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ABSTRACT This paper proposes an adaptive filter for estimating the surface temperature of lithium-ion
battery cells in real time. The proposed temperature sensorless method aims to achieve a highly accurate
temperature estimation at a relatively low implementation cost. The method employs a system dynamic
and measurement models derived using polynomial curve fitting and implemented in the proposed adaptive
autotuned extended Kalman filter (AA-EKF). Derivation of the proposed technique followed by experimental

verification are demonstrated.

INDEX TERMS Battery management system (BMS), extended Kalman filter (EKF), lithium-ion battery

(LIB), polynomial fitting, electric vehicle.

I. INTRODUCTION

Lithium-ion batteries (LIBs) are adopted in a wide spectrum
of applications and products including portable electronics,
transportation electrification, renewable generation support
and grid storage. Due to their high energy/power densities and
long cycle-life, they are preferred over other storage technolo-
gies in many industries [1]-[4]. These batteries, however, are
extremely sensitive and hence they must be carefully handled
when they are operated or stored. Excessive temperature rise
in these batteries due to abuse or improper storage could lead
to a significant degradation in their performance. It may also
impose a safety risk or fire hazard if their temperature rise
is not handled quickly and properly [5]. Therefore, online
monitoring of the temperature of an LIB is a crucial function
of a BMS.

Typically, the temperature of a battery is monitored uti-
lizing a sensor by taking direct readings using a thermal
impulse technique [6]. Alternatively, the temperature could
be monitored indirectly as proposed in [7] using artificial
neural networks (ANNSs). In the referenced works, the use of
sensors brings additional limitations and issues to the BMS.
Although sensors have been widely adopted in many appli-
cations due to their low cost, sensors demand a continuous
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power supply for their operation, [8], which might interfere
with the performance of the LIB and the data needed by
the BMS. Furthermore, fully relying on sensors to monitor
the temperature of LIBs is impractical in many applications
due to the need to perform regular offline calibrations and
maintenance procedures to ensure accurate measurements at
any instance. Another ANN method is proposed in [9] to
estimate the surface temperature of LIB cells. Although ANN
have high stability and accuracy in general, they demand
tremendous resources. In addition, ANN methods such as
those in [7] and [9] have a guaranteed poor performance
if the testing conditions differ from the training and val-
idation conditions. Therefore, many sensorless techniques
have been recently proposed to replace or support sensor-
based monitoring systems. For instance, a sensorless based
technique for estimating the internal temperature of an LIB
utilizing impedance measurements is proposed in [10]. In the
referenced paper, an EKF is used to estimate the internal
temperature using a reduced-order thermal model. The main
drawback of the referenced work is the use of the impedance
measurement in real time to estimate the temperature, which
results in an added complexity to the system’s implemen-
tation. On the other hand, in [11] a dual Kalman filter that
uses a 1-D LIB thermal model is used for improved accuracy
as compared to [10]. Although the use of a dual Kalman
filter is more accurate, it adds more complexity to the model
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and it heavily relies on numerical approximations and the
knowledge of the internal resistance of the battery cell, which
in turn increases the inaccuracy of the model used and the
resulting temperature estimation. Other sensorless methods
that are based on electrochemical impedance spectroscopy
have been proposed in [12] and [13] to estimate the inter-
nal temperature of a LIB. The referenced methods rely on
injecting an AC current to the battery cell to determine the
impedance spectroscopy. Subsequently, using the zero-phase
impedance frequency, the temperature is extracted. Although
the referenced methods are sensorless, these methods face
several implementation challenges that range from the added
hardware complexity due to the need of injecting an AC
current into the system. In addition, there is a lack of scientific
evidence that the zero-phase impedance relies exclusively on
temperature rather than on other parameters such as the state-
of-charge (SOC) and state-of-health (SOH), which might
vary from one battery to another. An adaptive approach that
is based on measuring the impedance phase of the battery in
real time by a simple search algorithm is presented in [14]
while addressing the limitations of [12] and [13]. Yet, the
calculation of the impedance-phase requires the injection of
an AC current, which is inadequate in many applications.
In addition, the external (surface) temperature is considered
accurate enough as an input to the BMS in many applica-
tions. This makes it a low-cost alternative to internal tem-
perature estimation which is costly and unnecessary in many
applications.

