
Received January 10, 2022, accepted January 26, 2022, date of publication January 31, 2022, date of current version February 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3148127

A Unifying View of Estimation and Control
Using Belief Propagation With
Application to Path Planning
FRANCESCO A. N. PALMIERI 1, (Member, IEEE),
KRISHNA R. PATTIPATI 2, (Life Fellow, IEEE), GIOVANNI DI GENNARO 1,
GIOVANNI FIORETTI 1, FRANCESCO VEROLLA1,
AND AMEDEO BUONANNO 3, (Senior Member, IEEE)
1Dipartimento di Ingegneria, Università degli Studi della Campania Luigi Vanvitelli, 81031 Aversa CE, Italy
2Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
3Department of Energy Technologies and Renewable Energy Sources, Italian National Agency for New Technologies, Energy and Sustainable Economic
Development (ENEA), Portici, 80055 Naples, Italy

Corresponding author: Francesco A. N. Palmieri (francesco.palmieri@unicampania.it)

This work was supported in part by POR CAMPANIA FESR 2014/2020, and in part by ITS for Logistics, awarded to the Consorzio
Nazionale Interuniversitario per le Telecomunicazioni (CNIT). The work of Krishna R. Pattipati was supported in part by the U.S. Office of
Naval Research; in part by the U.S. Naval Research Laboratory under Grant N00014-18-1-1238, Grant N00173-16-1-G905, and Grant
HPCM034125HQU; and in part by the Space Technology Research Institutes under Grant 80NSSC19K1076 through the NASA’s Space
Technology Research Grants Program.

ABSTRACT The use of estimation techniques on stochastic models to solve control problems is an emerging
paradigm that falls under the rubric of Active Inference (AI) and Control as Inference (CAI). In this work,
we use probability propagation on factor graphs to show that various algorithms proposed in the literature
can be seen as specific composition rules in a factor graph. We show how this unified approach, presented
both in probability space and in log of the probability space, provides a very general framework that
includes the Sum-product, the Max-product, Dynamic programming and mixed Reward/Entropy criteria-
based algorithms. The framework also expands algorithmic design options that lead to new smoother
or sharper policy distributions. We propose original recursions such as: a generalized Sum/Max-product
algorithm, a Smooth Dynamic programming algorithm and a modified versions of the Reward/Entropy
algorithm. The discussion is carried over with reference to a path planning problem where the recursions that
arise from various cost functions, although they may appear similar in scope, bear noticeable differences.
We provide a comprehensive table of composition rules and a comparison through simulations, first on a
synthetic small grid with a single goal with obstacles, and then on a grid extrapolated from a real-world
scene with multiple goals and a semantic map.

INDEX TERMS Belief propagation, dynamic programming, Markov decision process, path planning,
reinforcement learning.

I. INTRODUCTION
There is a growing interest in establishing connections
between probabilistic estimation methods and more tra-
ditional stochastic control strategies [1]–[3]. Analogies
between control and estimation can be traced back to the
work of Kalman [4] and to more recent attempts to link
probabilities and rewards under the same framework [3], [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

The terms Active Inference (AI) and Control as Inference
(CAI) have been recently coined [6] with some of these
models based on the so-called free-energy principle [7], [8],
on KL-learning [9]–[11], and on Maximum entropy [12].
Based on these proposals intriguing connections have also
been drawn, to neuroscience and brain theory [13] and causal
reasoning [14]; they all seem to share some elements with a
goal-directed behavior.

The estimation/control framework on which we focus our
attention here, may provide a unifying view for a wide range

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 15193

https://orcid.org/0000-0003-3777-3501
https://orcid.org/0000-0002-0565-181X
https://orcid.org/0000-0001-9757-1712
https://orcid.org/0000-0002-4889-8505
https://orcid.org/0000-0003-3494-2648
https://orcid.org/0000-0003-1802-0264

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

of scenarios whenever one has a stochastic model and the goal
is to achieve a set of objectives by optimizing a cost function
defined in probabilistic terms. In this paper, to better visualize
the differences and the commonalities among the various
methods, we have taken a classic path planning problem as a
typical use case: an agent needs to navigate in a complex and
uncertain scenario basing its actions on its best inference of
the environment to reach a goal subject to spatial constraints.

It is largely agreed that intelligent planning, involves
an agent taking a sequence of actions on the basis
of its best estimate of the future. This is clearly the
hallmark of Dynamic Programming (DP) algorithms for
Markov Decision Processes (MDP) and Partially-Observable
Markov Decision Processes (POMDP) [15], [16]. Indeed,
in DP, an agent acts optimally using a value function
back-propagated from the hypothetical future. Similarly,
however, in an estimation context, a best-path search can
be seen as a Maximum A Posteriori (MAP) solution in a
stochastic dynamic model where the start (initial) state and
goal (end) state are constrained [17]. This suggests that the
two approaches can be viewed under a unified framework
and that some of the powerful estimation techniques based
on probability propagation on graphs, may provide an ideal
way for combining the two disparate approaches and for
leading to new generalizations. In this paper, we review
the most popular algorithms as they translate into messages
in probability and in log-probability spaces. We show how
the unifying framework allows us also to derive original
parametric extensions that provide the designer with a whole
suite of new algorithmic options.

A. THE PROBABILITY GRAPHS
In this work, we use directed Factor Graphs (FG), that
assign variables to edges and factors to interconnected
blocks. Message propagation in FG is more easily handled
in comparison to propagation in graphs in which the
variables are in the nodes [18]. In a FG, messages propagate
through a block diagram, where each block’s function is
defined independently. Further reductions on the burden of
defining message composition rules can be achieved using
Factor Graphs in normal form (FGn), first proposed by
Forney [19], [20]. In fact, a FGn conveniently includes
junction nodes (equality constraint nodes) that split incoming
and outgoing messages when variables are shared bymultiple
factors. We have proposed a small modification to the FGn
in our Factor Graph in reduced normal form (FGrn) [21]
by including shaded blocks that map single variables to
joint spaces. In a FGn, when a variable has more than
one parent, proper forward and backward messages must
go through the parents’ joint space (married parents). In a
FGrn instead, the shaded blocks describe this passage and
allow a unique definition of message propagation rules
through Single-Input/Single-Output (SISO) blocks. Since,
in the standard Sum-product algorithm, backward propaga-
tion through shaded blocks corresponds to marginalization,
we show in this paper how this operation can be re-defined

and how it may be mapped to different estimation/control
algorithms. Computational complexity issues for some FGrn
architectures are addressed in [22].We confine ourselves here
to discrete variables, even if factor graphs that propagate
continuous distributions are possible and may be devised also
for path planning. Gaussian messages are introduced in [23]
and have been used for Kalman filter-based tracking in [24]
using FGrn. This issue will not be addressed here and will be
the subject of a future work.

B. THE PATH MODELING PROBLEM
We have proposed in some of our previous works various
techniques for modeling the motion behaviors of pedestrians
and ships [25]–[29]. More recently, while experimenting
with probability propagation in path planning problems [30],
we came to realize that the probabilistic algorithms may
be the most promising approaches for agile modeling of
intelligent agent motion in complex scenes. This led to the
development of the unified belief propagation framework for
estimation and control discussed in this paper.

We assume here that the system’s stochastic transition
function is known and that both the state and the action
spaces are discrete finite sets that can be handled with
tabular methods. Extensions to continuous spaces can be
considered with approximations to the value function, but
they will not be addressed here. Also, we do not address
learning here, because we believe that a unified view
on the various cost functions and recursions with known
stochastic system dynamics should be the first step in
trying to understand the more challenging Reinforcement
Learning (RL) [31] adaptation rules. In this paper, standard
probability message propagation, such as the Sum-product
and the Max-product algorithms [32], are compared to DP
using a unified view, together with other methods based
on joint Reward/Entropy maximization [3], [6], [33]–[35].
To our knowledge, no comprehensive comparison exists in
the literature, and our contribution aims at providing the
reader with a ready-to-use suite of known algorithms and
their original extensions, all derived within the unifying
framework presented here.

C. OUR CONTRIBUTIONS
The main contributions of this paper can be summarized as
follows:
• The path planning problem is mapped to a Factor
Graph in reduced normal form. Various algorithms,
such as the Sum-product, the Max-product, DP and
Reward/Entropy maximization (the latter is related to
structural variational inference), are included in our
framework, both in probability and in log spaces.
We show that all these algorithms are derived using
different cost functions, but they all correspond to
specific propagation rules through some of the FGrn
blocks.

• Q-functions and V-functions are generalized in
the log-probability space for all the algorithms.

15194 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 1. State-action model as a Bayesian graph.

This formulation includes the well-known Q- and
V-functions arising in DP and allows us to specify the
policy distribution resulting from the algorithms with a
unique expression.

• Some of the well-known algorithms are extended to
a whole new suite of parametric updates that can
control the smoothness in the policy distributions. These
proposed parametric updates are original and can be
used as hyper-parameters to balance exploration and
exploitation in reinforcement learning.

• Simulations are provided, first on a small grid with
one goal and a set of obstacles, and then on a
larger grid extracted from a real scene with multiple
goals (exits) and a semantic map. The results show
marked differences in: (a) the speed of converge to the
steady-state value function, where probabilistic methods
are clearly favored; (b) how the Max-product algorithm
may be preferred for its faster convergence and for the
shape and smoothness of its value functions; and (c) how
various algorithms can be controlled with parametric
updates to exhibit varying levels of smoothness in their
policy distributions.

D. OUTLINE OF THE PAPER
In Section II, we present the Bayesian graph model and
the concomitant factor graph. In Section III, the Sum-
product algorithm is discussed in the framework of FGrn.
In Section IV, the maximum a posteriori solution of
the Max-product algorithm is analyzed with our pro-
posed Sum/Max-product algorithm described in Section V.
Dynamic programming is translated into this framework in
Section VI and our proposal for a generalized SoftDP is in
Section VII. The approaches to combined maximum reward
and entropy are discussed in Section VIII. Simplifications
of some of the recursions for deterministic systems, are
discussed in Section IX. The extension to infinite horizon
models and considerations on the steady-state solutions are
included in Section X. Simulations on small and realistic
grids are in Section XI, with conclusions and suggestions for
further research in Section XII.

