the refined causal control is

ũk = uk − d̂k|k (7)

It is expected that this control is able to decrease (if not
minimize) the next deviation i.e.

εo,k+1|k = yk+1|k − yo,k+1 (8)

The refinement iteratively continues with the control. Above,
we have freely used the notation �k|k , �k+1|k etc.
Though with the scheme of following the controller

behaviour, we will be able to track the performance of the
nominal controller. It is worth mentioning that replicating the

FIGURE 2. System Block Diagram for Ideal Trajectory Tracking.

nominal controller’s performance at each sampling instant
may not have remarkable tracking performance. The main
reason is the inherited weakness of the controller itself
when working in a closed-loop system, even when accurate
information about the plant is available. Moreover, The
controller is perturbed through the refining component d̂k
at each sampling instant, causing it to never come out of
transient. Thus the defective nominal response yo,k may not
lead us to achieve the desired control objective. The alternate
approach is to track the theme for which the controller is
designed to improve the tracking performance.

B. IDEAL TRAJECTORY
The philosophy of tracking the nominal control behaviour
does not appear suitable. That leads us to track the idea of
tracking the ideal trajectory yi,k directly somehow.

The system’s block diagram with this approach of refine-
ment is shown in Fig. 2. It can be seen in the block diagram
that the ideal trajectory is available for the control refinement
in addition to the nominal plant to improve the tracking
performance. uk is given by the same controller. The nominal
plant model given in (2) is available for control refinement to
evaluate the deviation from ideal trajectory yi,k , where ũk is
the refined input calculated at instant k to be applied to the
plant for the subsequent measurement.

With the application of uk−1 to the system, the measure-
ment yk is obtained. Due to the presence of unwanted effects,
this output deviates from the desired behavior where the
deviation is given as

εi,k = yk − yi,k (9)

The deviation can be collectively attributed to the distur-
bance. Contrary to the approach of ‘‘retrospective learning’’
in the previous section, the methodology of tracking the ideal
control behaviour is predictive, i.e. preparing the control in
the present to minimize the error in future. The input uk is
calculated to be applied to get the measurement at k + 1.
The output for the next sample can be predicted through
the system model. Since the desired behavior at k + 1 is
available as yi,k+1, the refinement of uk is suggested in terms
of estimating the refining component d̂k to get the refined
input ũk as

ũk = uk + d̂k (10)

that minimizes the deviation

εi,k+1 = ŷk+1 − yi,k+1 (11)
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It is to be noted that d̂k is the estimation of all the
effects responsible for the deviation from the ideal trajectory,
including the inherited weakness of the nominal controller.
The refinement iteratively continues with the control. The
intuition of following the ideal control behavior has remained
intact by ignoring the nominal controller and employing the
idea of tracking the ideal trajectory with the expectation that
this control is able to decrease (if not minimize) the actual
next deviation i.e.

εi,k+1|k = yk+1|k − yi,k+1 (12)

C. OPTIMIZATION
It is clear from the above sections that the tracking
problem can be cast as an optimization problem. It is
essential to mention that ε is not the estimation error of
the classical observer. In that framework, the estimation
error is the difference between actual and estimated output.
This discussion is essential in understanding the difference
between our suggested approach and classical methods of
disturbance cancellation (or attenuation).

In order to proceed to improve the tracking performance,
we need to minimize the deviation ε. This in turn is done by
minimizing the risk function J (ε) w.r.t dk . Particle methods
are appropriate for such propositions. Details will follow in
the next section. The common types of risk functions are

mse : J (ε) = ε2

absolute error : J (ε) = |ε|

and hit − or − miss : J (ε) =

{
0 |ε| < δ

1 otherwise,

where δ is a small positive number [38].
In the Bayesian approach, the cost function corresponds

to obtaining the estimate from mean, median and mode
respectively of the pdf under consideration. The latter of the
three estimators is more suited to our problem. Hence, wewill
rely on the pdf’s mode when point estimators are required.

