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ABSTRACT This paper focuses on the H∞ observer-based control problem for discrete-time singularly
perturbed systems (DTSPSs) with nonlinear disturbances. The main contributions of this paper include three
aspects: First, a proper observer is constructed. A sufficient condition in terms of linear matrix inequality
(LMI) and Lyapunov function is proposed such that the resulting observer error system is asymptotically
stable with a prescribedH∞ norm bound for sufficiently small values of the perturbation parameter. Second,
based on the input-to-state stability (ISS) property, an observer-based feedback controller is designed
such that the resulting closed-loop system is ISS with respect to the observer error. Meanwhile, the H∞
performance index is also satisfied. Then, a workable way for solving the exact upper bound is also given.
Finally, two numerical examples are given to demonstrate the validity of the developed method.

INDEX TERMS Discrete-time singularly perturbed system, observer, state feedback, H∞ control, linear
matrix inequality (LMI).

I. INTRODUCTION
Singularly perturbed systems, as a special class of sys-
tems with small parameters, are widely used in the engi-
neering application, network control and complex system,
see [1]–[6]. In addition, among various methods developed
to control this kind of systems, the linear matrix inequal-
ity (LMI) technique have been extensively adopted, which
can effectively avoid the computational difficulty when solv-
ing state equations of systems. Meanwhile, many remarkable
results have been obtained [7]–[13]. For example, the robust
stability of singularly perturbed systems is investigated based
on fixed-point principle and LMI in [11]. Recently, because
of the development of computer technology, a new challeng-
ing task is aroused, that is, the control problem of DTSPSs
has attracted more and more attention, and many impor-
tant results have been obtained [14]–[19]. In terms of the
dynamic output feedback controller, fast and slow subsystems
were discussed separately based on reduced technique and
LMI in [17]. Reference [19] investigates the state estimation
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problem for a class of discrete-time singularly perturbed
systems with distributed time-delays, in which the ultimate
bound of the error dynamics is estimated. With the progress
network communication technology, networked control sys-
tems have entered a stage of rapid development and many
methods have been developed [20]–[24]. It is shown in [20]
that new stability criteria and stabilization methods on net-
worked control systems with short time-varying delay are
proposed, in which the conservatism of the stability con-
dition caused by short time-varying delay can be reduced.
Reference [24] develops a new metric to measure the signif-
icance of a network’s community structure, the result shows
that the proposed method can yield good performance in
terms of accuracy as well as stability. Recently, the relevant
results have been extended to singularly perturbed system.
For example, the sliding mode control issue of the networked
singularly perturbed systems under slow sampling is con-
sidered in [25], a novel sliding function is constructed the
sufficient conditions are derived to ensure the asymptotic sta-
bility of the sliding mode dynamics. The details on the recent
development of the sliding mode control can be found from
the survey paper [26] and the references therein. Moreover,
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as Markovian jump systems can give better descriptions of
practical systems with stochastic abrupt structural changes,
the relevant results have also been extended to DTSPSs [27].
However, the research of DTSPSs is not comprehensive,
especially in the presence of nonlinear disturbance. To make
up for this deficiency, more efforts need to be paid on
this topic.

In past years, the H∞ control has been an important
research area in singularly perturbed systems and widely
applied in network control, satellite etc., [28]–[35]. In par-
ticular, the LMI technique has also been proposed to solve
theH∞ problem for different kinds of DTSPSs, which effec-
tively eliminates the regularity restrictions attached to the
Riccati-based solutions. It is shown in [36] and [37] that sev-
eral inequalities are used in the derivation of the solvability
conditions, which would lead to some conservatism. For this,
Xu and Feng in [38] present a new sufficient condition to
make the closed-loop system asymptotically stable with a
prescribed H∞ performance. The result is proven to be less
conservative. In [31], the H∞ control problem for a class of
nonlinear DTSPSs is addressed, the sufficient conditions for
asymptotic stability of the closed-loop system are given via
LMI and Lyapunov function.

However, most of the aforementioned results are based
on the assumption that the state variables of systems are
available for direct measurements. The fact is that, in many
control systems and applications, not all the state variables
can be measured or we may choose not to measure some
of them due to technical or economic reasons. In this case,
it is necessary to design a state observer or filter used to
reconstruct the states of a dynamic system. Over the past
years, various approaches of the observer design for different
control systems have been proposed [40]–[46]. For example,
a continuous-time nonlinear system with input and output
quantization is discussed in [42], the stability and H∞ per-
formance index are guaranteed by constructing an observer-
based output feedback controller. A proper observer-based
feedback controller is also designed in [43], and a criterion
is revealed to guarantee that the Lur’e singularly perturbed
system is absolutely stable. However, it is noticed that there
are few works on the observer design for DTSPSs. It is
known that applying the routine design methods for normal
systems to singularly perturbed systems usually leads to ill-
conditioned numerical problems. Therefore, many difficult
and efficient observer design issues still need to be addressed.
This will be one of our main concerns.

