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ABSTRACT In an environment with multiple static obstacles, UAVs usually communicate with each other
to avoid collisions during trajectory planning. However, such communication may become infeasible or
unreliable due to interference or jam in practice. This paper introduces a neighbors trajectory prediction
algorithm based on model predictive control (MPC), which enables each UAV to predict the motion behavior
of its neighbors without communication. By solving the MPC model of its neighbors, an UAV can predict
their trajectories and then avoid collision with them in the future. To prove the practicability, we integrate
the proposed algorithm into distributed model predictive control (DMPC) framework to realize multi-UAV
trajectory planning without communication and with static obstacles. The performance of our method is
verified by simulation experiments in two scenes.

INDEX TERMS Collision avoidance, model predictive control, neighbors trajectory prediction, path
planning for multiple mobile robots or agents.

I. INTRODUCTION
Autonomous navigation and trajectory generation of
multi-UAV is very important and widely used in many fields,
such as disaster rescue [1], warehouse management [2],
multi-view photography [3], smart agriculture [4], and so
on. In order to predict the collision with other individuals,
UAVs need to communicate their planned future trajectory.
In actual scenes, communication jam or interference may
occur, which will cause the interaction between UAVs
to become unavailable or unreliable. Therefore, it is
particularly important for multi-UAV to fly safely without
communication.

For the safe and reliable trajectory planning of multi-
UAV, there are some traditional distributed approaches:
artificial potential field (APF) [5], [6], optimal reciprocal col-
lision avoidance (ORCA) [7], force-based motion planning
(FMP) [8], some methods based on swarm intelligence [9],
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and so on. These methods have their own advantages, but
they also have some shortcomings, such as only calculating
the state of the next instant. In recent years, reinforcement
learning (RL) has been applied to multi-UAV trajectory
planning [10]–[12]. UAVs optimize their learning strategies
according to the rewards they get from performing each
action. However, a bad reward function will make these
algorithms difficult to train effectively. In distributed model
predictive control (DMPC) [13], each UAV solves an
optimization problem in a receding horizon manner to
obtain its future trajectory [14]. It has the ability to predict
the states of a long period of time in the future. For an
individual in multi-UAV, when solving a local optimization
problem with collision avoidance constraints, it needs to
know the future trajectory of its neighbors. However, when
the communication between UAVs is not feasible, this kind
of states interaction will face difficulties.

Predicting the motion behavior of other individuals is
a good way to avoid collision without communication.
Trajectory prediction has been researched through multiple
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methods. In [15], a social forces model has been proposed
to describe pedestrian motions by simulating attractive
and repulsive potentials. A method based on hierarchical
reasoning game theory has been proposed to simulate
driver and vehicle interactions in traffic under given
conditions [16]. In addition, there are methods such as
Bayesian formulation [17], interactive Gaussian Processes
(IGP) [18] and Linear Trajectory Avoidance (LTA) [19],
etc. These methods have their own characteristics, but still
have some problems, such as low prediction accuracy or
high calculation cost. In recent years, many methods based
on deep learning have been used in trajectory prediction.
Literature [20] has introduced a model based on long-short
term memory networks (LSTM), which incorporated both
static obstacles and surrounding pedestrians for trajectory
forecasting. Inspired by [20], an interaction-aware trajectory
prediction model based on recurrent neural networks (RNN)
has been proposed [21]. In [22], a generative adversarial
networks (GANs) encoder-decoder framework has been
developed for capturing the multi-modality of the future tra-
jectory prediction. The prediction accuracy of learning-based
methods is high, but most methods need a large number of
samples to train the model. This limits the application of
learning-based methods in the field of trajectory prediction.

In this paper, we propose an algorithm that enables
each UAV to predict the future trajectories of its neighbors
without communication, and then combine it with DMPC
framework to complete the trajectory planning task of
multi-UAV. In order to get closer to the actual scene,
we also consider the collision avoidance between UAVs
and multiple static obstacles, which makes a great increase
in the difficulty of neighbors trajectory prediction. Fig.1
gives an overview of the proposed method. Firstly, each
UAV obtains the current states of its neighbors through
sensors (such as depth cameras and optical flow sensors, etc).
Then model predictive control (MPC) is used to establish
a receding horizon optimization problem for each neighbor.
By solving these optimization problems, an UAV can get the
future trajectories of all its neighbors. Finally, the proposed
algorithm is integrated into DMPC framework to obtain the
future state sequence of each UAV. For an optimization
problem, whether it is established by an UAV to predict its
neighbor trajectory or its own trajectory, we transform it into
a quadratic programming problem. Considering the collision
avoidance constraints for neighbors and static obstacles in
this problem, we use the predicted first collision to establish
soft constraints, thereby reducing the complexity of the
model and the difficulty of solving it. We implement the
offline sequential form of the above method. In theory,
it can also be applied in a distributed form. Through simu-
lation experiments in two specific scenarios, the feasibility
and effectiveness of our proposed method are verified.
The major contributions of this paper are summarized as
follows:

(1) A neighbors trajectory prediction algorithm based on
MPC is proposed to overcome the absence of communication;

FIGURE 1. The overall framework of the proposed method. It mainly
includes neighbors trajectory prediction and trajectory planning based on
MPC. seni _UAV , seni _obs respectively represent other UAVs and
obstacles in the sensing area detected by ni . Si,s[k + 1 : k + K |k] is
defined as the state sequence of a neighbor of ni at K times in the future.
Si [k + 1 : k + K |k] and ai [k : k + K − 1|k] are denoted as the state and
control sequence of ni at K times, respectively. Si [k + 1] is the next state
of ni . After trajectory planning, ni calculates whether its position at the
next time reaches the target. If not, proceed to the next round.

(2) The neighbors trajectory prediction algorithm is
integrated into DMPC framework to realize the trajectory
planning of multi-UAV;

(3) We conducted simulation experiments of the proposed
algorithm in two scenes, and the results show that the
proposed method has good performance.

The rest of this paper is organized as follows: Section II
describes the preliminaries. Section III details the proposed
method. The effectiveness of the proposed method is verified
by simulation experiments in Section IV. Section V gives the
conclusion.

II. PRELIMINARIES
A. UAV MODEL
The multi-UAV set composed of N homogeneous UAVs is
defined asN = {n1, . . . , ni, . . . , nN }, where ni represents the
ith UAV. The downwash air generated by a quadrotor in flight
will affect the safety of other UAVs under it. Similar to the
literature [23], we model each UAV as an ellipsoid elongated
along the vertical axis. An UAV at position p ∈ R3 can be
represented by a set of points as follows:

ξ (p) = {Qx+ p : ‖x‖2 ≤ r}, (1)

where Q = diag(1, 1, rc), rc > 1, and r is the radius of the
UAV in the XY plane.

Each UAV is assumed to satisfy double integral dynamics.
Let pi ∈ R3, vi ∈ R3, ai ∈ R3 denote the position, velocity,
and acceleration of the UAV ni respectively. The dynamic
equation of ni is

pi[k + 1] = pi[k]+ dvi[k]+
d2

2
ai[k]
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vi[k + 1] = vi[k]+ dai[k], (2)

where k is a discrete time point and d is a discrete time step.
si =

[
pTi , v

T
i

]T
∈ R6 and ui = ai ∈ R3 represent the state

quantity and control quantity of UAV ni respectively. Then
(1) can be written as

si[k + 1] = Asi[k]+ Bui[k], (3)

where A =
[
I dI
0 I

]
∈ R6×6, B =

[
d2
2 I
dI

]
∈ R6×3. I ∈

R3×3,0 ∈ R3×3 denote the 3×3 identitymatrix and 3×3 zero
matrix respectively.

B. MUTIL-UAV COLLISION AVOIDANCE
For an insight on collision avoidance approaches of UAVs, the
reader is referred to [24]. If UAV ni wants to avoid collision
with nj at the time point k , the following collision avoidance
constraint should be satisfied:

‖Q−1(pi[k]− pj[k])‖2 ≥ 2ru, (4)

where pi[k] and pj[k] represent the positions of ni and nj
at time point k , respectively. 2ru is the minimum distance
between two UAVs on the XY plane, where ru is slightly
larger than the radius of one UAV.