III. BAYESIAN APPROACH OF OPTIMIZATION
At time k , measurement yk is received. After comparing it
with yi,k we get the deviations εi,k . The disturbance dk is
stochastically modeled to have pdf p(dk |yk , yi,k ).Secondly,
yi,k appears as deterministic parameter making mean of
deviation εi,k equal to yi,k . Note that zero mean assumption
for the observation noise is important here. Also yi,k+1 is the
desired behavior available at k and not a measurement. Its
use in the subsequent equations shows the predictive nature
of control. Making use of Baye’s law

p(dk |y1:k , yi,1:k+1) =
p(yk |dk , yi,k+1)p(dk |y1:k−1, yi,1:k )

p(yk |y1:k−1)
(13)

As observation at time k does not depend on observation at
1 : k − 1, p(yk |y1:k−1, dk ) → p(yk |dk ). Notice the absence
of yi,0 from above. The reason behind is that u0 depends on

yi,0, but neither y0 nor d0. p(yk |dk ; yi,k+1) is the likelihood
function. The states xk do not appear in the expressions as
they only serve as intermediate variables. State estimation
using particles is not the scope of this paper, although
there is a possibility for such an option for cases where
the conventional state estimators are difficult to use. From
Chapman Kolmogonov equation

p(dk |y1:k−1, yi,1:k ) =
∫
p(dk |dk−1)

×p(dk−1|y1:k−1, yi,1:k ) ddk−1 (14)

where we have used the fact p(dk |dk−1, y1:k−1) →

p(dk |dk−1) as from the transition equation (13), the pre-
dictive density p(dk |dk−1) does not depend on y1:k−1. The
pair (13) and (14) completely specifies the transition of
previous posterior p(dk−1|y1:k−1, yi,1:k ) to present posterior
p(dk |y1:k , yi,1:k+1) via the posterior p(dk |y1:k−1, yi,1:k ).

In order to develop the details of the methodology,
let the posterior pdf p(dk |y1:k , yi,1:k+1) is characterized
through the random measure

{
dmk ,w

m
k

}
m=1,2,3,...,M where{

dmk
}
m=1,2,3,...,M is a set of support points with associated

weights
{
wmk
}
m=1,2,3,...,M . The weights are normalized such

that
∑

i w
i
k = 1.Thus the discrete weighted approximation of

the posterior density can be characterized as

p(dk |y1:k , yi,1:k+1) =
M∑
m=1

wmk δ(dk − d
m
k ) (15)

As p(dk |y1:k , yi,1:k+1) in not known, thus we have another
density known as importance density q(dk |y1:k , yi,1:k+1)
which can be easily sampled that has the same support as
p(dk |y1:k , yi,1:k+1), thus the general weight function can be
defined as

w(dk )
1
=
p(dk |y1:k , yi,1:k+1)
q(dk |y1:k , yi,1:k+1)

(16)

Consequent to that the weights in (15) are defined as

wmk ∝
p(yk |dmk ; yi,k+1)p(d

m
k |y1:k−1; yi,1:k )

q(dmk |y1:k , yi,1:k+1)
(17)

where wmk
1
= w(dmk ). It is emphasized that wmk is the

importance of the sample dmk and not its probability. Using
Baye’s rule, the un-normalized weight function is

w(dk ) ∝
p(yk |dk ; yi,k+1)p(dk |y1:k−1; yi,1:k )

q(dk |y1:k , yi,1:k+1)
(18)

Expanding using Chapman-Kolmogonov theorem

w(dk ) ∝ p(yk |dk ; yi,k+1)

×

∫
p(dk |dk−1)p(dk−1|y1:k−1, yi,1:k ) ddk−1∫

q(dk |dk−1, yk )q(dk−1|y1:k−1, yi,1:k ) ddk−1
(19)

where the fact for a Markov process has been adopted
for importance density as well i.e. q(dk |dk−1, y1:k ) →
q(dk |dk−1, yk ). Assuming the samples

{
dmk ,m = 1, . . .M

}
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have been drawn from q(dk−1|y1:k−1, yi,1:k ), the (19)
becomes

w(dk ) =
M∑
m=1

p(yk |dk ; yi,k+1)p(dk |dmk−1)

q(dk |dmk−1, yk , yi,k+1)

×
p(dmk−1|y1:k−1, yi,1:k )

q(dmk−1|y1:k−1, yi,1:k )
(20)