Polynomial based Kalman filters have been recently intro-
duced to offer a simplified stochastic estimation approach
to real engineering problems such as navigation as in [15]
and SOC estimation as proposed by [16]. In both refer-
ences, the polynomial-based approaches proven to be simpler
to implement without sacrificing the accuracy of the esti-
mation process. The polynomial based mathematical mod-
els are prepared from experimental data with negligible
approximations, hence delivering promising results. There-
fore, inspired by these efforts, this research aims at utilizing
polynomial-based modelling to estimate the surface temper-
ature of an LIB at a reduced cost and simplified imple-
mentation requirements while maintaining the accuracy and
reliability of the estimation process. This paper proposes
a polynomial based curve-fitting approach based on given
experimental data to formulate the temperature dynamic and
voltage measurement models for surface temperature estima-
tion. The derived models and the EKF-based temperature esti-
mation algorithm are very accurate, as experimental results
show. Besides its high accuracy, the proposed estimation
method is simple, robust and adaptive as it employs a power-
ful autotuning algorithm to adapt the models’ parameters as
the battery ages.

The organization of this article is as follows: Section II
presents the proposed dynamic and measurement models.
Section III presents derivation of the proposed technique.
Experimental verification is provided in Section IV followed
by summary and conclusions in Section VIL.
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Il. DYNAMIC AND MEASUREMENT MODELS

Parameter estimation of time variant parameters typically
requires a dynamic model that can represent how the param-
eter evolves with time. Additionally, there should be a mea-
surement model that relates the system output to the estimated
parameter [17]. In this work, the estimated parameter is the
surface temperature with the output being the terminal volt-
age of the battery. The dynamics of a battery are nonlinear
by nature as indicated in [18]. Therefore, the dynamic and
measurement models take the forms represented by Egs. (1)
and (2), respectively, where f is a nonlinear function that
propagates the state given the previous sampling step k, the
previous knowledge of the state x, the input u, and & is
the nonlinear relation between the output z and the state.
The white Gaussian sequences w and v are the dynamic
process noise and measurement noise sequences with covari-
ances Q,, and R,, respectively.

x(k+1) =flk,xk),u)]+wk) (D
zk+ D) =hlk+1,xk+D]+vk+1) 2)

In this section, the required battery models are generated
by running MATLAB polynomial fitting routines on experi-
mental data acquired from NASA public dataset [32]. In this
dataset, a 4.2-V, 1840-mAh brand-new LIB cell (cell BO005)
was exposed to continuous charge-discharge cycles. The cell
was first completely discharged. Then, it was charged using
a constant-current-constant-voltage method (1500-mA con-
stant current to 4.2-V followed by 4.2-V constant voltage
until current dropped to 10-mA). After the charge test was
completed, the cell was completely discharged again using
2000-mA current until the voltage reached 2.6-V. This pro-
cedure was repeated for over 500 cycles until the capacity
dropped by 30% of initial capacity.

A. TEMPERATURE DYNAMIC MODEL

Literature is rich with physics-based thermal models that are
capable of accurately predicting the temperature distribution
of an LIB [19]. Models ranging from volume averaged tem-
perature models as in [20] to two-state lumped thermal mod-
els as in ([21], [22]) have shown promising results but suffer
from high complexity and computational effort. A computa-
tionally efficient thermal model for a cylindrical battery cell
was proposed by [23] that relies on providing a polynomial
approximation to a battery’s heat transfer problem. However,
the proposed solution faces some added complexity due to
requiring exact knowledge of the battery’s physical param-
eters and geometry. In this paper, we follow a generalized
less-complex polynomial approximation to the temperature
dynamics of an LIB as suggested in [23]. The non-linear
battery temperature model used is expressed by Eq. (3) where
x is the surface temperature while u is the input current to the
LIB system.