In spired by the above results, the problem of the H∞
observer-based control for DTSPSs with nonlinear distur-
bances is studied in this paper. The purpose of the paper is to
reconstruct the system state, such that the controlled system
can obtain the desired property. First, a proper Luenberger-
like full-order observer is constructed, then a sufficient con-
dition expressed in terms of LMI is derived such that the
resulting observer error system is asymptotically stable with
the prescribed disturbance attenuation level γ . Then for the

observer-based H∞ control, based on input-to-state stability
(ISS) property, an appropriate observer-based state feedback
control law is designed to guarantee the ISS for the resulting
closed-loop system. Meantime, the H∞ performance index
is also satisfied. Moreover, the upper bound of the small
parameter and the minimum ofH∞ performance index γ can
be obtained by a feasible approach.

Compared with the existing literature [36]–[38], [41], [42],
the advantages of this paper are roughly summarized as
follows: 1) a more general class of systems is addressed,
in which the external disturbance of the system has not only
the linear part, but also the nonlinear part. 2) Not only themin-
imum of H∞ performance index γ and the upper bound of
perturbation parameter in the closed loop system are derived,
but also the minimum of disturbance attenuation level γ and
the upper bound of the small parameter in the error system are
given. 3) the controller law can be obtained easily by solving
LMIs, in which there is no equality constraint in [12] involved
when using our approach.
Notation: The symbol ‘T’ that appears throughout the arti-

cle stands for matrix transposition; matrix inequality P > 0
indicates that P is a positive definite matrix; Symbol || · || rep-
resents the Euclidean vector norm or the induced Euclidean
matrix norm; the element ‘∗’under the main diagonal of the
symmetric matrix stands for an ellipsis for terms that are
induced by symmetry.

II. PROBLEM FORMULATION
Consider the following DTSPSs with nonlinear perturbation
described by

x(k + 1) = Aεx(k)+Hεf (x (k))+Buεu(k)+Bwεw(k), (1)

y(k) = Cx(k), (2)

where x = (xT1 , x
T
2 )

T
∈ Rn is the system state with slow

state x1 ∈ Rn 1 and fast state x2 ∈ Rn2 (n1 + n2 = n);
x (0) = x0 is the initial condition; u ∈ Rq is the control input;
w ∈ Rp is the disturbance input; y ∈ Rm is the system output;
ε > 0 is a singularly perturbation parameter which is small
and positive but may be unknown; f (x) is a vector-valued
nonlinear functionwith f (0) = 0, which is assumed to satisfy
the following Lipschitz condition for all x, x̃ ∈ Rn:

‖f (x)− f (x̃)‖ ≤ ‖F (x − x̃)‖ , (3)

where F is a known Lipschitz constant matrix with appropri-
ate dimensions; Aε,Hε, Buε,Bwε,C are known and satisfy the
following definition:

Aε = E0 + EεA, Buε = EεBu, Bwε = EεBw, Hε = EεH ,

where

E0=
(
I 0
0 0

)
, Eε =

(
εI 0
0 I

)
,

A=
(
A11 A12
A21 A22

)
, Bu =

(
Bu1
Bu2

)
,
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Bw=
(
Bw1
Bw2

)
, H=

(
H1 0
0 H2

)
, f (x)=

(
f1 (x1, x2)
f2 (x1, x2)

)
,

F =
(
F11 F12
F21 F22

)
, C =

(
C1 C2

)
.

Remark 1: The structure in the form of (3) has been
widely considered [11], [12], [15], [23], at least since the
classical paper by Kalman and Bertram. Subsequently, there
has been a long chain of papers dealing with this problem.
The system (1)-(2) can be used to represent many important
physical systems, such as power networks, transportation,
aerospace, water resources. It is worth mentioning that the
matched condition can be regarded as a special case of (3).
For example, consider the following linear uncertain discrete-
time singularly perturbed system

x1 (k + 1) = (I + ε (A11 +1A11)) x1 (k)
+ ε (A12 +1A12) x2 (k) ,

x2 (k + 1) = (A21 +1A21) x1 (k)
+ (A22 +1A22) x2 (k) ,

where the uncertain matrices 1A11, 1A12, 1A21 and 1A22
satisfy the matched condition(

1A11 1A12
1A21 1A22

)
=

(
H1 0
0 H2

)
1(k)

(
E1 E2

)
,

and 1(t) is a time-varying uncertainty with appropriate
dimension satisfying

1T (k)1 (k) ≤ I .

Define

1A =
(
1A11 1A12
1A21 1A22

)
, H =

(
H1 O
O H2

)
,

E =
(
E1 E2

)
.