II. THE BAYESIAN MODEL
Figure 1 shows the state-action model as a Bayesian graph
where {St } is the state sequence, {At } is the action sequence.
We assume, without loss of generality, that both sequences
belong to discrete finite sets: At ∈ A and St ∈ S. The

reward/outcome sequence {Ot } is binary with Ot ∈ {0, 1}.
The model evolves over a finite horizon T and the joint
probability distribution of the state-action-outcome sequence
corresponds to the factorization1

p(s1a1o1 . . . sT aT oT) = p(oT |sT aT)p(s1)p(aT)

×

T−1∏
t=1

p(st+1|stat)p(at)p(ot |stat),

where the function p(st+1|stat) describes the system dynam-
ics, p(at) are the action priors and p(ot |stat) are the
reward/priors of outcomes on the state-action pairs. More
specifically, we assume that{

P(Ot = 1|stat) ∝ π (stat) ≥ 0;
P(Ot = 0|stat) ∝ U (stat),

where the function π (stat) serves as a prior distribution on
the pair (stat), only if Ot = 1. When Ot = 0, no prior
information is available on that state-action pair, and the
factor becomes the uniform distribution U (stat).2 Therefore,
to simplify notations, we define a factor c(stat) = π (stat)
if prior information is available; otherwise we set c(stat) =
U (stat). This formulation allows the introduction of a reward
function as

R(stat) = log c(stat)+ K , (1)

where K is an arbitrary positive constant. The value K is
really irrelevant because going back to probabilities we have
c(stat) ∝ eR(stat)−K , with the constant disappearing after
normalization. We can set K to a large value if we do not like
to handle negative rewards we obtain from the log function
for K = 0. In the following, without loss of generality,
we assume that our rewards are all negative (K = 0).

The introduction of the sequence {Ot } has been proposed
earlier [3], [36] for connecting rewards to probabilities.
We would like to emphasize that interpreting the factors
c(stat) as prior information in the probability factorization,
may solve, at least for planning problems, the well-known
issue of defining an appropriate reward function. Indeed, in a
practical problem, we may have available statistics on how
often a state is visited and how certain actions may be more
likely than, or preferable to, others.

Note that when a state-action pair has zero probability,
for example for forbidden states, or impossible actions,
obstacles, etc., the reward function takes a value of−∞. This
is really not a problem in practice, because we can easily
approximate such a value with a large negative number.

Note that our model includes a separate factor p(at) for the
priors on At , even if such information could be included in
c(stat). We have preferred, to be consistent with the Bayesian

1Even if the notation should have capital letters for random variables as
subscripts and lower case letters for their values in the functions, we use a
compact notation with no subscripts when there is no ambiguity. We will
include the subscripts for the messages only when necessary.

2In our definition, we assume that π (stat) is normalized to be a valid PDF,
even if normalization is irrelevant for the inference in a probabilistic graph.

VOLUME 10, 2022 15195

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

graph of Figure 1, to keep the two factors separate, one for
marginal action priors and one for joint priors (rewards).

Omitting the sequence {Ot } in the notation the factorization
is more compactly written as

p(s1a1 . . . sT aT) = c(sT aT)p(s1)p(aT)

×

T−1∏
t=1

p(st+1|stat)p(at)c(stat). (2)

A. THE FACTOR GRAPH
Inference in a graphical model is easily handled with
reference to an equivalent factor graph. Much like in a block
diagram, variables are on the branches and factors are in the
blocks.

We use here FGrn [21], for which the essential propagation
rule are in Tables 3, 4, 5, 6 and 7.

Figure 2 shows the FGrn for the Bayesian model of
Figure 1 for T = 4. The prior distributions p(at) and c(stat)
are in the source nodes and the dynamics p(st+1|stat) are in
the SISO blocks. The junctions describe equality constraints,
and the shaded blocks describe the mapping from single
variables’ space to a joint space, i.e., p(stat |a′t) = U (st)δ(at−
a′t) and p(stat |s

′
t) = δ(st − s

′
t)U (at). Essentially, in a shaded

block, the input variable is copied to the output and joined to
the other variable that, in that edge, carries no information
in the forward direction. Each edge has a direction and a
forward f and a backward bmessage associated with it. In the
following, each message has a subscript corresponding to
the variable(s) it describes and an argument which is(are) the
value(s) assumed by that(those) variable(s). Just as in any
belief propagation network, all messages are proportional to
probability distributions and their composition rules allow
the agile derivation of inference algorithms. Note how the
replicas (StAt)i, i = 1 : 4, of the same variable (StAt)
around the diverter block have different names and messages
associated with them.

We will see how our estimation/control problem has a
unique formulation on the factor graph. By changing the
propagation rules for some of the blocks, we obtain the
optimal solutions for various problem formulations.

B. INTRODUCING CONSTRAINTS
One of the main advantages of studying inference problems
on graphs using messages, is that problem constraints are
easily included in the flow. For example, looking at Figure 2:
• A known starting state S1 = s1 can be included as a
forward message fS1 (s1) = δ(s1− s1), where δ(x) = 1 if
x = 0, and is 0 otherwise;

• If we have no prior information on S1, we set
fS1 (s1) = U (s1);

• Knowledge of the initial action A1 = a1 can be included
as fA1 (a1) = δ(a1 − a1);

• Knowledge of the final state (only) ST = sT is
b(STAT)4 (sT aT) = δ(sT − sT)U (aT);

• Knowledge of the state at time t0 may be included as
fSt0 (st0) = δ(st0 − st0);

• In a planning problem, a known map m(st) can be
associated to the factor c(stat) with f(StAt)3 (stat) ∝
m(st)U (at);

• In the same planning problem, joint map-action informa-
tion can injected as the message f(StAt)3 (stat) ∝ c(stat);
if action and map are independent, and the action prior
is p(at), f(StAt)3 (stat) ∝ m(st)p(at), or equivalently
f(StAt)3 (stat) ∝ m(st)U (at) and fAt (at) = p(at); etc.

We denote collectively all the constraints available on
the joint model as K1:T , with the joint model written in
compact form as p(s1a1 . . . sT aT |K1:T). Note that, in the
above formulation, we have assumed a finite time segment
t = 1 : T , but the model may as well represent a segment
t = t0 + 1 : t0 + T , or one of many segments, of a
longer process, where we have the freedom to introduce
initial conditions in the forward messages at each starting
time, and final conditions in the backward messages at the
termination.

C. INFERENCE OBJECTIVES
Our inference aims at providing solutions to one or more of
the following problems:
• Find the best state sequence (S):
s∗1 → s∗2 → · · · → s∗T

• Find the best action sequence (A):
a∗1 → a∗2 → · · · → a∗T

• Find the best joint state-action sequence (SA):
(s1a1)∗→ (s2a2)∗→ . . .→ (sT aT)∗

• Find the best state-action sequence (SASA):
s∗1 → a∗1 → s∗2 → a∗2 → · · · → s∗T → a∗T

• Find the best action-state sequence (ASAS):
a∗1 → s∗1 → a∗2 → s∗2 → · · · → a∗T → s∗T

• Find the best policy distributions (P):
π∗(a1|s1), π∗(a2|s2) . . . π∗(aT |sT)

We will see in the following how various cost functions
determine the message composition rules across the blocks to
solve the problems above, both in the probability space and in
the log probability space depending on different optimization
criteria. In the following discussion, we will concentrate
mostly on the S sequence, on the SASA sequence and on
the policy distribution (P), since the extensions to A, SA, and
ASAS sequences are straightforward.

III. MARGINALIZATION AND THE SUM-PRODUCT
Standard inference in Bayesian model consists in marginal-
izing the global joint probability distribution to obtain
distributions that are proportional to the posteriors on single
variables [18]. More specifically, for states only, for actions
only and for states and actions jointly, we want to compute
the posteriors as

p(st |K1:T) ∝
∑

sj,j6=t,j=1:T
aj,j=1:T

p(s1a1 . . . sT aT |K1:T),

15196 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 2. State-action model for T = 4 as a factor graph in reduced normal form. The one-edge blocks are sources (priors); the two-edge white blocks
represent the system dynamics; the shaded blocks map single variables to their joint space; the diverters connect the variables constrained to be equal.

p(at |K1:T) ∝
∑

sj,j=1:T
aj,j6=t,j=1:T

p(s1a1 . . . sT aT |K1:T),

p(stat |K1:T) ∝
∑

sj,aj,j6=t,j=1:T

p(s1a1 . . . sT aT |K1:T),

where K1:T is the information base on which action decisions
are made. The policy distributions are obtained by fixing the
state st at time t , and accounting for the foreseeable future
until T

π∗(at |st) , p(at |st ,Kt:T) =
p(stat |Kt:T)
p(st |Kt:T)

, t = 1 : T . (3)

The policy distribution describes at time t how likely it is to
take action at from state st , given all the available information
(constraints, priors, etc.) about the future (Kt:T).

All the above functions can be obtained using forward
and backward message propagation using the Sum-product
rule [18], [32]. This approach essentially averages over the
variables that are eliminated across each SISO block. With
reference to Figure 2, by following the flow, for some of the
backward messages we have

b(StAt)4 (stat) ∝
∑
st+1

p(st+1|stat)bSt+1(st+1), (4a)

b(StAt)1 (stat) ∝ p(at)c(stat)b(StAt)4 (stat), (4b)

b(StAt)2 (stat) ∝ f(StAt)1 (stat)c(stat)b(StAt)4 (stat), (4c)

bAt (at) =
∑
st

b(StAt)2 (stat), (4d)

bSt (st) =
∑
at

b(StAt)1 (stat). (4e)

For some of the forward messages

fSt+1(st+1) ∝
∑
stat

p(st+1|stat)f(StAt)4 (stat),

f(StAt)1 (stat) = fSt (st)U (at),

f(StAt)2 (stat) = U (st)fAt (at),

f(StAt)4 (stat) ∝ f(StAt)1 (stat)f(StAt)2 (stat)c(stat).

Note that going backward through a block, the message may
not be normalized. Around the diverters, outgoing messages
are the product of the incoming ones, and are not normalized.

Posterior distributions are obtained by taking the product of
forward and backward messages

p(st |K1:T) ∝ fSt (st)bSt (st),

p(at |K1:T) ∝ fAt (at)bAt (at),

p(stat |K1:T) ∝ f(StAt)i (stat)b(StAt)i (stat), i = 1 : 4.