Suppose that the set of M static obstacles in the environ-
ment isO = {O1, . . . ,Om, . . . ,OM }. pi,m[k] is defined as the
closest point to UAV ni on the mth obstacle Om at time point
k , namely:

pi,m[k] = argmin
p∈Om

‖p− pi[k]‖2. (5)

If ni wants to avoid collision with Om at the time
point k , it needs to satisfy the following collision avoidance
constraint:

‖Q−1(pi[k]− pi,m[k])‖2 ≥ ru. (6)

Regarding the acquisition of pi,m[k], it is assumed that it
can be obtained by the sensors of ni. Or according to the
literature [25], if the obstacle Om has a hyperplane boundary,
and the boundary has a unit normal am ∈ R3 and passes
through the point ym ∈ R3, then the point onOm that is closest
to ni can be determined by

pi,m[k] = Ppi[k]+ (I − P)ym, (7)

where P = I − amaTm. If the obstacle Om can be simplified as
a closed sphere with radius rm centered at ym ∈ R3, then the
point on Om that is closest to ni can be determined by

pi,m[k] = µpi[k]+ (1− µ)ym, (8)

where µ = rm/‖pi[k]− ym‖2.

C. MODEL PREDICTIVE CONTROL
1) THE PREDICTION MODEL OF UAV
According to the principle of DMPC [13], [26], the flight time
of UAVs is discretized. Assuming that the current time point
is k , each UAV wants to predict its states at K future time
points. Let si[k + t|k] = [pi[k + t|k]T , vi[k + t|k]T ]T ∈
R6 denotes the state of UAV ni at the tth time point after
instant k , t ∈ {1, 2, . . . ,K }. The following formula can be
deduced from (3):

si[k + t|k] = Asi[k + t − 1|k]+ Bui[k + t − 1|k]. (9)

Let P i = [pi[k+1|k]
T , pi[k+2|k]

T , . . . , pi[k+K |k]
T ]T ∈

R3K ,U i = [ui[k|k]T ,ui[k+1|k]T , . . . ,ui[k+K−1|k]T ]T ∈
R3K denote the position and control sequence of UAV ni at
K time points in the future, respectively. S0i = si[k|k] is the
initial state of instant k , then an affine function from U i to P i
can be obtained through the recurrence relation in (9):

P i = A0S0i +ΦU i. (10)

Let C =
[
I 0
]
∈ R3×6, the matrix A0 ∈ R3K×6 in (10) is

defined as

A0 =
[
(CA)T (CA2)T . . . (CAK )T

]T
. (11)

The matrix 8 ∈ R3K×3K in (10) is defined as

Φ =


CB 0 · · · 0
CAB CB · · · 0
...

...
. . .

...

CAK−1B CAK−2B · · · CB

 . (12)

Similarly, we can get the affine function from U i to V i:

V i = A′0S
0
i +Φ

′U i, (13)

where A′0 and Φ ′ have the same matrix form as A0 and Φ,
except that the matrix C ′ =

[
0 I
]
∈ R3×6 instead of C is

brought into them.

2) OBJECTIVE FUNCTION
The objective function for each UAV needs to balance the
following three aspects: (1) The control effort. (2) The change
range of control quantity between two instants. (3) The
distance between the planned position point and target point.
It is established as follows:

Ji =
K−1∑
t=0

(‖ui[k + t|k]‖2R1
+‖ui[k + t|k]

−ui[k + t − 1|k]‖2R2
)+‖pi[k + K |k]− pfi‖

2
R3
, (14)

where pi[k+K |k] is the last position in ni’s position sequence
of future K time points and pfi is ni’s target point. According
to (10) andU i, the objective function can be transformed into
a quadratic form:

Ji = UT
i (R1 + Γ

TR2Γ +Φ
TR3Φ)U i + 2(S0Ti AT0R3Φ

−PTfiR3Φ − U
′T
i R2Γ )U i, (15)
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where R1 = diag(R′1, . . . ,R
′

1), R2 = diag(R′2, . . . ,R
′

2),
R3 = diag(0, . . . ,R′3) ∈ R3K×3K are all positive definite
and block-diagonal matrices, they are the weights of the three
penalties.R′1,R

′

2,R
′

3 ∈ R3×3 are all positive definite diagonal
matrices. The matrix Γ ∈ R3K×3K is defined as follows:

Γ =


I 0 0 · · · 0 0
−I I 0 · · · 0 0
0 −I I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −I I

 , (16)

the matrix U ′i ∈ R3K is defined as follows:

U ′i =
[
ui[k − 1]T 0T3×1 · · · 0T3×1

]T
, (17)

where ui[k − 1]T represents the control quantity of UAV ni
at the last time of current time k , and 0T3×1 =

[
0 0 0

]
. Pfi =[

0T3×1 0T3×1 · · · p
T
fi

]T
∈ R3K is the vector of ni’s target point.