Then the system can be rewritten in a compact form

x (k + 1) = (Aε +1Aε) x (k) ,

where1Aε = Eε1A. Let ϕ (k, x) = 1(k)Ex, then it is easy
to find that ϕ (k, x) satisfy the constraint (3), which implies
that the matched condition is a special case of this paper.
Remark 2: A widely used constraint on f (x) is of the form

‖f (x)− f (x̃)‖ ≤ l ‖x − x̃‖ ,

in which all components of f (x) are weighted equally. In this
paper, we assume instead that f (x) satisfy the condition (3),
which is capable of describing the structure of the uncertain
term more accurately in many practical situation, because
each component of f (x) is weighted differently.
Assumption: Matrix Bu is of full column remark.
In this paper, a Luenberger-like full-order observer is con-

sidered with the following form:

x̂(k + 1) = Aε x̂(k)+ Buεu(k)+ L
(
y− Cx̂

)
, (4)

ŷ(k) = Cx̂(k), (5)

where x̂ = (x̂T1 , x̂
T
2 )

T
∈ Rn is the reconstructed state of

system state x. ŷ is the observer output. L =
(
LT1 LT2

)T is
an observer gain matrix, which needs to be solved later.

The observer error system between reconstructed state x̂
and original system x can be obtained. Next, for simplicity,
let e(k) = x(k) − x̂(k), z(k) = y(k) − ŷ(k), where e is the
observer error, z is output of the observer error system. Then
the observer error system has the following form:

e(k + 1) = (Aε − LC) e (k)+ Hεf (x)+ Bwεw(k), (6)

z (k) = Ce (k) . (7)

An observer-based feedback controller is designed as follows:

u (k) = −Kx (k) , (8)

where K =
(
K1 K2

)
is the control gain matrix.

Remark 3:The values of unknown and non-unique variable
matrices K and L are related to the coefficient matrices and
the constructed Lyapunov function, the complex relationship
between them can be obtained in a later calculation. The core
of our work is to find a proper control gain matrix K and an
observer gain matrix L by using some methods and skill such
that the closed-loop system is ISS and the H∞ performance
can be satisfied.

For the given DTSPSs with nonlinear disturbance (1)-(2),
the H∞ control problem can be summarized as follows: a
proper Luenberger-like full-order observer is designed such
that the observer error system is asymptotically stable with
sufficient small disturbance attenuation level γ . In other
words, within the allowed error range, the original state x is
replaced by the reconstructed state x̂. Then the state feedback
controller u (k) = −Kx̂ (k) is constructed to guarantee the
ISS of the closed-loop system and the achievement of H∞
performance index. The design criteria of state observer and
observer-based feedback controller require that the error sys-
tem and the closed-loop system satisfy the following require-
ments:

1) The systems are asymptotically stable or ISS when
w(k) = 0.

2) The output z(k) of system satisfies

∞∑
k=0

||z (k) || < γ 2
∞∑
k=0

||w (k) || (9)

for all nonzero vector w(k) ∈ L2 [0,∞].
Some basic definitions and lemmas are given before further

analysis and discussion.
Definition 1 [47]: Consider the system

x (k + 1) = f (x (k) , u (k)) , (10)

where x ∈ Rn is the system state, the input u ∈ Rq is a
piecewise continuous, bounded function, f : Rn×Rm→ Rn is
continuous and locally Lipschitz in x and u. The system (10)
is said to be input-to-state stable (ISS), if there exist a class
KL function β and a class K function γ such that the system
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x satisfy the following inequalities for any initial conditions
ξ and any k ≥ 0:

‖x (k)‖ ≤ β (‖ξ‖ , k)+ γ

(
sup

0≤τ≤k
‖u (k)‖

)
,

Lemma 1 [47]: Let V : Rn → R be a continuously
differentiable function such that

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) ,

V (x (k + 1))− V (x (k)) ≤ −W (x (k)) ,

∀ ‖x‖ ≥ ρ (‖u‖) > 0,

where α1, α2 are class K∞ functions, ρ is a class K function,
and W (x) is a continuous positive definite functions on Rn.
Then system (10) is ISS.
Lemma 2: [48] (Schur’s Complement) Let S is a partitioned

square matrix as follows:

S =

(
S11 S12

ST12 S22

)
,

where S11 and S22 are symmetric matrices. Then, the follow-
ing there statements are equivalent:

1) S < 0;
2) S11 < 0, S22 − ST12S

−1
11 S12 < 0;

3) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

III. STABILITY ANALYSIS OF OBSERVER ERROR
In this subsection, the sufficient condition of the asymptotic
stability for the error system with the Luenberger-like full-
order observer is investigated. Meanwhile, the method how to
determine the minimum of the disturbance attenuation level
γ is also given.
Theorem 1: There exist a scalar ε̃ > 0 such that the

observer error system (6)-(7) is asymptotically stable with
disturbance attenuation level γ for all ε ∈ (0, ε̃

]
, if there exist

matrices Q11 > 0, Q22 > 0, a matrix Y , and a positive scalar
µ1 satisfying the following condition, (23), as shown at the
bottom of the next page,

8 =



211 0 0 214 QT1C
T QT1 F

T

∗ −µ−11 I 0 µ−11 H̄T 0 0
∗ ∗ −γ 2I B̄Tw 0 0
∗ ∗ ∗ −Q1 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −µ−11 I


< 0, (11)

where

211 =
(
Y Ā1

)T C + CT (Y Ā1)− AT1Q1A1 − Q2,

214 = Q1AT − CTY , Q1 =

(
Q11 0
0 Q22

)
,

Q2 =

(
0 0
0 Q22

)
,

H̄ =
(
0 0
0 H2

)
, B̄w =

(
0
Bw2

)
,

A =
(
A11 A22
0 0

)
Ā1 = A1 − E0

(
A11 − I A12

0 0

)
.