For readers not too familiar with probability message
propagation, it should be emphasized that this framework is a
rigorous application of Bayes’ theorem and marginalization.
Also all messages can be normalized to be valid distributions,
even if it is not strictly necessary (it is their shape that
matters). However, it is often advised to keep messages
normalized for numerical stability.

The policy distribution (3) at each t is derived as a
consequence of the inference obtained from the probability
flow as

π∗(at |st) ∝
f(StAt)1 (stat)b(StAt)1 (stat)

fSt (st)bSt (st)

=
fSt (st)U (at)b(StAt)1 (stat)

fSt (st)bSt (st)

=
b(StAt)1 (stat)

bSt (st)
, (5)

where we have used the edge with i = 1. It is easy to verify
that the solution would have an equivalent expression for any
other edges i = 2, 3, 4. Note also how the policy depends
only on the backward messages. The reason for this is that by
conditioning on st , all the information coming from the left
side of the graph is blocked (i.e., it is irrelevant).

A. MAX POSTERIOR SEQUENCES
Optimal sequence values, for any t = 1 : T , can be obtained
in parallel using maximization on the posteriors

s∗t = argmax
st

p(st |K1:T) = argmax
st

fSt (st)bSt (st),

a∗t = argmax
at

p(at |K1:T) = argmax
at

fAt (at)bAt (at),

(stat)∗ = argmax
stat

p(stat |K1:T)

= argmax
stat

f(StAt)1 (stat)b(StAt)1 (stat),

VOLUME 10, 2022 15197

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

In the above expressions, the max posterior solutions are
taken separately on each variable. Even if they are often used
in the applications (for example in decoding convolutional
codes - the algorithm, is named BCJR after its authors [37]),
they may provide unsatisfactory sequences for path planning.
In fact, the sequences that result from the individual (local)
maximizations are unconstrained in time andmay correspond
to disconnected paths [30].

B. PROGRESSIVE MAX POSTERIOR SEQUENCES
Better solutions for the max posterior approach are obtained
progressively in time following a forward procedure.3

Looking at Figure 2, for the states-only (S) sequence

s∗t = argmax
st

p(s∗1 . . . s
∗

t−1st |Kt:T)

= argmax
st

fSt (st |s
∗

t−1)bSt−1 (st−1),

where the conditioned forward message comes from a one-
step propagation

fSt (st |s
∗

t−1) =
∑
at−1

p(st |s∗t−1at−1)f(St−1At−1)4 (s
∗

t−1at−1)

=

∑
at−1

p(st |s∗t−1at−1)p(at−1)c(s
∗

t−1at−1).

Note again on the graph that knowledge of the state at
time t − 1 ‘‘breaks’’ the forward flow and only the backward
flow drives the inference. Similarly, for the best State-Action
(SASA) sequence, the Progressive Max-posterior algorithm
using the messages on the graph in Figure 2 is

s∗t = argmax
st

p(s∗1a
∗

1 . . . s
∗

t−1a
∗

t−1st |Kt:T)

= argmax
st

fSt (st |s
∗

t−1a
∗

t−1)bSt (st),

a∗t = argmax
at

p(s∗1a
∗

1 . . . s
∗

t−1a
∗

t−1s
∗
t at |Kt:T)

= argmax
at

fAt (at)bAt (at |s
∗
t),

where the conditioned forward and backward messages mean
that we have considered their values when the conditioning
variables on the left side of the graph are fixed. For the
conditioned forward messages we have

fSt (st |s
∗

t−1a
∗

t−1) = p(st |s∗t−1a
∗

t−1).

For the conditioned backward messages, we have

bAt (at |s
∗
t) ∝ b(StAt)2 (s

∗
t at)

∝ c(s∗t at)b(StAt)4 (s
∗
t at)f(StAt)1 (s

∗
t at).

Since

b(StAt)1 (stat) ∝ b(StAt)4 (stat)f(StAt)2 (stat)c(stat)

= b(StAt)4 (stat)p(at)U (st)c(stat),

3On a fixed time horizon, a similar procedure can be derived going
backward in time. We prefer to maintain the framework causal and leave
it out for brevity.

b(StAt)4 (stat) ∝
b(StAt)1 (stat)

p(at)c(stat)
,

the backward messages can be rewritten as

bAt (at |s
∗
t) ∝

b(StAt)1 (s
∗
t at)

p(at)
f(StAt)1 (s

∗
t at)

=
b(StAt)1 (s

∗
t at)

p(at)
δ(st − s∗t)U (at)

=
b(StAt)1 (s

∗
t at)

p(at)
.

Therefore, the SASA estimation simplifies to

s∗t = argmax
st

p(st |s∗t−1a
∗

t−1)bSt (st), (6a)

a∗t = argmax
at

b(StAt)1 (s
∗
t at) = argmax

at
π∗(at |s∗t). (6b)

Note in all cases the crucial role played by the backward flow.
We have successfully demonstrated this approach for path
planning in our previous work [30]. In fact, in the progressive
max posterior algorithm, the forward flow is not necessary.
Action-only sequences and ASAS sequence can be obtained
in a similar fashion and are omitted here for brevity.

C. SUM-PRODUCT IN THE LOG-SPACE
We have seen above how in the factorized model (2), prior
distributions are related to rewards via the log transformation
in (1). To provide a direct comparison to the dynamic
programming approach, we consider now some of the
Sum-product recursions in the log-space. We define the
functions

Q(StAt)i (stat) , log b(StAt)i (stat), i = 1 : 4

VSt (st) , log bSt (st),

Note that there is a Q function for each message around
the diverter. The choice of notations Q (Q-function) and
V (Value-function) is intentional, as it leads to a direct
comparison with DP. In this formulation, there is also a V -
function for the action variables At , VAt (at) , log bAt (at).
From the definition, it is evident that both the Q- and V -
functions are negative (we have already pointed out above
that this is not a limitation). We concentrate here mostly on
the state St for which the backward recursions (4a, 4b, 4e),
are written in the log-space as

Q(StAt)4 (stat) ∝ log
∑
st+1

p(st+1|stat)e
VSt+1 (st+1),

Q(StAt)1 (stat) ∝ log p(at)+ R(stat)+ Q(StAt)4 (stat),

VSt (st) ∝ log
∑
at

eQ(St At)1
(stat). (7)

All messages can be propagated in the log-space: the product
rule around the diverters of Figure 2 become sums and the
backward propagation rules across the dynamics block and

15198 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

the shaded block are simply translated. For comparison with
the formulations that follow, we re-write the equation (7) as

Q(StAt)4 (stat) ∝ log
∑
st+1

elog p(st+1|stat)+VSt+1 (st+1).

The main recursions for the Sum-product are summarized for
later comparison in the first row of Tables 1 and 2. The same
recursions, and some of the definitions in the log-space, have
been reported in [3] that also notes how the transformation
y = log

∑N
j=1 e

xj is a soft-max (y ∼ max(x1, . . . , xN)
when the xis are large), in contrast to the hard-max that is
used in dynamic programming. Properties of this and other
soft-max functions that arise in our analyses are included in
Appendix A.

The best SASA sequence of equations (6a) is equivalently
written in the log-space as

s∗t = argmax
st

log p(st |s∗t−1a
∗

t−1)+ VSt (st),

a∗t = argmax
at

Q(StAt)1 (a1, s
∗

1),

The policy distribution (5) is rewritten as

π∗(at |st) ∝ e
Q(St At)1

(stat)−VSt (st).

IV. MAXIMUM A POSTERIORI AND THE MAX-PRODUCT
The max posterior rules, described above, are used exten-
sively for inference in Bayesian networks, even though they
do not necessarily solve the global maximum a posteriori
problem

(s∗1a
∗

1 . . . s
∗
T a
∗
T) = argmax

s1a1...sT aT
p(s1a1 . . . sT aT |K1:T).

The Sum-product propagation rules solve marginal maxi-
mum a posteriori problems after summing on the eliminated
variables, while the global optimization requires a different
strategy for obtaining the solution. The Max-product algo-
rithm [23], [32], by propagating maximum (or maxima) value
messages in the graph, instead of computing averages across
the blocks, provides the MAP solution. This is often named
bi-directional Viterbi algorithm [32]. The detailed recursions
are derived explicitly in Figure 3 for a model with T = 4.
At a generic step t , the recursions for some of the backward
messages are

b(StAt)4 (stat) = max
st+1

p(st+1|stat)bSt+1(st+1),

b(StAt)1 (stat) = p(at)c(stat)b(StAt)4 (stat),

bSt (st) = max
at

b(StAt)1 (stat).

Again the crucial role is played by the backward flow
that, going through each SISO block, does not undergo a
summation, but a max (in Max-product Bayesian networks
also the forward flow is computed using max rather than
sum [32]; we focus here mostly on the backward flow). In the
log-space, the backward recursions for the states are rewritten
as

Q(StAt)4 (stat) = max
st+1

[
log p(st+1|stat)+ VSt+1 (st+1)

]
,

Q(StAt)1 (stat) = log p(at)+ R(stat)+ Q(StAt)4 (stat),

VSt (st) = max
at

Q(StAt)1 (stat).

The best SASA sequence is computed in the forward direction
in way similar to the Sum-product, in both the probability
space and in the log-space, as follows

s∗t = argmax
st

p(st |s∗t−1a
∗

t−1)bSt (st)

= argmax
st

p(st |s∗t−1a
∗

t−1)e
VSt (st)

= argmax
st

log p(st |s∗t−1a
∗

t−1)+ VSt (st),

a∗t = argmax
at

b(StAt)1 (s
∗
t at) = argmax

at
Q(StAt)1 (s

∗
t at).