[l x (k) u ()] = fixk +faug + o 3

Since the model shown in Eq. (3) is an expansion of
the general non-linear dynamic function f in Eq. (1), the
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TABLE 1. Temperature dynamic model coefficients.

Cycle So fi f2

1 -1.181705442 0.995288209 0.34941107
50 -0.205896561 0.995545605 0.105586175
100 -0.79644148 0.997867218 0.223346558
150 -0.155548097 0.997795324 0.067049633
200 0.165235922 0.998294498 -0.015956482
250 -0.131246396 0.998853051 0.054071269
300 1.186242599 0.999019923 -0.271410893
350 -1.453798018 0.998911169 0.381550967
400 0.359365912 0.999069781 -0.066517423
450 1.853791631 0.999029903 -0.43460326
500 -2.591634861 0.999319377 0.661390526

coefficients obtained by polynomial fitting of the experimen-
tal data are thus denoted by fy, f1, and f>. The coefficient fj is
a general curve fitting constant with no real physical signif-
icance as opposed to f1, and f> that represent the degrading
rate of temperature difference and heat generation rate due
to Joule Heat, respectively, as claimed by [24]. A separate
polynomial fit was performed on each cycle to obtain the
corresponding fitting coefficients. The coefficients for some
selected cycles are tabulated in Table 1 and are plotted against
cycle number in Fig. 1 to observe the significance of the aging
factor on the obtained thermal model.

B. VOLTAGE MEASUREMENT MODEL

Polynomial based measurement models have been widely
used in literature for the SOC estimation of LIBs. In [25]
and [26], for instance, polynomials are employed to approxi-
mate the SOC and open-circuit voltage (OCV) relationship
with reliable accuracy. While in [27] a study is made to
present the SOC-OCYV characteristic curves at different tem-
peratures using a range of curve fitting functions that include
polynomial, exponential, sum of sines, and Gaussian fits. The
polynomial fit was found to be the simplest most reliable
fit. Hence, the goal is to use a similar approach but rather
to approximate the V-T characteristic equation for the given
LIB. The characteristic equation is approximated by the 8
order polynomial presented by Eq. (4) which also serves as
an expansion to the general measurement model expressed
by Eq. (2). kg through hg are the coefficients of the nonlinear
measurement function 4.

hik +1,x (k + D] = ho + hixey1 + haxg
+othed, @)

Once again, a separate polynomial fit is found for each
discharge cycle to observe the aging factor and its effect on
the coefficients of the V-T characteristic equation. The coef-
ficients for selected cycles are given in Table 2 and plotted in
Fig. 2.

By examining Figs.1 and 2, it is evident that the curve fit-
ting coefficients of Egs. (3) and (4) do vary with the discharge
cycle number. Unlike Eq. (3), the coefficients of Eq. (4)
show a clear trend and stabilize after approaching a discharge
cycle number of 200. However, it is insufficient to assume
a single model for the output. Additionally, the coefficients

14040

0 50 100 150 200 250 300 350 400 450 500

0.9995 T T T T T T T T T

0.999 |-

0.9985 -

0.998 |-

0.9975 |-

0.997 |

0.9965 -

0.996 |-

0.9955 |-

0.995

0.9945 . . . . . L . . .
0 50 100 150 200 250 300 350 400 450 500

Cycle
(b)

0.8

06 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Cycle

(c)

FIGURE 1. Temperature dynamic model coefficients variation with cycle
number.

of Eq. (3) show no clear trend with cycle number which
deems the proposed adaptive approach useful in tracing the
coefficients of Eqs. (3) and (4) using linear interpolation.

IlIl. PROPOSED TECHNIQUE
The derivation of the EKF algorithm alongside the proposed
autotuning algorithm are presented in this section.
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TABLE 2. Voltage measurement model coefficients.