The observer gain matrix can be chosen as L = Q−T1 Y T .
Proof: The following inequality is obtained by substituting

L into (11) and using the Schur’s Complement. Obviously, the
inequality (11) is equivalent to (12).

2̄11 0 0 Q1 (A− LC)T

∗ −µ−11 I 0 µ−11 H̄T

∗ ∗ −γ 2I B̄Tw
∗ ∗ ∗ −Q1

 < 0, (12)

where

2̄11 = ĀT1Q
T
1 (LC)+ (LC)

T Q1Ā1 + µ1QT1 F
TFQ1

+QT1C
TCQ1 − Q2 − AT1Q1A1.

Pre-multiplying inequality (12) by diag
(
Q−T1 , µ1I , I , I

)
and Post- multiplying (12) diag

(
Q−11 , µ1I , I , I

)
, respec-

tively, then let

Q−11 = P =
(
P11 0
0 P22

)
, Q−12 = P2 =

(
0 0
0 P22

)
,

The inequality (13) is obtained by using the Schur’s Comple-
ment again,

80 =

 ¯̄211 0 0
∗ −µ1I 0
∗ ∗ −γ 2I

+
 (A− LC)TH̄T

B̄Tw


×P

 (A− LC)TH̄T

B̄Tw

T

< 0, (13)

where

¯̄211 = ĀT1 P (LC)+ (LC)
T PĀ1 − AT1 PA1
+µ1FTF + CTC − P2.

Since P11 and P22 are positive definite matrices, there exists
a scalar η = (±ε1)2 > 0 such that

P11 − ηPT21P
−1
22 P21 = P11 − ε21P

T
21P
−1
22 P21 > 0,

therefore, there exists a scalar ε1 > 0 such that P11 −
ε21P

T
21P
−1
22 P21 > 0. We choose the Lyapunov function can-

didate as follows:

V (e) = eTPεe, (14)

where Pε =
(
P11 εPT21
εP21 P22

)
> 0. Let w(k) = 0, then for all

scalar µ1 > 0, we have

1V (e) =
(
2 1

)
= e (k + 1)T Pεe (k + 1) − e (k)T Pεe (k)

≤

(
eT (Aε−LC)T + f THT

ε

)
Pε ((Aε − LC) e+Hεf )
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− eTPεe+ µ1

(
eTFTFe− f T f

)
=
(
eT f T

) (
8̄0 + ε8̄1 + ε

28̄2

) (
eT f T

)T
, (15)

where

8̄0 =

(
2̃11 0
∗ −µ−11 I

)
+

(
(A− LC)T

H̄T

)
P
(
(A− LC)T

H̄T

)T
,

2̃11 = ĀT1 P (LC)+ (LC)
T PĀ1 − AT1 PA1 − P2 + µ1FTF .

8̄1 =

(
(E0 + A2 − LC)T

0

)
P1

( (
A− L̄2C

)T
HT

)T

+

( (
A− L̄2C

)T
HT

)
P1

(
(E0 + A2 − LC)T

0

)T
,

A2 =
(

0 0
A21 A22

)
,

8̄2 =

(
AT −

(
L̄2C

)T
HT

)
P3

(
AT −

(
L̄2C

)T
HT

)T
,

L̄2 =
(

0
L2

)
,P1 =

(
P11 PT21
0 0

)
,

P3 =
(
P11 PT21
P21 0

)
.

8̄ < 0, which is implied in inequality (13), then
there exist a sufficiently small positive scalar ε2 such that(
8̄+ ε8̄1 + ε

28̄2
)
< 0 for any ε ∈ (0, ε2]. Thus, the

observer error system (6)-(7) is asymptotically stable.
Furthermore, the asymptotic stability of the observer error

system with disturbance attenuation level γ is considered.
The following inequality is derived via referring to [33],

V [e (k + 1)]− V [e (k)]+ zT (k) z (k)− γ 2wT (k)w (k)

≤

(
eT (Aε − LC)T + f THT

ε + w
TBTwε

)
Pε ((Aε − LC) e

+Hεf + Bwεw)− eTPεe+ µ1

(
eTFTFe− f T f

)
+ zT (k) z (k)− γ 2wT (k)w (k)

=
(
eT f T wT

) (
80 + ε81 + ε

282

) (
eT f T wT

)T
,

(16)

where

81 =

 (E0 + A2 − LC)T0
0

P1

AT −
(
L̄2C

)T
HT

BTw

T

+

AT −
(
L̄2C

)T
HT

BTw

P1

 (E0 + A2 − LC)T0
0

T

,

82 =
(
A− L̄2C H Bw

)T P3 (A− L̄2C H Bw
)
.