Note how the recursions are formally identical to the ones
derived for the Sum-product algorithm, but the rules change
across the shaded blocks. Also, the policy has the same formal
expression (with a different meaning for Q and V)

π∗(at |st) ∝
b(StAt)1 (stat)

bSt (st)
= eQ(St At)1

(stat)−VSt (st). (8)

All the other sequences, S, A, SA, ASAS can be computed
using the probability flow in the graph following the same
formal approach, both in the Max-product and in the Sum-
product, simply by changing some of the propagation rules.
For brevity, we concentrate here only on some of the
messages, even if a detailed analysis of other parts of the
flow may reveal interesting aspects of the inference. All
the propagation rules are reported in Tables 3, 4, 5, 6 and 7,
also for the other algorithms described in the following.
The main backup recursions are summarized for comparison
in Tables 1 and 2 in the probability and in the log-space.
We would like to emphasize that propagating information
via probability distributions includes all the cases in which
there may be deterministic values in the system, i.e., when
the distributions are delta functions. Furthermore, in theMax-
product algorithm, when multiple equivalent maxima are
present, the distributions can carry multiple peaks. We will
see that, in some of the simulation examples that follow, the
Max-product messages provide a complete set of options in
the policy distributions, even when more than one best action
is available in a state.

V. THE SUM/MAX-PRODUCT
The unifying view provided by the graphical method is
quite appealing and one wonders whether there may be a
general rule that encompasses both the Sum-product and
the Max-product. By looking at the recursions in the first
two rows of Tables 1 and 2, we immediately observe that
the Sum-product, both in the probability and in the log-
space, can be seen as a soft version of the Max-product
because of the soft-max functions. Therefore, we propose
a general rule that interpolates between the two solutions
using a parameterized soft-max functions. We name this
generalization the Sum/Max-product algorithm, that in the

VOLUME 10, 2022 15199

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

TABLE 1. Summarized backup rules in probability space with b(st at) , b(St At)1 (st at); b(st) , bSt
(st); c ′(st at) , p(at)c(st at).

TABLE 2. Summarized backup rules in log space with Q(st at) , Q(St At)1 (st at); V (st) , VSt
(st); R′(st at) = log p(at)+ R(st at).

log-space gives

Q(StAt)4 (stat) =
1
α
log

∑
st+1

e
α
[
log p(st+1|stat)+VSt+1 (st+1)

]
,

Q(StAt)1 (stat) = log p(at)+ R(stat)+ Q(StAt)4 (stat),

VSt (st) =
1
α
log

∑
at

eαQ(St At)1
(stat),

with α ≥ 1.
In probability space, the updates are translated as

b(StAt)4 (stat) ∝

∑
st+1

p(st+1|stat)αbSt+1 (st+1)
α

1/α

,

b(StAt)1 (stat) ∝ p(at)c(stat)b(StAt)4 (stat),

bSt (st) ∝

[∑
at

b(StAt)1 (stat)
α

]1/α
.

Note that the function y = α

√∑N
j=1 x

α
j is also a soft-max

when the α is large. Therefore, both in the log-space and in
the probability space, for α → ∞, the parametric soft-max
functions converges to the hard max. For α = 1, the
equations become identical to those derived for the Sum-
product algorithm. More details about the properties of this
soft-max function are in Appendix A.

The Max-product approach usually produces much more
defined value functions and policies, in comparison to
the Sum-product, as will be shown in some of the
examples that follow. Interpolating between the two solu-
tions provides a whole range of new solutions beyond
the traditional Sum-product and Max-product approaches.
The Sum/Max-product updates are added as the third row in
Tables 1 and 2 and more details about block propagation rules

15200 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

are in Tables 3, 4, 5, 6 and 7. The policy is formally the same
as in the Sum-product and theMax-product (8), but evidently,
the messages, both in the probability space and in the log-
space, carry different information.

The generalization of the Sum/Max-product has been
derived as a straightforward interpolation between the
Sum-product and the Max-product and such a function can
span the whole range of solutions between the maximization
of the marginals of the Sum-product algorithm to the
maximization of the global posterior of the Max-product.
What is then, for each value of α, the function that the
algorithm optimizes?

In the middle part of Figure 3, we have reported
the recursions of the Sum/Max-product algorithm in the
probability space for T = 4. It is easily seen, by look-
ing at the top of the same figure, that they match the
recursions of the Sum-product algorithm as applied to the
factorization

p(s1a1 . . . sT aT)α = c(sT aT)αp(s1)αp(aT)α

×

T−1∏
t=1

p(st+1|stat)αp(at)αc(stat)α,

Therefore, in analogy to the Sum-product algorithm, the
Sum/Max-product algorithm provides the posteriors

p(st |K1:T) ∝
∑

sj,j6=t,j=1:T
aj,j=1:T

p(s1a1 . . . sT aT |K1:T)α,

p(at |K1:T) ∝
∑

sj,j=1:T
aj,j6=t,j=1:T

p(s1a1 . . . sT aT |K1:T)α,

p(stat |K1:T) ∝
∑

sj,aj,j6=t,j=1:T

p(s1a1 . . . sT aT |K1:T)α,

if applied globally to the whole time horizon. The Progressive
posteriors, just as in Subsection III-B, can be written with
the distributions raised to the power α. The details are not
repeated here for brevity.

Evidently the power of a distribution is not a normalized
distribution, but this is not a problem in message propagation,
as we mentioned earlier, because normalization is just a scale
that is irrelevant for the inference. To better explain the
generalization, recall that raising a probability distribution
to a power greater than one, has the effect of sharpening
the distribution around its maximum (or maxima, if multiple
maxima are present). Therefore, raising the whole joint
density to a large power has the effect of concentrating it on
the global maximum a posteriori solution of the Max-product
algorithm.

VI. DYNAMIC PROGRAMMING ON THE FACTOR GRAPH
The standard dynamic programming approach is based
on the maximization of the expected sum of rewards
[16], [31]. In previous sections, we have included rewards
in factorization (2), but we have formulated the optimization
as an estimation problem, i.e. the maximization of posterior

probabilities, or marginals, which only implicitly involve the
rewards. Evidently, one wonders whether the two approaches
can be seen under a unified framework - after all Bellman
backups resemble backward message combinations.

We show here that it is possible to map DP directly into
the factor graph formulation if we consider rewards and their
expectations as contributing to the probability messages, but
in the log-space.

The dynamic programming algorithm [16] is derived as the
solution to the following problem

(a∗1 . . . a
∗
T)

= argmax
a1...aT

E∼p(s1a1...sT aT)

[
T∑
t=1

(R(stat)+ log p(at))

]
= argmax

a1...aT

∑
s1,...,sT

p(s1a1 . . . sT aT)

×

[
T∑
t=1

(R(stat)+ log p(at))

]

= argmax
a1...aT

∑
s1,...,sT

p(s1)
T−1∏
t=1

p(st+1|stat)

×

[
T∑
t=1

(R(stat)+ log p(at))

]
,

where p(s1a1 . . . sT aT) does not include the rewards, and the
priors on at appears in the log in the summation. This is
slightly different from the pure sum of rewards. We introduce
this slight modification because we want to obtain recursions
that we can directly compare to the ones derived for the
Sum-product and for the Max-product algorithms. In any
case, this is not a crucial difference because log p(at) could
be incorporated into R(stat) and p(at) can be assumed to be
uniform.

We have reported in bottom part of Figure 3, the DP
recursions for T = 4. Note that here the rewards appear
as additive terms and there is a mix of maxima and sums.
Formally

Q(StAt)1 (stat) = log p(at)+ R(stat)

+

∑
st+1

p(st+1|stat)VSt+1 (st+1),

VSt (st) = max
at

Q(StAt)1 (stat).

Translating the recursions in the probability space,
we have

b(StAt)1 (stat) = p(at)c(stat)e
∑

st+1
p(st+1|stat) log bSt+1 (st+1),

bSt (st) = max
at

b(StAt)1 (stat).

The crucial difference between DP and the Sum-product
algorithm is in the fact that averages and maxima are taken
in the log-space on the value function. Conversely in the
Sum-product, they are taken in the probability space on the
backward distributions. Therefore, DP can be formulated in

VOLUME 10, 2022 15201

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 3. Backward recursions for T = 4. Max-product (top); Sum/Max-product (middle); Dynamic programming (bottom). Note the presence of the
backward message at the end of the chain that may carry information from further steps or may represent final constraints. The recursions must be read
from right to left.

terms of probability messages traveling on the same factor
graph of the Sum-product algorithm, but with a different
combination rules. All the propagation rules for DP in the
FGrn of Figure 2 are reported in Tables 3, 4, 5, 6 and 7.
The main DP recursions are also in Tables 1 and 2 for
comparison.

The best SASA sequence, written both in the log-space
and in the probability space, is immediately derived from the

graph of Figure 2 as

s∗t = argmax
st

p(st |s∗t−1a
∗

t−1)VSt (st)

= argmax
st

p(st |s∗t−1a
∗

t−1) log bSt (st),

a∗t = argmax
at

Q(StAt)1 (s
∗
t at) = argmax

at
b(StAt)1 (s

∗
t at),

The policy distribution has the same formal expression (8).

15202 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

VII. SoftDP
The presence of the max operator in the DP algorithm,
suggests that, similarly to the Sum/Max-product approach,
we could replace the max operator with a soft-max function
to provide a different interpolation between a more entropic
solution and the optimal DP algorithm. Using the soft-max
function r(x1, . . . , xN ;β) =

∑N
i=1 xie

βxi/
∑N

j=1 e
βxj (com-

mon in neural network architectures), we propose the
following SoftDP updates

Q(StAt)1 (stat) = log p(at)+ R(stat)

+

∑
st+1

p(st+1|stat)VSt+1(st+1),

VSt (st) =

∑
at e

βQ(St At)1
(stat)Q(StAt)1 (stat)∑

a′t
eβQ(St At)1

(sta′t)
.

The parameter β ≥ 0 can be used to control the sharpness
of the soft-max function. If β is a large positive number,
the soft-max tends to the maximum. When β is a small
positive number, the soft-max function tends to return the
mean. The soft-max is further discussed in Appendix A.
We have not investigated the existence of a function that these
recursions optimize for a finite value of β, as in the case of the
Sum/Max-product algorithm. We leave it to further analyses.
However, we observe that lowering the value of β shifts the
policy distribution towards a smoother, i.e., more entropic,
configuration. We show this effect in the simulations (§XI).

In the probability space, the recursion for the backward
message b(StAt)1 (stat) is the same as in DP, while the update
for bSt (st) becomes

bSt (st) ∝ exp

[∑
at log b(StAt)1 (stat)bSt (st)

β∑
a′t
b(StAt)1 (sta

′
t)β

]
.