Cycle he h, h, hs h, hs h h, hg
1 -4.16x10* 1.08x10* -1.23x103 79.15 -3.18 8.13x1072 -1.30x1073 1.18x1075  -4.68x1078
50 -1.95x10° 5.12x10* -5.85x103 380.54 -15.42 3.99x107! -6.42x1073 5.89x1075 -2.36x1077
100 -1.17x105 3.16x10* -3.71x103 247.37 -10.27 2.72x1071 -4.48x1073 421x1075  -1.72x1077
150 -3.79x105 9.27x10* -9.87x103 598.56 -22.61 5.45x1071 -8.18x1073 6.99x107°  -2.61x1077
200 -8.93x10* 2.36x10* -2.71x103 176.97 -7.19 1.86x1071 -2.99x1073 2.74x1075  -1.09x1077
250 -3.28x10* 8.80x10% -1.02x103 67.29 -2.75 7.13x1072 -1.15x1073 1.05x1075  -4.17x1078
300 -2.41x10* 6.52x10% -7.65x10% 50.82 -2.09 5.46x1072 -8.84x107* 8.12x107°  -3.24x107®
350 -2.33x10* 6.27x103 -7.31x10? 48.20 -1.97 5.09x1072 -8.17x107* 7.43x107%  -2.93x1078
400 -2.16x10* 5.83x10° -6.81x102 44.92 -1.83 4.74x1072 -7.60x107* 6.91x107¢  -2.72x107®
450 -1.70x10* 4.68x10°% -5.57x10? 37.41 -1.55 4.06x1072 -6.60x107* 6.06x107¢  -2.41x107®
500 -1.83x10* 5.01x10° -5.89x102 39.07 -1.60 4.15x1072 -6.66x10* 6.05x107°  -2.39x107%
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FIGURE 2. Voltage measurement model coefficients variation with cycle number.

A. EKF DERIVATION

Equations (3) and (4) are used to formulate the EKF estima-
tion algorithm [28]. The EKF is first initialized with an initial
state estimation, Xo, and initial state estimation covariance,
Py. Next, the prediction step is used to obtain the a priori state
estimation, X along with its covariance, Py, and estimate the
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measurement Jacobian (or the derivative), Hy, and the EKF
gain, K, as follows:

Pyt = [Puf] + Qw1 %)
X1 = Xk +f (W) (6)
Zk+1 = h(Xey1) @)

14041
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FIGURE 3. Proposed estimation algorithm.

d _
Hiq1 = ah (Xk+1) (8)

- - -1
Kirr = PeriHl g (e P B + Ruen) )

Finally, the EKF estimates and its corresponding covari-
ance are updated as follows:

X1 = X1 + Kip1 @1 — 21 Gog1)) (10)
Pii1 = (I — Kgp1Hiy1) Prga (1D

The standard EKF algorithm assumes a consistent dynamic
and measurement models throughout the estimation process
and any changes in the model parameters will cause the
filter to diverge significantly and yield inaccurate estimation.
This problem is more prominent with the system in hand
given the significance of the aging factor and model param-
eters dependency on cycle number as shown graphically in
Fig. 1 and Fig. 2. In the next sub-section, an autotuned
adaptive approach is presented to overcome this problem by
adjusting model parameters based on the cycle number.

B. AUTOTUNING ALGORITHM
Relying on a single average model for Egs. (3) and (4)
while ignoring the aging condition of the LIB reduces the
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accuracy of estimation process. Therefore, using the standard
EKEF discussed earlier is not enough to achieve an accurate
estimation of a battery’s surface temperature with varying
health/age condition that experiences a change in capaci-
tance per cycle. To overcome this problem, a more robust
approach is used to improve the accuracy of temperature
estimation.

A great advantage of using polynomial models for
Egs. (3) and (4) is that it is possible to observe the change
in the models by tracking the variation of their coefficients
over the discharge cycles. The model coefficients for selected
cycles tabulated in Tables 1 and 2 and presented graphically
in Figs. 1 and 2 show the total of 12 combined model coef-
ficients at different SOH conditions for cycles 1 through 500
until the brand-new cell reaches 30% capacity fade. There-
fore, an average model would only succeed to capture the
dynamics of a battery in the middle of its life cycle. This
parameter-averaged model is not enough to deliver an accu-
rate temperature estimation at any given cycle. Thus, an adap-
tive autotuning approach that utilizes lookup tables (LUTs) to
tune the temperature and voltage model parameters per given
cycle will be used. LUTSs are in use for some time in literature
to develop SOC-OCYV relations by constructing LUTs offline