From the definition of w(dk ), it follows that

w(dk ) =
M∑
m=1

wmk−1
p(yk |dk ; yi,k+1)p(dk |dmk−1)

q(dk |dmk−1, yk , yi,k+1)
(21)

This leads to the posterior pdf expression

p(dk |y1:k , yi,1:k+1) =
M∑
m=1

wmk−1p(yk |dk ; yi,k+1)p(dk |d
m
k−1)

×
q(dk |y1:k , yi,1:k+1)

q(dk |dmk−1, yk , yi,k+1)
(22)

Generating dmk ∼ q(dk |dmk−1, yk , yi,k+1) such that
q(dk |yk , yi,k+1) = 1

M δ(dk − dmk ). Referring to (15), the
recursive weight update equation after combining (17) and
(21) results in

wmk
1
= wmk−1

p(dmk |d
m
k−1)

q(dmk |d
m
k−1, yk , yi,k+1)

p(yk |dmk ; yi,k+1) (23)

The knowledge of likelihood function p(yk |dk ; yi,k+1) and
updated importance function q(dk |dk−1, yk , yi,k+1) is crucial
for updating theweight and aremajor problems in its practical
implementation as well. The Bootstrap Particle Filter (BPF)
gives the choice of transition density as importance density
i.e.

q(dk |dk−1, yk , yi,k+1) = p(dk |dk−1) (24)

Thus the weight update equation becomes

w̃mk = wmk−1p(yk |d
m
k ; yi,k+1) (25)

w̃mk can be normalized as

wmk =
w̃mk∑M
m=1 w̃

m
k

(26)

The second problem is the degeneracy of particles. The
degeneracy can be avoided through resampling and sample
impoverishment i.e. regularization. The point estimate d̂k is
selected which is the mode of the posterior pdf. The mode
of the posterior pdf d̂k is expected to be sub-optimal in
the vicinity of global minimum due to sparsity of particles.
The estimate may be further improved through polynomial
fitting. d̂k is combined with the input uk calculated by the
controller at instant k to be applied to the system at the input
channel as

ũk = uk + d̂k (27)

where ũk is the refined input for next measurement. The
flow chart of the proposed control refinement process is
shown in Fig. 3

FIGURE 3. Flow Chart of Control Refinement Process.

IV. PROPOSED ALGORITHM
Start:
ũk−1 is applied to actual system, yk is measured, yi,k+1 is

available through the ideal trajectory.
• Calculate uk though ψ
For m = 1 : M

• Draw dmk ∼ p(dk |dmk−1)
• Calculate w̃mk = wmk−1p(yk |d

m
k , yi,k+1)

• Normalize w̃mk
• p(dmk |yk , yi,k+1) is formed through wmk .
END For

• Calculate mode d̂k of p(dk |yk , yi,k+1)
• Calculate ũk through d̂k
• Resampling and Regularization
• k → k − 1 Go to Start.

End

V. STABILITY OF PROPOSED METHODOLOGY
The stability of the closed-loop system under refined control
input (10) is established by proving the boundedness of
system states. We consider control refinement based on
the nominal controller. Analysis for ideal trajectory-based
control refinement can be extended trivially and is thus
omitted.

To this effect, we require that following conditions are
satisfied.

A. ASSUMPTIONS
1) The optimization problem requiring minimization of

cost J (ε) has been solved by the predefined algorithm.
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2) The output function h(xk ) is globally bounded in
its arguments. Furthermore, yo,k is also uniformly
bounded.

3) The observation noise vk is bounded such
that ||vk || ≤ γ .

We now state the following Lemma, which guarantees
boundedness of states of the closed-loop system.

Lemma: Under the mentioned assumptions (1)-(3), states
of closed loop system under refined control input (10) are
bounded.

Proof: Solving of optimization problem, requiring mini-
mization of J (ε) implies (considering J (ε) = |ε| )

|yk − yo,k | ≤ δ (28)

which can be extended to

|h(xk )+ vk | ≤ |yo,k | + γ (29)

with boundedness of vk , we get

|h(xk )| ≤ |yo,k | + δ + γ (30)

Consequently, boundedness of system states xk follows from
the implicit assumption of observability.