We add this as a SoftDP option in our suite of algorithms
with all the propagation rules on the FGrn specified in
Tables 3, 4, 5, 6 and 7, and the main recursions included in
Tables 1 and 2 for comparison.

VIII. MAXIMUM EXPECTED REWARD AND ENTROPY
In all the previous approaches to estimation and control,
we have derived the policies as consequences of optimization
on the graph of Figure 2. A different formulation can be
adopted if we formally add to the Bayesian graph ‘‘policy’’
branches π (at |st) that go from each state St to each action
At and pose the problem as the functional optimization
problem of finding the best π (at |st), given the evidence
K1:T . The question is: how do we formalize the total reward
function? Levine [3], in his excellent review, suggests that
‘‘less confident’’ behaviors with respect to the standard
probabilistic inference (the Sum-product) could be obtained
if we modify the function to optimize. In fact, he maintains
that the recursions for the Sum-product approach derived
above, may be too optimistic within the context of RL. The
idea is to add an extra term to the rewards to account also

TABLE 3. Forward distributions for the source blocks.

for policy entropy. Levine shows that the modification can
also be related to structural variational inference [3]. Entropy
maximization is also a common criterion in practical uses of
RL [33] and stochastic control [12]. Levine [3] proposes the
following formulation:

{π∗(a1|s1) . . . π∗(aT |sT)}

= argmaxE∼p̂(s1a1...sT aT)

[
T∑
t=1

R′(stat)− logπ (at |st)

]
,

where R′(stat) = R(stat)+ log p(at) and

p̂(s1a1 . . . sT aT) = p(s1)π (aT |sT)
T−1∏
t=1

p(st+1|stat)π (at |st).

Note that here the policy distributions are included in the
factorization. The extra term logπ (at |st) pushes for entropy
maximization. The backup recursions for the optimal policy
distributions [3], in the factor graph notations, are

Q(StAt)1 (stat) = log p(at)+ R(stat)

+

∑
st+1

p(st+1|stat)VSt+1 (st+1), (9a)

VSt (st) =
1
α
log

∑
at

eαQ(St At)1
(stat), (9b)

with α = 1. The optimal policy distributions are also
shown to have the usual formal expression π∗(at |st) ∝

e

(
Q(St At)1

(stat)−V (st)
)
. In our effort to provide more general

approaches to the policy search, we have generalized the
soft-max function to include an extra parameter α in (9a)
that for α → ∞ gives the maximum, and therefore the
DP solution, and for α = 1 Levine’s Max-Reward/Entropy
solution.

We have worked backward the recursion (9a) for a generic
α, and shown in Appendix B that the generalized recursions
solve the following optimization problem

{π∗(a1|s1) . . . π∗(aT |sT)}

= argmaxE∼p̂(s1a1...sT aT)

[
T∑
t=1

R′(stat)−
1
α
logπα(at |st)

]
,

(10)

VOLUME 10, 2022 15203

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

TABLE 4. Propagation rules for action shaded blocks.

TABLE 5. Propagation rules for state shaded blocks.

where

R′(stat) = R(stat)+ log p(at),

πα(at |st) =
π (at |st)α∑
a′t
π (a′t |st)α

, t = 1 : T ;

p̂(s1a1 . . . sT aT) = p(s1)πα(aT |sT)
T−1∏
t=1

p(st+1|stat)πα(at |st).

The proof in Appendix B follows steps similar to those
used by Levine [3] and where we show how the extra
term gives rise to (iterative) simultaneous reward and
entropy maximization. Note that when α is large, the extra
term becomes progressively irrelevant, and the distributions
πα(at |st) become more concentrated on the max value of the
Q-function, thereby recovering the DP solution. Furthermore,
when α < 1, more weight is given to the extra term, the
distributions πα(at |st) becomes smoother and we have more
entropic policy distributions. We demonstrate this effect in
some of the simulations that follow. It should be mentioned
that the criterion does not simply add an entropy term

to the rewards, because the policy distribution affects also
the reward as it appears in the factorization used in the
expectation (see Appendix B for additional insights).

The propagation rules in the FGrn for the Max-
Rew/Entropy approach are in Tables 3, 4, 5, 6 and 7, and
the main recursions are added to Tables 1 and 2 also in the
probability space as

b(StAt)1 (stat) = p(at)c(stat)e
∑

st+1
p(st+1|stat) log bSt+1 (st+1)

bSt (st) =

[∑
at

b(StAt)1 (stat)
α

] 1
α

.

IX. DETERMINISTIC SYSTEMS
The approach to optimal control in this paper is based on
the assumption that the system description p(st+1|stat) is
stochastic. There are cases, however, in which the system
transitions are deterministic, i.e., given stat , we have exact
knowledge of st+1 through a deterministic function st+1 =
g(stat). The beauty of the stochastic framework is that

15204 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

TABLE 6. Propagation rules for the dynamics block.

TABLE 7. Propagation rules for the diverter.

these special cases are also included in the formulation and
correspond to a transition probability function that is a delta
function p(st+1|stat) = δ (st+1 − g(stat)). Also, if no prior
on the actions is available, p(at) = U (at). The updates
do not change, but some of them in the various methods
may coincide, because the summations (expectations) in the
updates disappear and the prior on At is irrelevant. More
specifically, by looking at Tables 1 and 2, the updates for the
Q-functions, and their probability-space counterparts, have
the same (Bellman’s) recursions

Q(StAt)1 (stat) = R(stat)+ VSt+1 (g(stat)),

b(StAt)1 (stat) = c(stat)bSt+1(g(stat)).

However, there are differences in the V -function updates. For
the Sum-product and the Max-Rew/Ent (α = 1), we have

VSt (st) = log
∑
at

eQ(St At)1
(stat),

bSt (st) =
∑
at

b(StAt)1 (stat).

For the Max-product and DP, we have

VSt (st) = max
at

Q(StAt)1 (stat),

bSt (st) = max
at

b(StAt)1 (stat).

For the others, we have the parameterized soft-max function
with various values of β and α. Therefore, by direct
comparison, we can conclude that, when the system is
deterministic: DP and Max-product coincide; Sum-product
and Max-Rew/Ent (α = 1) coincide (also recognized in [3]).
The remaining cases are interpolations of the others. We have
verified in our limited simulations that this is indeed the case
and that the solutions in the various groups, even in this
deterministic case, are different.

X. INFINITE HORIZON CASE AND THE STEADY-STATE
We have presented the model in Figure 1 and the various
algorithms that stem from the model with reference to a finite
horizon scenario. However, all the analyses easily extends to
an infinite-horizon framework simply by adding a discount

VOLUME 10, 2022 15205

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 4. Max policy direction for the various algorithms (right column). At the top of each figure are also reported the number of iterations necessary to
reach a steady-state value function (on the left columns the numerica values). The lowest right plot shows the value function increments as the iterations
progress towards steady-state.

15206 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 5. Max policy direction for the various algorithms (right column). At the top each figure are also reported the number of iterations necessary for
the value function to reach its steady-state configuration.

VOLUME 10, 2022 15207

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 6. Numerical visualization of the value function for the various algorithms.

15208 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 7. 3D plots of −VSt
(st) for the various algorithms.

factor 0 < γ ≤ 1 to the optimized functions and then to
the updates. For example, the standard DP updates, in both
spaces become

Q(StAt)1 (stat) = log p(at)+ R(stat)

+ γ
∑
st+1

p(st+1|stat)VSt+1 (st+1),

b(StAt)1 (stat) = p(at)c(stat)e
γ
∑

st+1
p(st+1|stat) log bSt+1 (st+1).

Also, for the Sum-product, we have

Q(StAt)1 (stat)

= log p(at)+R(stat)+γ log
∑
st+1

elog p(st+1|stat)+VSt+1 (st+1)

In general, even if γ = 1, the backward recursions can
be run to verify that a steady-state configuration for the
Q, the V -function and the policy π∗ can be found. The
analysis of the mathematical conditions for convergence are

VOLUME 10, 2022 15209

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 8. Comparison of the value function increments for the various algorithm for the example of Figure 5.

beyond the scope of this paper. However, generally speaking,
if all the states are reachable, a stable configuration should
exist. We have verified experimentally that all the methods
do converge (also for γ = 1), but they exhibit marked
differences in the number of iterations required to reach the
steady state equilibrium. The Max-product algorithm shows
the fastest convergencewith the Sum-product following in the
list. DP and the other methods seem to show a much slower
convergence speed.We show this effect in the simulations that
follow.

XI. SIMULATIONS
We have simulated the various recursions on a path planning
problem on two discrete grids. The first set of simulations is
performed on a small 6 × 6 square grid shown in Figure 4,
where we have one goal (bull’s eye and green) and obstacles
(dark gray). The states are the positions on the grid and the
actions correspond to one of the nine possible single-pixel
motions {up-left, up, up-right, left, center (still), right, down-
left, down, down-right}. The reward function has the values
0 on the goal, −10 on the obstacles and −1 on other pixel
positions. The motion is stochastic with a transition function
p(st+1|stat) that has probability 1/2 for the intended direction
and the rest of the probability (1/2) spread equally on the
other eight directions. Built in the transition function are
also re-normalizations when the transition is close to the
boundaries: when some of the new projected states are outside
the grid, their probabilities are set to zero, and the remaining
probability is spread equally on the other pixels. No initial or
final conditions are set on the model. The recursions are run
until convergence to a steady state value function.

All the algorithms lead to policies that would allow an
agent, starting from any position on the grid, to reach the

goal in a finite number of steps. The values reported in the
squares and the max policy arrows in Figure 4 reveal how
the different solutions direct our potential agent in slightly
different paths to avoid the obstacles. In the lower right corner
of the figure, we also report the increments in reaching the
steady-state solution for the various algorithms in a log-log
graph (also the parameters are reported in the legend).

The algorithm is stopped only when all the increments in
the value function are below 10−5. It is noteworthy to see how
the Max-product algorithm reaches the steady-state solution
in a very limited number of steps (fastest convergence) and
how the Sum-product and the Sum/Max-product algorithms
converge at a much faster rate in comparison to the others.