VOLUME 10, 2022
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FIGURE 4. Estimation results using constant-current discharge dataset.

from experimental data as in [29] and [30]. These LUTs are
then used for linear interpolation between sampling points
as in [31]. Similarly, Table 1 and Table 2, that are prepared
offline, are used as LUTs for linear interpolation of the coef-
ficients of Eqgs. (3) and (4) given the discharge cycle. Once the
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Time (s)

appropriate model coefficients are obtained, they are fed in to
the EKF algorithm to deliver a more accurate estimation for
the surface temperature. The resulting algorithm is referred to
as the adaptive autotuned EKF (AA-EKF) and is illustrated in
Fig. 3.
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IV. EXPERIMENTAL VERIFICATION

The proposed estimation algorithm is verified experimentally
using the dataset in [32]. The estimation results of this dataset
using a standard EKF and the proposed AA-EKF algorithms
are shown in Fig. 4.

The performance of the proposed AA-EKF algorithm is
compared against a standard EKF through the estimation
of the battery’s surface temperature for different cycles that
represent different SOH conditions. The initialization of the
state estimation was set to 25°C for both filters, to match
that of an average room temperature. The mean absolute
error (MAE) value is used to quantify the performance of the
proposed AA-EKEF to the standard EKF algorithm. The MAE
is defined as

1 K
MAE = — Zk:l 17| (12)

where K is the length of the measurement window and the
error is X = x,,,,, — Xk-

The results in Fig. 4 show that both algorithms follow
the true surface temperature. However, it is evident that the
AA-EKF algorithm is able to track the surface tempera-
ture more closely, unlike the standard EKF which shows
significant divergence towards the end in both the 100"
and 500" discharge cycles. Such divergence is not notice-
able in the 300" cycle since this is an intermediate cycle,
hence the model parameters are close to the average model
used by the standard EKF. However, the goal here is to ensure
that the estimator can predict the battery’s surface tempera-
ture at any given cycle. The MAE values obtained from both
algorithms are tabulated in Table 3 for further verification.
Both the graphical and the quantitative results captured by
the MAE prove that the proposed AA-EKEF is superior to its
standard counterpart in the surface temperature estimation.

For further verification, the proposed estimation algorithm
is applied to a different dataset. An Oxford battery dataset,
which comprises a highly dynamic pulse discharging test
using a 4.2-V, 740-mAh LIB cell was used [33]. The test
starts with an initially fully charged cell and continues until
the SOC reaches 30%. The cell is exposed to highly dynamic
pulses all the way from 100% down to 30% SOC. The
temperature dynamic model, voltage measurement model,
and temperature estimation algorithm results are shown
in Figs. 5-7.

The polynomial based EKF is used to estimate the battery’s
temperature as shown in Fig. 7. The AA-EKEF is not required
for this test given that the data are only collected for one
discharge cycle. The estimation results obtained by using
the polynomial based dynamic and measurements models
illustrated in Figs. 5 and 6 are promising and show significant
robustness even under highly dynamic conditions. Although
the dynamic model in Fig. 5 does not accurately capture the
dynamics of the battery’s temperature, the estimation algo-
rithm still manages to deliver a highly accurate estimation as
shown in Fig. 7. This proves that polynomial based models
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TABLE 3. EKF and AA-EKF MAE values (in degree Celsius) for selected
cycles.

Cycle EKF AA-EKF
100 0.3481 0.1507
200 0.3658 0.1824
300 0.2080 0.1949
400 0.2480 0.2089
500 0.3506 0.2076
412 Temperature (deg C) Vs Time (min)
True Temperature v
41 F m———— Modeled Temperature ._.l i

I I I
I o o
» (] oo

Temperature (deg C)

IN
o
N

40 +

39.8 L . . L .
0 10 20 30 40 50 60

Time (min)

FIGURE 5. Temperature versus time (dynamic model) for the dynamic
pulse discharge test.

are reliable and are able to capture the necessary system
dynamics needed for accurate state estimation.