VI. SAMPLED DATA CONTROL EXAMPLE
The technique has been implemented on the sampled data
nonlinear problem of the following generalized form

ẋ(t) = f (x(t), u(t))

y(t) = h(x(t)) (31)

where the sampled output is available for measurement only
i.e.

yk = y(kT ) (32)

The sampled data form of system results in

xk = xk−1 +
∫ kT

(k−1)T
f (x(t), u(t))dt (33)

where the integral needs to be solved numerically at
each sampling instant for the discretized state value. This
makes the solution computationally intensive. Any alternative
approach is left for future consideration. The second aspect is
the decision of the control input for the sampling interval at
discrete points in time, i.e.for [kT , (k + 1)T ]

u(t) = σ (uk )

uk = ψ(·) (34)

The system considered is of an inverted pendulum (with sam-
pled output) [39] with due consideration to the compensation
of the impact of high bandwidth disturbances through control
refinement. The system model is given as

ẋ1 = x2
ẋ2 = − sin(x1)+ bx2 + cu

y = x1 (35)

FIGURE 4. Tracking Error.

FIGURE 5. Tracking Error (Expanded View).

The control objective is to track the reference signal r(t) =
cos(ωt) with initial conditions x(t0) =

[
1.5 0

]T . The
sampling time considered is T = 0.1s. The nominal system
parameters are ω = 1/3, b = 0.03, c = 1. Closed loop
feedback system is based on eigen values λ1,2 = −0.5 ± jω
and estimation of states is designed based on eigen values
at λ1,2 = −4± jω. The proposed controller is

uk =
sin(x1k )+ bx2k + r̈k − Kcek

c
(36)

The proposed technique has been comparedwith the earlier
proposed work in this particular area based on disturbance
estimation and rejection using extended order observer for
sampled-data nonlinear systems [39]. The nominal model
is subjected to nonlinearities to form the actual plant. The
parameter uncertainty is introduced using b1, c1 and the
nominal parameters are modified as b1 = 0.9b, c1 = 0.9c
in the plant. The Coulomb friction has been introduced by
replacing it with the friction parameter b1 in the plant.
The tracking error for disturbed system, conventional

disturbance estimation (CDE) method and proposed scheme
of control refinement (CR) for the nominal controller (NC)
and the ideal control behaviour (ICB) is shown in Fig.4. The
expanded view of the tracking error is shown in Fig.5. The
tracking performance has been improved by using control
refinement for a nominal controller, but the controller’s
limitations have restricted any remarkable improvement.
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FIGURE 6. Deviation from Ideal Behavior.

As clearly evident from the simulation results, an order of
magnitude improvement in tracking performance has been
achieved through control refinement based on ideal control
behaviour. The deviation from ideal behaviour is shown in
Fig.6. The transients in the trajectory tracking are due to
the observer. The highest peak can be seen in the case of
high gain/ extended order based conventional disturbance
estimation (CDE) due to high gains of the observer. The
transients in the control refinement approach are also due to
the impact of the observer. Higher is the gain of the observer;
higher will be the peak of the transient. The observer’s
performance is beyond the scope of this paper. However,
the transient behaviour can be slightly improved by using
existing approaches like SSRLS or adjustment of initial
weights. The superior performance of the proposed control
refinement in terms of any performance trajectory tracking is
evident from the simulation results.

VII. CONCLUSION
The goal to improve the tracking performance of a dynamic
plant by tracking the ideal control behaviour has been
successfully achieved. The concept of control refinement to
improve the tracking performance of nonlinear systems under
multiple disturbances has been successfully implemented.
A nominal control input’s refinement based on particles has
been introduced and simulated by addressing a sampled-data
nonlinear problem. A deterministic problem has been solved
by applying statistical tools. The proposed technique tracks
the transient and asymptotic behaviour of the ideal trajectory
designed for a time-varying reference in the presence
of disturbances, and a remarkable performance has been
achieved. The effect of model uncertainty and discretization
with hard nonlinearities like Coulomb friction on the system’s
performance has been compensated through refinement of the
control input by jointly handling the controller and observer.
The compensation of harder nonlinearities like backlash will
be considered in a future extension of the same concept. The
higher-order refinement control is challenging, and readers
are encouraged to study this particular case as a further area
of research in this field.
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