3) CONSTRAINTS AND MODEL
Due to the physical characteristics, space limitations, and
collision avoidance requirements of UAV, the state and
control constraints of UAV ni are as follows:

Umin ≤ U i ≤ Umax , (18)

Pmin ≤ P i ≤ Pmax , (19)

Vmin ≤ V i ≤ Vmax , (20)

‖Q−1(pi[k + t|k]− pj[k + t|k])‖2 ≥ 2ru, (21)

‖Q−1(pi[k + t|k]− pOm [k + t|k])‖2 ≥ ru, (22)

∀j 6= i ∈ N ; ∀Om ∈ O; ∀t ∈ {1, 2, . . . ,K }, (23)

where Umin,Umax ,Pmin,Pmax ,Vmin,Vmax ∈ R3K are
the boundary values of control, position and velocity,
respectively. After the above constraints are processed by
using (10), (13) and linearization methods, the model of ni
can be established:

min
U i

Ji =
1
2
UT
i HU i + f iU i

s.t. ΠU i ≤ bi. (24)

Generally, there are two ways for UAV ni to obtain the
future trajectories of other UAVs (pj[k + t|k] in (21)).
One is through communication. UAVs communicate their
planned future trajectories to others at each time step, but
when the number of UAVs is large, this method consumes
a lot. In addition, communication is not always available and
reliable in practice. Another method is ni to treat other UAVs
as moving at a constant velocity and calculate their future
trajectories according to their current state. However, this
method can be inaccurate and may lead to unsafe trajectory
planning [27]. In this paper, we propose an MPC-based
algorithm for each UAV to predict its neighbors’ future
trajectories without communication.

III. METHOD
In this section, we introduce in detail the proposed neighbors
trajectory prediction algorithm and how to integrate it into
DMPC framework to achieve the trajectory planning of
multi-UAV.

A. PROBLEM FORMULATION
The goal of our works is to generate collision-free trajectories
of multi-UAV from their initial locations to their target
locations under an environment with static obstacles and
without communication. In this situation, UAVs can not
obtain the future trajectories of other individuals through
information interaction. We propose an algorithm in which
an UAV predicts the future state sequences of neighbors and
judges whether collisions will occur.

Before describing our proposed algorithm, the following
reasonable assumptions are made:

(1) Each UAV has a sensing area. Assuming that the
sensing area is a sphere with radius ds, each UAV can obtain
the states (positions and velocities) of other individuals in its
sensing area by its own sensors;

(2) Each UAV has an inter-UAV safe area and an
UAV-obstacle safe area. They are spheres with radii of du and
do respectively, and du, do, ds satisfy du < do � ds. Only
when other individuals or obstacles are in its safe area, one
UAV will consider collision avoidance;

(3) Due to the homogeneity of UAVs, they have the same
size of sensing area, inter-UAV safe area, and UAV-obstacle
safe area.

Based on the above assumptions, the UAVs’ sensing area
and safe areas are shown in Fig. 2 (The mappings of 3D areas
on 2D).

B. NEIGHBORS TRAJECTORY PREDICTION
For an UAV ni, the set of neighbors it senses in its safe area
at current instant is defined asΘi = {ne1i , ne

2
i , . . . , ne

g
i } (1 ≤

g < N ). For any neighbor nesi ∈ Θi (1 ≤ s ≤ g), ni uses
quadratic programming to solve an MPC problem about nesi
to obtain its future state sequence.

The collisions nesi may encounter are considered. Accord-
ing to the second assumption in Section III-A, the sens-
ing radius of UAV is much larger than the safe radius,
so it can be counted that nesi ’s neighbors set Θi,s =

{ne1i,s, ne
2
i,s, . . . , ne

l
i,s} can be sensed by ni. We regard nesi ’s

neighbors as individuals moving at a constant velocity. If at
the time point k + t1(1 ≤ t1 ≤ K − 1) that after the current
instant k , there exists a set Θk+t1

i,s ⊆ Θi,s, which satisfies the
following constraint for any neqi,s ∈ Θ

k+t1
i,s :