Lastly, the MAE obtained in the dynamic pulse discharge
test (Fig. 7) is 0.053°C, which is very low given the high
dynamics of the test, which adds to the accuracy and robust-
ness of the proposed temperature estimation algorithm at
different testing conditions.

V. PRACTICAL CONSIDERATIONS

A number of practical aspects must be considered when
implementing the proposed estimation method on a battery
cell or pack. Some of these aspects are demonstrated in this
section.

A. CELL-TO-CELL VARIATION

Due to the manufacturing process, internal parameters such as
the internal resistance and capacity may slightly differ from
a cell to another. This variation occurs even within identical
cells from the same manufacturer. As a result, the temperature
profile may slightly deviate from the reference used to derive
the model parameters. The impact of this variation can be
mitigated by allowing the autotuning algorithm to tune the
parameters of the dynamic and measurement models when
the mismatch between the actual and estimated temperature
crosses a predefined value. In this case, a sensor calibrated
on a regular basis must be attached to the cell’s surface to
provide the actual measurement (in this case, the estimation
algorithm will offer an alternative temperature measurement
method that supports the temperature measurement provided
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FIGURE 7. Estimation results using dynamic pulse discharge dataset.

by the sensor). Alternatively, the original model can be used
with other similar cells without adding an external sensor or
performing an additional offline parameter tuning at the cost
of slightly reduced accuracy. To quantify the impact of cell-
to-cell variation on the accuracy of the proposed algorithm,
the model derived using the BO0OO5 dataset is tested on two
other cells, namely BO006 and BOOO7. The results are shown
in Fig. 8 and 9. As seen from Fig. 8 and 9, the temperature
estimation accuracy is accurate and acceptable despite the
fact that the model is derived from a battery cell and applied
on other different cells.

B. PROCESS AND MEASUREMENT UNCERTAINTIES

EKFs, in general, assume a white Gaussian noise with zero
mean. While this assumption has been widely used in many
Kalman filter-based algorithms, it could raise concerns dur-
ing operation. Uncertainties in the process and measurement
models are not only caused by the white noise on the mea-
sured current and/or voltage but are also due to possible
sensor-incurred biases. As a result, achieved estimation accu-
racy in a real-life scenario is usually worse than that obtained
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FIGURE 8. Results of applying the proposed algorithm (derived using
B0005 dataset) on B0O006 dataset.

under controlled conditions assuming complete knowledge
of the noise statistics. To enhance the accuracy of the EKF
by accounting for unknown, or change, in the dynamics and
measurement uncertainties, adaptive techniques such as the
auto-covariance least square (ALS) or maximum-likelihood-
error (MLE) algorithms can be embedded with the traditional
EKF. In this paper, we employ an innovation-based approach
to update the covariance matrices Q,, and R,, see Eqs. (14)
and (16). A forgetting factor, 0 < o < 1, is introduced to
adaptively estimate the covariance matrices. The purpose of
the forgetting factor is to place more weight on the most
recent estimations of the covariance magnitudes such that it
adapts with the system. Additionally, the forgetting factor will
suppress sudden fluctuations in the covariance estimations
leading to a numerically more stable algorithm. A momentum
constant, 0 < B8 < 1, is used to compute the forgetting factor
« according to Eq. (17), allowing it to grow with the number
of iterations. B controls the rate at which « grows and is
chosen empirically such that the forgetting factor is neither
too sensitive to cause numerical instability nor is too slow
to capture the covariances matrices magnitude. The adaptive
dynamics noise covariance update is performed as:

Owk+1) = Kiprek16f 1Kl (13)
Owik+1) = AQwkc+1) + (1 — )Owii) (14)

Similarly, the measurement noise covariance matrix is adap-
tively updated as:

Rugyny = ecniefy) — Hi P HY (15)
Ryer1y = aRugesry + (1 — )Ry (16)
where,
1 -
w=1"F (17)
1= pF
& = (Zk+1 — Z+1 Kk11)) (18)

Figure 10 shows the estimation results for cell BOOOS
(a) using a conventional EKF and (b) using an enhanced
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FIGURE 9. Results of applying the proposed algorithm (derived using
B0005 dataset) on B0007 dataset.

covariance-matching-EKF algorithm. The enhanced EKF
provides better estimations as observed through the presented
plots, which can further be captured through a direct compar-
ison between the obtained MAE values. The enhanced EKF
algorithm managed to decrease the MAE value by roughly
28% from 0.1966°C using the conventional EKF to 0.1410°C
using the innovation-based covariance matching approach.