The results of another set of simulations are reported in
Figures 5, 6, 7, 8 and 9. Here, we have a grid extracted
from a real dataset acquired at an intersection on the Stanford
campus with pedestrians and bikes. The scene, with no
agents, is simplified to 17 × 23 pixels, with goals (exits)
and rewards assigned to various areas (semantic map) as
shown in Figure 5. We assume that our agent is a pedestrian
and the actions are the same nine actions we have used
above for the smaller grid. The rewards are: R(st) = 0
(goals: bull’s eye and green); −1 (pedestrian walkways:
white);−10 (streets: light gray);−20 (grass: dark gray);−30
(obstacles: dark). The convergence behavior to a steady-state
value function is similar to the one shown for the smaller
grid. The number of iterations to reach a precision of 10−5

on all the states are: [Sum-product: 29; Max-product: 11;
Sum/Max-product (α = 3): 15; Soft DP (β = 0.2):
127; Soft DP (β = 0.6): 113; DP: 120; Max-Rew/Ent
(α = 0.2): 187; Max-Rew/Ent (α = 1): 128; Max-Rew/Ent
(α = 6): 120]. Note how quickly the Max-product and the
probabilistic methods converge when compared to the others.

15210 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

FIGURE 9. Policy distributions at a generic point (red on the map) for the various methods for different parameter choices. The goals are
depicted in green.

The graph of the actual increments for the various algorithms
is shown in the log scale in Figure 8. Figure 5 shows,
for each state, the maximum policy directions for all the
algorithms. The arrows point towards the preferences implied
by the semantic information: pedestrians prefer walkways
to streets; grass and obstacles are avoided. We observe a
marked effect on the results of the Max-product algorithm
that maintains the multiple maxima directions corresponding
to the equivalent solutions. These multiple options appear
smoothed out in the othermethods. TheMax-product requires
the minimum number of steps to stabilize its configurations.
Figure 7 shows also some of the negative value functions
−V (st) (they can be thought as potential functions) super-
imposed on the original scene for the various methods
and for some hyper-parameter choices. The comparison
clearly shows that the various algorithm lead to intrigu-
ingly smooth solutions, except for the Max-product that
produces a very sharp value function with very well defined
valleys.

Just as in the simulations on the smaller grid, we have
included no paths on the map, because in all methods an
agent that starts anywhere, will reach one of the goals
in all cases. This can be easily verified by following the
arrows in Figure 5. A much more revealing visualization
of the differences among the various methods is displayed
in Figure 9, where at a generic point on the map, we plot
the policy distributions. In the first column, the policies for
the probabilistic methods are shown with the Max-product
clearly producing a rather sharp behavior with all the multiple
equivalent options. Recall that the map has multiple goals
and the agent in that position has more than one option to
achieve optimality (see also Figure 5 in that position). In the
second column, we report the results of the DP approach in
its standard form (bottom graph) and in its soft parameterized
versions. Note how, for the two values β = 0.3 and β = 0.6,
an agent may be led to consider more options with respect to
DP and if we look also at the maximum policy on the map
of Figure 5, it may even result in a different path. In the third
column, we report the results of the Max Rew/Ent algorithm
for various values of the parameter α. We notice, as expected
from the theory, that when α < 1, the policy distribution

is more entropic and that when α increases, the distribution
tends to the DP policy.

XII. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we have provided a unified view of a set of
solutions to the MDP problem using probabilistic formalism
on a factor graph. The various algorithms span a gamut
from a standard Sum-product (marginalization), to Dynamic
programming to Max-Reward/Entropy methods. We have
shown how the various approaches can be viewed as different
combination rules through two of the blocks on a Factor
Graph in reduced normal form, showing that estimation
and control may merge naturally using this framework. Our
review of the classical methods has been augmented with
original parametric generalizations, providing a whole suite
of algorithms that can be easily implemented using the same
belief propagation framework. The resulting set of choices,
presented here, both in the probability and in the log space,
may enhance the options for decision makers that may need
to control the sharpness of their solutions by adopting more
or less entropic cost functions. The set of solutions provided
here, may also be useful in designing on-line reinforcement
learning algorithms that may require V- or Q-functions
that seek a balance between exploration and exploitation in
their current model knowledge. We have included in this
paper typical results on discrete grids that reveal marked
differences among some of the methods. Our computational
results suggest that the Max-product algorithm, optimal max-
imum a posteriori solution, together with other probabilistic
methods, such as the Sum-product and its Sum/Max-product
generalizations, shows faster converge to the steady-state
configuration in comparison to other reward-based methods,
that are typically derived in the log space. Another practical
advantage of having a unified formulation for the various
algorithms is software transferability: a unified algorithm
can easily accommodate risk propensity of decision makers.
For the path planning problem on grids, we have produced
simulation software that can be obtained on request. Further
work on the topic will be devoted to continuous spaces,
approximations based on heuristic searches, and applications
involving interacting agents.

VOLUME 10, 2022 15211

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

APPENDIX A SOFT-MAX FUNCTIONS
We review here some of the soft-max functions that are used
in the recursions discussed in the paper. For all the functions,
we consider the ranked set of real numbers x1, x2, . . . , xN ,
with x1 ≤ x2 ≤ · · · ≤ xN .
Theorem 1: Consider the following expression

s(x1, . . . , xN) = log
N∑
j=1

exj .

This function has the property that when xN � xN−1,
s(x1, . . . , xN)→ max(x1, . . . , xN) = xN .

Proof: The function can rewritten as

s(x1, . . . , xN) = log
(
ex1 + ex2 + · · · + exN

)
= log exN

(
ex1−xN + ex2−xN + · · · + 1

)
When xN is large, the differences also become large negative
numbers. Therefore, the first N − 1 terms inside the
parenthesis tend to zero and s(x1, . . . , xN)→ xN .

Theorem 2: A parameterized soft-max function can be
defined as the expression

g(x1, . . . , xN ;α) =
1
α
log

N∑
j=1

eαxj

where α ≥ 1. This function has the property that

lim
α→∞

g(x1, . . . , xN ;α) = max(x1, . . . , xN) = xN .

Proof: The function can be bounded as

1
α
log eαxN ≤ g(x1, . . . , xN ;α) ≤

1
α
logNeαxN ,

xN ≤ g(x1, . . . , xN ;α) ≤
logN
α
+ xN ,

that for α→∞ achieves the maximum xN . Note that for α >
1, from the bound, the soft-max always exceeds themaximum
value, i.e., tends to xN from the right.
It is useful to look at the expression when 0 < α < 1.

∑
s1...s4

∑
a1...a4

p(s1)πα(a1|s1)p(s2|s1a1)πα(a2|s2)p(s3|s2a2)πα(a3|s3)p(s4|s3a3)πα(a4|s4)[
R′(s1a1)−

1
α
logπα(a1|s1)+ R′(s2a2)−

1
α
logπα(a2|s2)+ R′(s3a3)−

1
α
logπα(a3|s3)+ R′(s4a4)−

1
α
logπα(a4|s4)

]
,

(11)

1
α

∑
s4

p(s4|s3a3)

∑
a4

πα(a4|s4)αR′(s4a4)+

H(πα(a4|s4))︷ ︸︸ ︷∑
a4

πα(a4|s4) log
1

πα(a4|s4)︸ ︷︷ ︸
V (s4)

︸ ︷︷ ︸

Q(s3a3)

1
α

∑
s3

p(s3|s2a2)

∑
a3

πα(a3|s3)(αR′(s3a3)+ αQ(s3a3))+

H(πα(a3|s3))︷ ︸︸ ︷∑
a3

πα(a3|s3) log
1

πα(a3|s3)︸ ︷︷ ︸
V (s3)

︸ ︷︷ ︸

Q(s2a2)

1
α

∑
s2

p(s2|s1a1)

∑
a2

πα(a2|s2)(αR′(s2a2)+ αQ(s2a2))+

H(πα(a2|s2))︷ ︸︸ ︷∑
a2

πα(a2|s2) log
1

πα(a2|s2)︸ ︷︷ ︸
V (s2)

︸ ︷︷ ︸

Q(s1a1)

1
α

∑
s1

p(s1)

∑
a1

πα(a1|s1)(αR′(s1a1)+ αQ(s1a1))+

H(πα(a1|s1))︷ ︸︸ ︷∑
a1

π(a1|s1) log
1

πα(a1|s1)︸ ︷︷ ︸
V (s1)

 . (12)

15212 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

Theorem 3: When α is a very small positive number

g(x1, . . . , xN ;α) '
1
α
logN + µ,

where µ = (1/N)
∑N

i=1 xi is the arithmetic mean. The
function diverges for α → 0, but for small values of α, the
function tends to become independent on any specific xi.

Proof: The function can be written as

g(x1, . . . , xN ;α) =
1
α
log

(
N∑
i=1

eα(xi−µ)eαµ
)

=
1
α
log

N∑
i=1

eα(xi−µ) + µ.

When α approaches zero, the exponents become ' 1 and we
have the result.
Theorem 4: Another parametric soft-max function is

h(x1, . . . , xN ;α) =

 N∑
j=1

xαj

 1
α

,

where here xi ≥ 0, i = 1 : N. Here too, for α → ∞,
h(x1, . . . , xN ;α)→ xN .

Proof: From the bounds

(xαN)
1
α ≤ h(x1, . . . , xN ;α) ≤

(
NxαN

) 1
α ,

xN ≤ h(x1, . . . , xN ;α) ≤ N
1
α xN ,

as α increases N
1
α → 1 and the function tends to xN .

Theorem 5: The function h(x1, . . . , xN ;α),
just as g(x1, . . . , xN ;α), diverges for α → 0, but for small
α

h(x1, . . . , xN ;α) ' N
1
α ,

which, again as in g, does not depend on any of the xi.
Proof: easily seen as xαi ' 1 for small α.

Theorem 6: Another soft-max functions can be defined as

r(x1, . . . , xN ;α) =

∑N
i=1 xie

αxi∑N
j=1 e

αxj
.

This function is well-known in the neural network literature,
where the vector function eαxi/

∑
j e
αxj tends to a distribution

concentrated on the maximum. By taking the expectation with
such a distribution, we get the soft-max. Therefore, whenα→
∞, r(x1, . . . , xN ;α)→ xN .

Proof: The function can re-written using the ranked set
as

r(x1, . . . , xN ;α) =

∑N−1
i=1 xieαxj + xN eαxN∑N−1
j=1 eαxj + eαxN

=

∑N−1
i=1 xieα(xj−xN) + xN∑N−1
j=1 eα(xj−xN) + 1

.