According to (11), there exist a sufficiently small positive
scalar ε3 such that

(
80 + ε81 + ε

282
)
< 0 for any ε ∈

(0, ε3]. Denote ε̃ = min {ε1, ε2, ε3}. Then, the following
inequality holds:

V (e (k + 1))− V (e (k))

+ zT (k) z (k)− γ 2wT (k)w (k) < 0. (17)

Under zero initial conditions, every term in inequality (18) is
summed from 0 to∞, we get

V (e (∞))− V (e (0))+
∞∑
k=0

zT (k) z (k)

−

∞∑
k=0

γ 2wT (k)w (k) < 0, (18)

thus, we have
∞∑
k=0

zT (k) z (k) ≤
∞∑
k=0

γ 2wT (k)w (k). (19)

The observer error system is asymptotically stable with
disturbance attenuation level γ for any ε ∈ (0, ε̃

]
after careful

calculation. This ends the proof.
An appropriate observer is designed in Theorem 1. Mean-

while, the sufficient condition for the asymptotic stability
of the error system with disturbance attenuation level γ is
obtained by using the LMI technique, the concrete structure
of Lyapunov function is also given clearly.

Next, the minimum value of the disturbance attenuation
level γ is available. One feasible method is to convert the
problem of minimum γ to the optimization problem, thus the
concrete results can be solved by MATLAB.

The upper bound of perturbation parameter has become
an interesting topic due to the non-uniqueness of the upper
bound ε̃. A common way is to assume the upper bound of
perturbation parameter, then verify the selected value, further
adjustments will be made if the prescribed value doesn’t
satisfy the obtained inequalities. Now, the result is given in
the following theorem.
Theorem 2: The observer error system (6)-(7) is asymp-

totically stable with disturbance attenuation level γ for any
ε ∈ (0, ε̃

]
. If there exist a scalar ε̃ > 0, matrices P11 > 0,

P22 > 0 satisfying the following conditions:

80 < 0, 80 + ε81 < 0, 80 + ε81 + ε
282 < 0.

(20)

Remark 4:The upper bound ε̃ can be found by a bisectional
search algorithm, a detailed discussion can be found in the
literature [13].

IV. H∞ CONTROL OF CLOSED-LOOP SYSTEM
In this subsection, we will design an observer-based feedback
controller of the following form:

u (k) = −Kx̂ (k) (21)

to render the closed-loop system ISS with H∞ performance
index less than γ for any ε ∈ (0, ε̄]. Meanwhile, the method
for deriving the minimum values of the H∞ performance
index γ and the upper bound are proposed.
The closed-loop system is given in the following form:

x(k + 1) = (Aε − BuεK ) x(k)+ Hεf (x (k))

+BuεKe+ Bwεw(k), (22a)

y(k) = Cx(k). (22b)
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Theorem 3: The closed-loop system (22) is ISS with H∞
performance index less than γ for any ε ∈ (0, ε̄]. If there exist
matrices X11 > 0, X22 > 0, a matrix G, two positive scalars
µ2 and ε̄ satisfying the following condition:
where

311 = ĀX + XT ĀT − BuG− GTBTu ,X =
(
X11 0
X21 X22

)
,

Ā =
(
A11 A12
A21 A22 − I

)
, Ā2 =

(
A21 A22 − I

)
,

H̄2 =
(
0 H2

)
.

In addition, the feedback gain matrix can be chosen as
K = GX−1.
Proof: Substituting K = GX−1 into (23) and using the

Schur’s Complement, we obtain the following equivalent
form:

3̄11 −µ
−1
2 H µ−12 Bw XT Ā2 − XTKTBTu2

∗ −µ−12 I 0 µ−12 H̄T
2

∗ ∗ −γ 2I BTw2
∗ ∗ ∗ −X22

 < 0,

(24)

where

3̄11 = ĀX + XTA− BuKX − XTKTBTu
+µ2XTFTFX + XTCTCX .

Pre-multiplying (23) by diag
(
X−T , µ2I , I , I

)
and Post-

multiplying (23) by diag
(
X−1, µ2I , I , I

)
, respectively, let

X−1 = P4 =
(
P11 0
P21 P22

)
, then X−122 = P22, we get

3̃11 PT4H PT4 Bw
(
Ā2 − Bu2K

)T
∗ −µ2I 0 H̄T

2

∗ ∗ −γ 2I BTw2
∗ ∗ ∗ −X22

 < 0, (25)

where

3̃11=PT4
(
Ā− BuK

)
+
(
Ā− BuK

)T P4+µ2FTF + CTC .