‖Q−1(pi,s[k + t1]− pi,s,q[k + t1])‖2 ≤ 2ru, (25)

we call nesi collides with its neighbors at k+ t1. The obstacles
set sensed by ni at instant k is represented as Ok

i ⊆ O. If at
the time point k + t2(1 ≤ t2 ≤ K − 1) that after the instant k ,
there exists a set Ok+t2

i,s ⊆ Ok
i , which satisfies the following
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FIGURE 2. The sensing area and safe areas of UAVs (The mappings of 3D
areas on 2D). The red, green and blue circles represent three UAVs
respectively. The brown circle represents a static obstacle. ru is sightly
larger than the radius of one UAV. ds,do and du represent the radius of
sensing area, inter-UAV safe area, and UAV-obstacle safe area
respectively. According to the second assumption in Section III-A, ds is
much larger than two safe radii. Due to the limitation of the layout, it is
only schematic here, not strictly proportional.

constraint for any Omi,s ∈ Ok+t2
i,s :

‖Q−1(pi,s[k + t2]− pi,s,m[k + t2])‖2 ≤ ru, (26)

we call nesi collides with obstacles at k + t2. pi,s,m[k + t2]
is the point closest to nesi on obstacle Omi,s at instant k + t2.
In (25) and (26), pi,s[k + t1] and pi,s[k + t2] are the predicted
positions of nesi at k + t1 and k + t2 respectively, which are
calculated by UAV ni. If nesi is in the safe area of ni at instant
k−1, then pi,s[k+t∗] can be obtained from the state sequence
of nesi at K future time points calculated by ni at instant k−1.
If nesi is not in the safe area of ni at instant k−1, or the current
time is the initial time, then ni treats nesi as a constant velocity
individual and calculates its position at K − 1 time points in
the future, so as to obtain pi,s[k + t∗].
According to the description above, ni can get the instants

when nesi collides with other UAVs or static obstacles. Similar
to the literature [14], in order to simplify the model, we select
the instant when nesi first collides to constrain its state, this
instant is assumed as k + t0. In addition, we adopt the soft
constraint to make the planning problem more solvable. The
future collisions of nesi can be divided into the following three
categories:

(1) The UAV nesi only collides with other UAVs at instant
k + t0. This occurs in three cases: 1) there are no obstacles
in the safe area of nesi ; 2) there are obstacles in the safe area
of nesi , but there will be no collision in the K − 1 future time
points; 3) the collision time between nesi and obstacles is after
k + t0. Assuming that the set of UAVs that collide with nesi at
k + t0 is Θ

k+t0
i,s ⊆ Θi,s, then for any ne

q
i,s ∈ Θ

k+t0
i,s , nesi needs

to satisfy the following constraint:

‖Q−1(pi,s[k + t0|k]− pi,s,q[k + t0])‖2 ≥ 2ru − ε
(1)
i,s,q, (27)

where ε(1)i,s,q > 0 is a new variable to relax the constraint.

In order to linearize (27), Taylor expansion is used at
pi,s[k+t0], where pi,s[k+t0] is the position of ne

s
i at the future

instant k + t0, which calculated by ni in advance. This is one
of the methods for linearizing collision avoidance constraints
mentioned in Section II-C 3). The result is as follows:

(ω(1)
i,s,q)

T pi,s[k + t0|k]+ ε
(1)
i,s,qρ

(1)
i,s,q ≥ η

(1)
i,s,q, (28)

where ω(1)
i,s,q = Q−2(pi,s[k + t0] − pi,s,q[k + t0]), ρ

(1)
i,s,q =

‖Q−1(pi,s[k + t0]− pi,s,q[k + t0])‖2 and η
(1)
i,s,q = 2ruρ

(1)
i,s,q −

(ρ(1)i,s,q)
2
+ (ω(1)

i,s,q)
T pi,s[k + t0].