For α → ∞ both summations tend to zero, because the
exponents are negative, and we have the result.

Theorem 7: This soft-max function, when α → 0+

does not diverge, but tends to the arithmetic mean
r(x1, . . . , xN ;α)→ 1/N

∑N
i=1 xi.

Proof: Trivial, because for α = 0 all the exponentials
are equal to one.

APPENDIX B OPTIMIZING REWARD AND ENTROPY
To better understand the nature of the function being
optimized in (10), and how it gives rise to an entropy term, let
us write it explicitly for T = 4, using the compact notation
R′(stat) = R(stat) + log p(at). The function to optimize
is (11), as shown at the bottom of the previous page.

Starting from the last term, in (11) we identify the
backward recursions (12), as shown at the bottom of the
previous page.

Note how the value function V (st) (not optimized here)
is written as a recursive superposition of reward and policy
entropy. The parameter α controls the balance between the
two terms and the power of the distribution. Note that the
policy function multiplies also the reward term. Therefore,
the optimized policy distribution will shape, in a non trivial
way, the effects of the rewards with respect to the entropy.

Following the approach in Levine [3], using our modified
cost function, in (11) we search for the best policy distribution
starting from re-writing the last term using the KL-divergence
(13), as shown at the bottom of the next page.

The optimum value is obtained when the DKL(.‖.) = 0,
i.e., when πα(a4|s4) = eαR

′(s4a4)

eαV (s4)
, and the optimal policy

distribution is

π∗(a4|s4) ∝
eR
′(s4a4)

eV (s4)
=
eQ(s4a4)

eV (s4)
,

where we have defined Q(s4a4) = R′(s4a4). Now the
optimized expression

∑
s4 p(s4|s3a3)V (s4) is carried over

R′(s3a3)+
∑
s4

p(s4|s3a3)V (s4)︸ ︷︷ ︸
Q(s3a3)

−
1
α
logπα(a3|s3).

Taking the expectation, we obtain (14), as shown at
the bottom of the next page, where DKL = 0 when
πα(a3|s3) = eαQ(s3a3)/eαV (s4). The best policy distribu-
tion is then π∗(a3|s3) ∝ eQ(s3a3)/eV (s4). Carrying over∑

s3 p(s3|s2a2)V (s3), we have

R′(s2a2)+
∑
s3

p(s3|s2a2)V (s3)︸ ︷︷ ︸
Q(s2a2)

−
1
α
logπα(a2|s3).

Following similar steps, we have π∗(a2|s2) ∝ eQ(s2a2)

eV (s2)
and

R′(s1a1)+
∑
s2

p(s2|s1a1)V (s2)︸ ︷︷ ︸
Q(s1a1)

−
1
α
logπα(a1|s1).

The last step is (15), as shown at the bottom of the next page,
which is minimized when πα(a1|s1) = eαQ(s1a1)/eαV (s1), with

VOLUME 10, 2022 15213

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

the optimal policy distribution π∗(a1|s1) ∝ eQ(s1a1)/eV (s1).
Therefore, the recursions at a generic time step t are

Q(StAt)1 (stat) = log p(at)+ R(stat)

+

∑
st+1

p(st+1|stat)VSt+1 (st+1),

VSt (st) =
1
α
log

∑
at

eαQ(St At)1
(stat),

with the optimal policy distribution:

π∗(at |st) ∝ eQ(stat)−V (st).

1
α

∑
s4

p(s4|s3a3)

[∑
a4

πα(a4|s4)
(
αR′(s4a4)− logπα(a4|s4)

)]

=
1
α

∑
s4

p(s4|s3a3)

∑
a4

πα(a4|s4)

log
eαR

′(s4a4)

πα(a4|s4)

∑
a′4
eαR

′(s4a′4)∑
a′4
eαR

′(s4a′4)

=
1
α

∑
s4

p(s4|s3a3)

−DKL

πα(a4|s4)
∥∥∥∥∥∥ eαR

′(s4a4)∑
a′4
eαR

′(s4a′4)

+ log
∑
a′4

eαR
′(s4a′4)

︸ ︷︷ ︸
eαV (s4)

=

∑
s4

p(s4|s3a3)

[
−DKL

(
πα(a4|s4)

∥∥∥∥∥eαR
′(s4a4)

eαV (s4)

)
+ V (s4)

]
. (13)

1
α

∑
s3

p(s3|s2a2)

[∑
a3

πα(a3|s3) (αQ(s3a3)− logπα(a3|s3))

]

=
1
α

∑
s3

p(s3|s2a2)

∑
a3

πα(a3|s3)

log
eαQ(s3a3)

πα(a3|s3)

∑
a′3
eαQ(s3a

′

3)∑
a′3
eαQ(s3a

′

3)

=
1
α

∑
s3

p(s3|s2a2)

−DKL

πα(a3|s3)
∥∥∥∥∥∥ eαQ(s3a3)∑

a′3
eαQ(s3a

′

3)

+ log
∑
a′3

eαQ(s3a
′

3)

︸ ︷︷ ︸
eαV (s3)

=

1
α

∑
s3

p(s3|s2a2)
[
−DKL

(
πα(a3|s3)

∥∥∥∥eαQ(s3a3)eαV (s3)

)
+ αV (s3)

]
. (14)

1
α

∑
s1

p(s1)

[∑
a1

πα(a1|s1) (αQ(s1a1)− logπα(a1|s1))

]

=
1
α

∑
s1

p(s1)

∑
a1

πα(a1|s1)

log
eαQ(s1a1)

πα(a1|s1)

∑
a′1
eαQ(s1a

′

1)∑
a′1
eαQ(s1a

′

1)

=
1
α

∑
s1

p(s1)

−DKL

πα(a1|s1)
∥∥∥∥∥∥ eαQ(s1a1)∑

a′1
eαQ(s1a

′

1)

+ log
∑
a′1

eαQ(s1a
′

1)

︸ ︷︷ ︸
eαV (s1)

=

1
α

∑
s1

p(s1)
[
−DKL

(
πα(a1|s1)

∥∥∥∥eαQ(s1a1)eαV (s1)

)
+ αV (s1)

]
, (15)

15214 VOLUME 10, 2022

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

REFERENCES
[1] M. Toussaint and A. Storkey, ‘‘Probabilistic inference for solving discrete

and continuous state Markov decision processes,’’ in Proc. 23rd Int. Conf.
Mach. Learn. (ICML), 2006, pp. 945–952.

[2] M. Toussaint, ‘‘Probabilistic inference as a model of planned behavior,’’
Künstliche Intell., vol. 23, no. 3, pp. 23–29, Jan. 2009.

[3] S. Levine, ‘‘Reinforcement learning and control as probabilistic inference:
Tutorial and review,’’ 2018, arXiv:1805.00909.

[4] E. Todorov, ‘‘General duality between optimal control and estimation,’’
in Proc. 47th IEEE Conf. Decis. Control, Cancun, Mexico, Dec. 2008,
pp. 4286–4292.

[5] H. J. Kappen, V. Gómez, and M. Opper, ‘‘Optimal control as a graphical
model inference problem,’’ Mach. Learn., vol. 87, no. 2, pp. 159–182,
May 2012.

[6] T. Verbelen, P. Lanillos, and C. Buckley, and L. De Boom, Eds.,
Abtive Inference, First InternationalWorkshop, IWAI 2020Co-Located
With ECML/PKDD 2020Ghent. BrusselsBelgium: Springer, 2020.

[7] C. L. Buckley, C. S. Kim, S. McGregor, and A. K. Seth, ‘‘The free energy
principle for action and perception: A mathematical review,’’ J. Math.
Psychol., vol. 81, pp. 55–79, Dec. 2017.

[8] T. Parr and K. J. Friston, ‘‘Generalised free energy and active inference:
Can the future cause the past?’’ Biol. Cybern., vol. 113, pp. 495–513,
Sep. 2019.

[9] A. Zénon, O. Solopchuk, and G. Pezzulo, ‘‘An information-theoretic
perspective on the costs of cognition,’’ Neuropsychologia, vol. 123,
pp. 5–18, Feb. 2019.

[10] T. Parr and K. J. Friston, ‘‘The anatomy of inference: Generative
models and brain structure,’’ Frontiers Comput. Neurosci., vol. 12,
Nov. 2018.

[11] R. Kaplan and K. J. Friston, ‘‘Planning and navigation as active inference,’’
Biol. Cybern., vol. 112, pp. 323–347, Mar. 2018.

[12] B. D. Ziebart, A. Bagnell, and A. K. Dey, ‘‘Modeling interaction via the
principle of maximum causal entropy,’’ in Proc. 27th Int. Conf. Mach.
Learn. (ICML), Haifa, Israel, Jun. 2010, pp. 1255–1262.

[13] M. Baltieri and C. L. Buckley, ‘‘An active inference implementation of
phototaxis,’’ 2017, arXiv:1707.01806.

[14] S. Nair, Y. Zhu, S. Savarese, and L. Fei-Fei, ‘‘Causal induction from visual
observations for goal directed tasks,’’ 2019, arXiv:1910.01751.

[15] S. Thrun,W. Burgard, andD. Fox,Probabilistic Robotics. Cambridge,MA,
USA: MIT Press, 2006.

[16] D. Bertsekas, Reinforcement Learning and Optimal Control. Belmont,
MA, USA: Athena Scientific, 2019.

[17] H. Attias, ‘‘Planning by probabilistic inference,’’ inProc. 9th Int. Workshop
Artif. Intell. Statist., 2003, pp. 9–16.

[18] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. Cambridge, MA, USA: MIT Press, 2009.

[19] G. D. Forney, Jr., ‘‘Codes on graphs: Normal realizations,’’ IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 520–548, Feb. 2001.

[20] H.-A. Loeliger, ‘‘An introduction to factor graphs,’’ IEEE Signal Process.
Mag., vol. 21, no. 1, pp. 28–41, Jan. 2004.

[21] F. A. N. Palmieri, ‘‘A comparison of algorithms for learning hidden
variables in Bayesian factor graphs in reduced normal form,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2242–2255,
Nov. 2016.