Using the Schur’s Complement again, we have 3̃11 PT4H PT4 Bw
∗ −µ2I 0

∗ ∗ −γ 2I

+
(Ā2 − Bu2K)TH̄T

2
BTw2



×P22

(Ā2 − Bu2K)TH̄T
2

BTw2

T

< 0

which is equivalent to 3̃11 PT4H PT4 Bw
∗ −µ2I 0
∗ ∗ −γ 2I

+
(Ā− BuK)THT

BTw


×P2

(Ā− BuK)THT

BTw

T

= 50 +51 < 0, (26)

where P2 = diag(O,P22). For the closed-loop system, we
choose the Lyapunov function candidate as follows:

V (x) = xT P̃εx, (27)

where

P̃ε =

(
ε−1P11 PT21
P21 P22

)
, ε ∈ (0, ε4] (28)

Let w(k) = 0

1V (x)

= x (k + 1)T P̃εx (k + 1) − x (k)T P̃εx (k)

≤ x (k + 1)T P̃εx (k + 1)− xT P̃εx

+µ2

(
xTFTFx − f T f

)
=
(
xT f T

) (
5̄0 + 5̄1 + ε5̄2

) (
xT f T

)T
+ eT (BuεK )T P̃ε (BuεK ) e+ xT (Aε − BuεK )T

× P̃ε (BuεK ) e

+ f THT
ε P̃ε (BuεK ) e. (29)

where

5̄0 =

(
PT4
(
Ā−BuK

)
+
(
Ā−BuK

)T P4+µ2FTF PT4H

∗ −µ2I

)
,

5̄1 =
(
Ā− BuK H

)T P2 ( Ā− BuK H
)
,

5̄2 =
(
A− BuK H

)T P3 (A− BuK H
)
,

Obviously, it can be concluded from (26) that 5̄0+5̄1 < 0.
Thus, there exist a scalar ε5 > 0, such that 5̄0+5̄1+ε5̄2 <

0 for any ε ∈ (0, ε5]. Let b = λmin
(
−5̄0− 5̄1 − ε5̄2

)
, then

9 =



311 −µ
−1
2 H µ−12 Bw XT ĀT2 − G

TBTu2 XTCT XTFT

∗ −µ−12 I 0 µ−12 H̄T
2 0 0

∗ ∗ −γ 2I BTw2 0 0

∗ ∗ ∗ −X22 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −µ−12 I


< 0, (23)
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b > 0 for all ε ∈ (0, ε5]. Thus

1V (x)≤−b ‖x‖2 + τ ‖x‖ ‖e‖+ς ‖e‖2≤−b (1− θ) ‖x‖2 ,

∀ ‖x‖≥
τ +

√
τ 2 + 4ςbθ
2bθ

‖e‖ ,

where

0 < θ < 1, τ = 2 sup
ε∈(0,ε4)

{
|| (Aε − BuεK )T P̃ε (BuεK ) ||

+ ||HT
ε P̃ε (BuεK ) ||

}
,

ς = || (BuεK )T (BuεK ) ||.

Denote ε̄ = min {ε4, ε5}. Next, we have

V (x (k + 1))− V (x (k))+ yT (k) y (k)− γ 2wT (k)w (k)

≤ xT (k + 1) P̃εx (k + 1)− xT (k) P̃εx (k)+ yT (k) y (k)

− γ 2wT (k)w (k)+ µ2

(
xTFTFx − f T f

)
=
(
xT f T wT

)
(90 +91 + ε92)

(
xT f T wT

)T
, (30)

where, 90, 91, and 92, as shown at the bottom of the next
page. It is known by condition (25), there exists a scalar
ε̄ > 0, such that90+91+ε92 < 0 for any given ε ∈ (0, ε̄].
Similar to the proof of Theorem 1, it can be concluded that the
closed-loop system (22) is ISS with H∞ performance index
less than γ for any ε ∈ (0, ε̄], the detail is omitted here.
Remark 5:By the proof of theorems 1 and 3, it is found that

the sufficient condition of the asymptotic stability or ISS is
hidden in the sufficient condition of H∞ performance index.
Specifically, 90 + 91 + ε92 < 0 is a sufficient condition
for

(
5̄0 + 5̄1 + ε5̄2

)
< −0, where 0 is a positive definite

matrix. Next, for the discussion of H∞ control problem,
we just need to find the sufficient condition to ensure the
H∞ performance index. Therefore, the proof of asymptotic
stability can be ignored.
Theorem 4: Under the condition that the observer-based

feedback gain matrix K have been obtained, the system (22)
is ISS with an H∞ performance index less than γ for any
ε ∈ (0, ε̄], where ε̄ = β−1. If there exist matrices P11 > 0,
P22 > 0, 4 and a positive scalar β satisfying the following
conditions:(

4 PT21
P21 P22

)
> 0, 4 < βP11,

90 +91 < 0, 92 < −β(90 +91), (31)

where 90, 91 and 92 are mentioned in (30).
Proof: By analyzing (31), we get(

βP11 PT21
P21 P22

)
> 0, 91 + β9 < 0,

Let ε̄ = 1
β
, we have(

ε̄−1P11 PT21
P21 P22

)
> 0,

for all ε ∈ (0, ε̄]. This completes the proof.