C. BATTERY PACK IMPLEMENTATION

While the proposed method is derived for a battery cell, which
is suitable in applications such as cell phones where once
battery cell is commonly used, the proposed method can also
be employed in a battery pack to monitor the temperature of
each individual cell. To achieve that, the current and voltage
measurement of each individual cell must be available. In an
advanced BMS, the voltage and current can be monitored by
the DC-DC converter connected across the cell to achieve
active balancing. Alternatively, the voltage and current of
each cell can be approximately determined by dividing the
total pack voltage by the number of series-connected cells to
determine the voltage, and by dividing the total current of the
pack by the number of parallel strings to determine the current
of each cell. The possibility to monitor the temperature of
each cell in a battery pack is another feature of the proposed
method which is impossible to achieve using external sensors.

D. HARDWARE REQUIREMENTS

The gained merits of the proposed method come at a higher
implementation cost due to increased hardware requirements.
To implement the EKF along with the autotuning algorithm
and perhaps the enhancement algorithm to track the tem-
perature of the cell(s), the BMS must be able to run the
algorithm fast enough to quickly detect abnormal temperature
rise. A detailed block diagram for the BMS hardware imple-
mentation is shown in Fig. 11. While it might be tempting to
use a traditional sensor to measure and track the temperature
of a battery, the proposed sensorless estimation method can
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FIGURE 10. Estimation results using cell B0005: (a) using a conventional
EKF, and (b) using an enhanced covariance-matching-EKF algorithm.
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FIGURE 11. A detailed BMS block diagram of the proposed system.

add a priceless benefit in early detecting abnormal temper-
ature rise in the case when a traditional sensor fails. With
the advancement in hardware technology and the consistently
dropping prices of ICs, advanced monitoring methods, such
as the proposed, can enhance or even replace traditional
sensor-based measurement methods.

VI. SUMMARY AND CONCLUSION

In this paper, an approach is adopted for formulating the
dynamic and measurement models of surface temperature
estimation. The derived models are implemented in the pro-
posed AA-EKF algorithm to estimate the surface temperature
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of an LIB cell. The estimation technique employs an adaptive
autotuning algorithm to track the changes in the models’
parameters due to battery ageing. Two independent public
datasets were used to evaluate the proposed approach. Results
show that the proposed technique is capable of adapting to
any SOH condition and/or operating condition. Compared
to a standard EKF, the proposed AA-EKF has improved the
temperature estimation accuracy by 56%, 50%, 6%, 16%
and 40% at cycles 100, 200, 300, 400 and 500, respectively,
according to the results obtained using the constant-current
discharge dataset. Another dataset that involves a highly
dynamic discharge pulses was used to further evaluate the
proposed technique. In that dataset, the algorithm was capable
to maintain the MAE for the estimated temperature within
0.053°C, which is quite accurate and comes in full agree-
ment and consistency with the constant-current discharge test
results.

Overall, the proposed technique is highly accurate and
robust, as conducted experiments show. Additionally, the
proposed technique has a low implementation cost compared
to other techniques that demand tremendous computational
and hardware requirements, such as neural networks and
impedance-spectroscopy based methods, making it a suitable
and reliable choice in a wide range of industrial applications.

Lastly, the proposed method was verified at moderate-
to- high ambient temperatures, i.e. 24°C-40°C. As a future
work, the impact of extremely low temperatures, i.e. below
freezing point, on the battery dynamics, and modeling these
dynamics to estimate the battery surface temperature must be
investigated to validate the proposed approach at all possible
operating temperatures.
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