[22] G. Di Gennaro, A. Buonanno, and F. A. N. Palmieri, ‘‘Optimized realiza-
tion of Bayesian networks in reduced normal form using latent variable
model,’’ in Soft Computing. Berlin, Germany: Springer, Mar. 2021,
pp. 1–12.

[23] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang,
‘‘The factor graph approach to model-based signal processing,’’ Proc.
IEEE, vol. 95, no. 6, pp. 1295–1322, Jun. 2007.

[24] F. Castaldo and F. A. N. Palmieri, ‘‘Target tracking using factor graphs and
multi-camera systems,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3,
pp. 1950–1960, Jul. 2015.

[25] F. Castaldo, F. Palmieri, and C. Regazzoni, Application of Bayesian
Techniques to Behavior Analysis inMaritime Environments. vol. 37, Cham,
Switzerland: Springer, 2014, ch. 5, pp. 175–183.

[26] P. Coscia, F. Castaldo, F. A. N. Palmieri, L. Ballan, A. Alahi, and
S. Savarese, ‘‘Point-based path prediction from polar histograms,’’ in Proc.
19th Int. Conf. Inf. Fusion (FUSION), Jul. 2016, pp. 1961–1967.

[27] P. Coscia, F. A. N. Palmieri, P. Braca, L. M. Millefiori, and
P. Willett, ‘‘Unsupervised maritime traffic graph learning with mean-
reverting stochastic processes,’’ in Proc. 21st Int. Conf. Inf. Fusion
(FUSION), Jul. 2018, pp. 1822–1828.

[28] P. Coscia, P. Braca, L. M. Millefiori, F. A. N. Palmieri, and
P. K. Willett, ‘‘Multiple ornstein–uhlenbeck processes for maritime traffic
graph representation,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 5,
pp. 2158–2170, Oct. 2018.

[29] P. Coscia, F. Castaldo, F. A. N. Palmieri, A. Alahi, S. Savarese, and
L. Ballan, ‘‘Long-term path prediction in urban scenarios using circular
distributions,’’ Image Vis. Comput., vol. 69, pp. 81–91, Jan. 2018.

[30] F. A. N. Palmieri, K. R. Pattipati, G. Fioretti, G. Di Gennaro, and
A. Buonanno, ‘‘Path planning using probability tensor flows,’’ IEEE
Aerosp. Electron. Syst. Mag., vol. 36, no. 1, pp. 34–45, Jan. 2021.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[32] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[33] B. D. Ziebart, N. Ratliff, G. Gallagher, C.Mertz, K. Peterson, J. A. Bagnell,
M. Hebert, A. K. Dey, and S. Srinivasa, ‘‘Planning-based prediction for
pedestrians,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009,
pp. 3931–3936.

[34] B. Millidge, A. Tschantz, A. K. Seth, and C. L. Buckley, ‘‘On the
relationship between active inference and control as inference,’’ in Proc.
1st Int. Workshop, IWAI, Co-Located ECML/PKDD, Ghent, Belgium,
Sep. 2020, pp. 3–11.

[35] A. Imohiosen, J. Watson, and J. Peters, ‘‘Active inference or control as
inference? A unifying view,’’ in Proc. 1st Int. Workshop, IWAI, Co-Located
ECML/PKDD, Ghent, Belgium, Sep. 2020, pp. 12–19.

[36] H. Kappen, V. Gomez, and M. Opper, ‘‘Optimal control as a graphical
model inference problem,’’ in Proc. 23rd Int. Conf. Automated Planning
Scheduling, vol. 23, Jun. 2013, pp. 472–473.

[37] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, ‘‘Optimal decoding of linear
codes for minimizing symbol error rate (Corresp.),’’ IEEE Trans. Inf.
Theory, vol. IT-20, no. 2, pp. 284–287, Mar. 1974.

FRANCESCO A. N. PALMIERI (Member, IEEE)
received the Laurea degree (cum laude) in ingeg-
neria elettronica from the Università Degli Studi di
Napoli Federico II, Italy, in 1980, and the master’s
degree in applied sciences and the Ph.D. degree
in electrical engineering from the University of
Delaware, USA, in 1985 and 1987, respectively.

In 1981, he served as a 2nd Lieutenant for
the Italian Army in fulfillment of draft duties. In
1982 and 1983, he was with the ITT firms: FACE

SUD Selettronica in Salerno (currently Alcatel), Italy, and Bell Telephone
Manufacturing Company, Antwerp, Belgium, as a Designer of digital
telephone systems. In 1983, he was awarded a Fulbright Scholarship to
conduct graduate studies at the University of Delaware. He was appointed as
an Assistant Professor of electrical and systems engineering at the University
of Connecticut, Storrs, USA, in 1987, where he was awarded tenure and
promotion to an Associate Professor, in 1993. In the same year, after a
national competition, he was awarded the position of Associate Professor
at the Dipartimento di Ingegneria Elettronica e delle Telecomunicazioni,
Università degli Studi di Napoli Federico II, where he has been until
October 2000. Since November 2000, he has been a Full Professor at the
Dipartimento di Ingegneria, Università degli Studi della Campania Luigi
Vanvitelli, Aversa, Italy. He is also a Visiting Research Scholar at the
University of Connecticut. His research interests include in the areas of signal
processing, communications, information theory, machine learning, neural
networks, and graphical models. He received the 1999 S. A. Schelkunoff
Best Paper Award for the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,
with S. Marano and G. Franceschetti. He has been the General Chair of
IEEE Workshop on Machine Learning for Signal Processing (MLSP2016),
in 2016, and a Senior Associate Editor of the IEEE SIGNAL PROCESSING

LETTERS.

VOLUME 10, 2022 15215

F. A. N. Palmieri et al.: Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

KRISHNA R. PATTIPATI (Life Fellow, IEEE)
received the B.Tech. degree (Hons.) in electrical
engineering from the Indian Institute of Tech-
nology Kharagpur, in 1975, and the M.S. and
Ph.D. degrees in systems engineering from the
University of Connecticut (UCONN), Storrs, in
1977 and 1980, respectively.

He was with ALPHATECH Inc., Burlington,
MA, USA, from 1980 to 1986. He has been
with the Department of Electrical and Computer

Engineering, UCONN, since 1986, where he is currently the Board of
Trustees Distinguished Professor and the UTC Chair Professor of Systems
Engineering. His research interests include the application of systems theory,
optimization, and inference techniques to agile planning, anomaly detection,
diagnostics, and prognostics. He has published over 500 scholarly journals
and conference papers in these areas. He is a Co-Founder of Qualtech
Systems, Inc., a firm specializing in advanced integrated diagnostics software
tools (TEAMS, TEAMS-RT, TEAMS-RDS, TEAMATE, and PackNGo),
and serves on the Board of Aptima Inc. He is an elected fellow of
IEEE for his contributions to discrete-optimization algorithms for large-
scale systems and team decision-making and the Connecticut Academy of
Science and Engineering. He was selected by the IEEE Systems, Man, and
Cybernetics (SMC) Society as the Outstanding Young Engineer of 1984 and
received the Centennial Key to the Future Award. He was a co-recipient of
the Andrew P. Sage Award for the Best SMC Transactions Paper for 1999,
the Barry Carlton Award for the Best AES Transactions Paper for 2000,
the 2002 and 2008 NASA Space Act Awards for ‘‘A comprehensive toolset
for model-based health monitoring and diagnosis,’’ and ‘‘Real-time update
of fault-test dependencies of dynamic systems: a comprehensive toolset
for model-based health monitoring and diagnostics,’’ the 2005 School of
Engineering Outstanding Teaching Award, and the 2003 AAUP Research
Excellence Award at UCONN. He has served as the Editor-in-Chief
for the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B:
CYBERNETICS, from 1998 to 2001.

GIOVANNI DI GENNARO received the Laurea
(M.S.) degree (summa cum laude) in ingegneria
informatica from the Università degli Studi della
Campania Luigi Vanvitelli, Italy, in July 2017, and
the Ph.D. degree from the Ingegneria Industriale e
dell’Informazione, in January 2021.

Over the years, he has worked as a freelancer
for various IT companies and has taught pro-
gramming languages and IT elements both in
private and funded (by European funds) courses.

From 2016 to 2020, he received various scholarships funded by the
Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT).
He became a Postdoctoral Fellow at the Università degli Studi della
Campania Luigi Vanvitelli, where starting in January 2022, he will be an
untenured Assistant Professor.

GIOVANNI FIORETTI received the bachelor’s
degree in electronic and computer engineering
from the Università degli Studi della Campania
Luigi Vanvitelli, Italy, in 2019, where he is
currently pursuing the M.Sc. degree in computer
engineering. Since 2020, he has been hold-
ing various scholarships with the Research and
Development Naples Laboratory of the Consorzio
Nazionale Interuniversitario per le Telecomuni-
cazioni (CNIT) for research activities in the field
of path planning.

FRANCESCO VEROLLA received the bachelor’s
degree in electronic and computer engineering
from the Università degli Studi della Campania
Luigi Vanvitelli (ex SUN), Italy, in 2020, where
he is currently pursuing the master’s degree in
computer engineering. Since 2021, he has been
holding various scholarships from the Research
and Development Naples Laboratory of the Con-
sorzio Nazionale Interuniversitario per le Teleco-
municazioni (CNIT) for research activities in the
field of path planning in marine scenarios.

AMEDEO BUONANNO (Senior Member, IEEE)
received the Laurea (M.S.) degree (cum laude)
in computer engineering from the University of
Naples Federico II, Italy, in 2004, and the Ph.D.
degree from the Second University of Naples
(SUN), Italy (now Università degli Studi della
Campania Luigi Vanvitelli), in 2016.

From 2006 to 2018, he has been an Indus-
trial Researcher and a Software Engineer at the
Research and Development Laboratory of Esaote

S.p.A. In the summer of 2008, he was a Visiting Researcher at the
Senseable City Laboratory, Massachusetts Institute of Technology. Since
December 2018, he has been a Researcher at the Department of Energy
Technologies and Renewable Energy Sources, Italian National Agency
for New Technologies, Energy and Sustainable Economic Development
(ENEA). His research interests include machine learning, deep learning,
and probabilistic graphical models. He is a member of the IEEE Signal
Processing Society and the IEEE Computational Intelligence Society.

15216 VOLUME 10, 2022