The value of ε̄ depends on the value β, which can be
obtained by solving the inequality (31). Therefore, the solu-
tion for the upper bound of the perturbation parameter can be
transformed as minimization problem. The calculation of this
inequality is completed by MATLAB.
A Special Case
The corresponding conclusions for some special singularly

perturbed systems are given directly, such as linear singularly
perturbed systems. Take the following system for example.

x(k + 1) = Aεx(k)+ Buεu(k)+ Bwεw(k), (32)

y(k) = Cx(k). (33)

Corollary 1: There exist an ε̃ > 0 such that the observer
error system is asymptotically stable with disturbance attenu-
ation level γ for ∀ε ∈ (0, ε̃

]
, if there exist matrices Q11 > 0,

Q22 > 0, and a matrix Y satisfying the following condition
hold: 

211 0 214 QTCT

∗ −γ 2I B̄w 0
∗ ∗ −Q 0
∗ ∗ ∗ −I

 < 0, (34)

where

211 =
(
Y Ā1

)T C + CT (Y Ā1)− AT1QA1 − Q2,

214 = QAT − CTY ,

Q =

(
Q11 0

0 Q22

)
, B̄w =

(
0
Bw2

)
,

Q2 =

(
0 0

0 Q22

)
,

A1 =

(
A11 A12
0 0

)
, Ā1 =

(
A11 − I A12

0 0

)
,

the observer gain matrix is chosen as L = Q−TY T .
The minimum value of the disturbance attenuation level γ

can be obtained by solving the LMI (34), and the practical
operation can be completed by the LMI Toolbox.
Corollary 2: The observer error system is asymptotically

stable with disturbance attenuation level γ for any ε ∈ (0, ε̃
]
.

If there exist a scalar ε̃ > 0, matrices P11 > 0, P22 > 0
satisfying the following conditions:

8̃ < 0, 8̃0 + ε̃8̃1 < 0, 8̃0 + ε̃8̃1 + ε̃
28̃2 < 0, (35)

where

8̃0 =

(
2̃11 0

∗ −γ 2I

)
+

(
(A− LC)T

B̄Tw

)
P

(
(A− LC)T

B̄Tw

)T
,

2̃11 = ĀT1 P (LC)+ (LC)TPĀ1 − AT1 PA1 − P2 + C
TC,

8̃1 =

(
(E0 + A2 − LC)T

0

)
P1

( (
A− L̄2C

)T
BT
w

)T

+

( (
A− L̄2C

)T
BT
w

)
P1

(
(E0 + A2 − LC)T

0

)T
,
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8̃2 =

( (
A− L̄2C

)T
BT
w

)
P3

( (
A− L̄2C

)T
BT
w

)T
,

P =

(
P11 0

0 P22

)
,

P1 =

(
P11 PT21
0 0

)
, P2 =

(
0 0

0 P22

)
,

P3 =

(
P11 PT21
P21 0

)
, L̄2 =

(
0
L2

)
,

A2 =

(
0 0

A21 A22

)
.

Corollary 3: The closed-loop system is ISS with an H∞
performance index less than γ for any ε ∈ (0, ε̄]. If there exist
matrices X11 > 0, X22 > 0, a matrix G, and a positive scalar
µ2, such that the following condition holds:

311 Bw XT ĀT
2
− GTBTu2 XTCT

∗ −γ 2I BTw2 0

∗ ∗ −X22 0

∗ ∗ ∗ −I

 < 0, (36)

where

311 = ĀX + XT ĀT − BuG− GTBTu , X =

(
X11 0

X21 X22

)
,

Ā =

(
A11 A12
A21 A22 − I

)
, Ā2 =

(
A21 A22 − I

)
.

Furthermore, the control gain matrix K = GX−1 is obtained.
In addition, the minimum of γ can be obtained via solving

the optimization problem (36).
Corollary 4: The upper bound ε̄ = β−1 can be obtained

based on the feedback control gain matrix K . If there exist
matrices 4, P̄11, P̄22, matrix P̄21 and a positive scalar β
satisfying the following linear inequalities:(

4 P̄T21
P̄21 P̄22

)
> 0, 4 < βP̄11, 9̄ < 0, 9̄1 < −β9̄,

(37)

where

9̄ =

(
¯̄311 PT4 Bu

∗ −γ 2I

)
+

(
(A− BuK )T

BTw

)

×P2

(
(A− BuK )T

BTw

)T
,

¯̄311 = PT4
(
Ā− BuK

)
+
(
Ā− BuK

)T P4 + CTC,

9̄1 =

(
(A− BuK )T

BT
w

)
P3

(
(A− BuK )T

BT
w

)T
,

P4 =

(
P11 0

P21 P22

)
.

V. NUMERICAL EXAMPLES
In this section, two examples are given to show the validity
of the results in this paper.
Example 1: Consider the fast sampling linear discrete-

time singularly perturbed system in [37] and [38] with the
following parameter:

A =
(
−0.3417 0.3417
0.2733 0.7267

)
, Bu =

(
9.0021
42.7983

)
,

Bw =
(

0
0.2

)
, C =

 1 0
0 1
0 0

 ,
Du =

 0
0
1

 , Dw =

 0
0
0

 .
The example contrasts the corollaries 1-4 with the existing

conclusion [36]–[38].Applying Corollary 3 and the methods
in [36]–[38], the obtained the minimum H∞ norm and the
corresponding controller gains are given in Table 1. It can be
seen form this example that the obtained result is the same as
that in [38].

In Table 2, the minimum of disturbance attenuation level
and the upper bound of the perturbation parameter with
respect to observer error system and closed-loop system are
shown in Table 2. Furthermore, to show that our method
can provide a tighter upper bound than the existing methods,
a comparison of the derived upper bounds by Corollary 3 with
those calculated by the methods in [37] and [38] is given in
Table 3.

From Table 3, it is easy to see that our new criterion
does provide an improved estimation over the available cor-
responding criteria in the literature. Thus, Corollary 3 is less
conservative than those in [37] and [38] in the sense that
Corollary 3 can lead to a larger upper bound of the singular
perturbation parameter.

L =
(
0.6224 0.1036 0
0.2470 0.7262 0

)
.

90 =

PT4
(
Ā− BuK

)
+
(
Ā− BuK

)T P4 + µ2FTF + CTC PT4H PT4 Bw
∗ −µ2I 0
∗ ∗ −γ 2I

 ,
91 =

(
Ā− BuK H Bw

)T P2 ( Ā− BuK H Bw
)
,

92 =
(
A− BuK H Bw

)T P3 (A− BuK H Bw
)
.
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TABLE 1. Comparison for the minimum of H∞ norm and controller
gain K .

TABLE 2. The minimum of γ and the upper bound of ε.

TABLE 3. Comparison for the upper bound of the perturbation parameter.

Example 2: The nuclear reaction model is an example
based on actual engineering, the concrete form of the model
is as follows:

ẋ1 = −λx1 + λx2,

ẋ2 =
β

v
x1 +

β

v
x2 +

ρ

v
,

where x1, x2 represent the concentration and neutron density
of the normalized precursor, λ, β, v and ρ represent respec-
tively decay constant of precursor, delayed-neutron yield,
neutron generation time and reactivity. Let ρ = u+f (x1, x2),
where u is linear input, f is non-linear input. When the cor-
responding parameters are λ = 0.001, β = 0.0064 and v =
0.08, the sampling period is T = 0.05s, then the parameters
of the nonlinear discrete-time singularly perturbed system are
obtained:

A =
(
−0.3417 0.3417
0.2733 0.7267

)
, Bu =

(
9.0021
42.7983

)
,

Bw =
(

0
0.2

)
,

H =
(
9.0021 0

0 42.7983

)
, C =

(
2 1

)
,

Let the nonlinear function

f =

((
x1 |x2 − 1|

3+ 8 (x2 − 1)2

)T (
x2 |x1 − 2|

5+ 8 (x1 − 2)2

) T)T
,

we might as well note

F =
(
0.0001 0

0 0.0001

)
.

Then the following results are obtained:

Q =
(
0.1912 0

0 0.3375

)
, Y =

(
0.0883
0.0613

)T
.

FIGURE 1. States of the observer error system.

FIGURE 2. States of the closed-loop system.

So the observer gain matrix is given by

L = Q−TY T =
(
0.4616 0.1818

)T
.

Meanwhile, the minimum of the disturbance attenuation level
γmin = 0.5023 and the upper bound ε̃ = 4.0386 are
presented. Next, the state feedback gain matrix of the nuclear
reaction system is obtained,

K = GX−1 =
(
0.0767 0.0327

)
,

where

X =
(

0.4861 0
−1.6196 2.1416

)
, G =

(
−0.0157
0.0700

)T
.

The minimum of the H∞ performance index γmin =

0.3207 and the upper bound ε̄ = 0.8562 are also obtained.
To facilitate simulation, we take the small parameter as

ε = 0.02, given the initial conditions x (0) = (−0.15− 1)T ,
x̂ (0) = (−1.5 0.3)T and the disturbance w (k) =
1
/(

1+ t2
)
. The simulation of the observer error system is

shown in Fig.1. As shown in the simulation, the observer
error can be close to zero. Fig.2 is a simulation for the closed-
loop system, which shows that ISS can be achieved under the
designed control law.

From the above numerical studies, it is noticed that the
controllers are derived in this paper without the equality
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constraint involved in [12], which can be obtained easily by
solving the LMI. Thus, the method here is much simpler and
easier to compute.

VI. CONCLUSION
This paper has investigated the H∞ observer-based control
for DTSPSs with nonlinear disturbances. By using Lyapunov
function and LMI technique, a proper observer has been
constructed to ensure that the error system is asymptotically
stable with sufficient small disturbance attenuation level γ for
all ε ∈ (0, ε̃

]
. Then based on ISS property, a sufficient condi-

tion has been presented such that the ISS of the closed-loop
system can be guaranteed. Meanwhile, the H∞ performance
index can be satisfied. In addition, the minimum γ and the
upper bound of the perturbation parameters have been solved
by using MATLAB Toolbox. Finally, two numerical exam-
ples have been given to verify the validity of the proposed
methods.
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