(2) The UAV nesi only collides with static obstacles at
instant k + t0. This occurs in three cases: 1) there are no
other UAVs in the safe area of nesi ; 2) there are other UAVs
in the safe area of nesi , but there will be no collision in the
K−1 future time points; 3) the collision time between nesi and
other UAVs is after k + t0. Assuming that the set of obstacles
which collide with nesi at k + t0 isO

k+t0
i,s ⊆ Ok

i,s, then for any
Omi,s ∈ Ok+t0

i,s , nesi needs to satisfy the following constraint:

‖Q−1(pi,s[k + t0|k]− pi,s,m[k + t0])‖2 > ru − ε
(2)
i,s,m. (29)

It is linearized by Taylor expansion

(ω(2)
i,s,m)

T pi,s[k + t0|k]+ ε
(2)
i,s,mρ

(2)
i,s,m ≥ η

(2)
i,s,m, (30)

where ω(2)
i,s,m = Q−2(pi,s[k + t0] − pi,s,m[k + t0]), ρ

(2)
i,s,m =

‖Q−1(pi,s[k + t0]− pi,s,m[k + t0])‖2, and η
(2)
i,s,m = ruρ

(2)
i,s,m −

(ρ(2)i,s,m)
2
+ (ω(2)

i,s,m)
T pi,s[k + t0].

(3) The UAV nesi collides with both other UAVs and static
obstacles at instant k + t0. In this case, the above two
constraints (27) and (29) nesi need to be satisfied.

We unify the forms of collision avoidance constraints
in the above three cases. εi,s,∗, ωi,s,∗, ρi,s,∗, ηi,s,∗ are
defined as general references to the corresponding symbols
in (28) and (30). According to the actual situation, choose
one type of specific symbol (corresponding to the above
case (1) or (2)), or the combination of the two types of
symbols (corresponding to the case (3)). (28) or (30) can be
transformed into the following form by (10):

σ Ti,s,∗ΦU i,s + ρi,s,∗εi,s,∗ ≥ ηi,s,∗ − σ
T
i,s,∗A0S0i,s, (31)

where σ i,s,∗ =
[
0T3(t0−1)×1 ω

T
i,s,∗ 0

T
3(K−t0)×1

]T
.

It can be seen from the above that the soft constraint
is equivalent to adding a relaxation variable εi,s,∗ to each
collision avoidance constraint of nesi , which is a new control
variable. Let numis denote the number of εi,s,∗. Then when
they are other UAVs that collide with nesi at k + t0,
numis = dim(Θk+t0

i,s ); when they are static obstacles, numis =
dim(Ok+t0

i,s ); If at k+t0, other UAVs and obstacles collide with
nesi at the same time, then numis = dim(Θk+t0

i,s )+dim(Ok+t0
i,s ).

Let Ei,s = [εi,s,1, εi,s,2, . . . , εi,s,numis ]
T denotes the set of all

relaxed variables in the collision avoidance constraints of nesi ,
then Zi,s = [UT

i,s,E
T
i,s]

T can be defined, which denotes the
set of all control variables of nesi . According to (10), (13),
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FIGURE 3. The proposed neighbors trajectory prediction process. For a neighbor nes
i of UAV ni , after obtaining the states of other UAVs and obstacles in

its safe area, a collision check is carried out to determine whether it will collide and the type of collision in the future. The future control sequence of nes
i

is obtained by solving an MPC. According to its dynamic equation, the state sequence of nes
i at K times in the future is obtained.

(18)-(20), (31), all the constraints of nesi can be written as
follows:

Umin ≤ U i,s ≤ Umax , (32)

Pmin − A0S0i,s ≤ ΦU i,s ≤ Pmax − A0S0i,s, (33)

Vmin − A′0S
0
i,s ≤ Φ

′U i,s ≤ Vmax − A′0S
0
i,s (34)

6i,sU i,s + P i,sEi,s ≤ �i,s. (35)

(35) represents the combination of numis collision avoidance
constraints, 6i,s ∈ Rnumis×3K , P i,s ∈ Rnumis×numis and �i,s ∈

Rnumis . We can vertically stack inequality constraints (32)-
(35):

Π ′i,sZi,s ≤ b′i,s. (36)

where Π ′i,s ∈ R(18K+numis)×(3K+numis) and b′i,s ∈

R(18K+numis)×1.
In order to solve the quadratic programming problem

smoothly, instead of restricting the magnitude of each
relaxation variable, we add a penalty term in the objective
function (15) to punish the larger relaxation variables:

J ′i,s = UT
i,s(R1 + Γ

TR2Γ +Φ
TR3Φ)U i,s

+ 2(S0Ti,sA
T
0R3Φ − PTfisR3Φ − U

′T
i,sR2Γ )U i,s

+ETi,s(κInumis )Ei,s, (37)

where κ > 0 is the penalty term of relaxation variables,
Inumis ∈ Rnumis×numis is denoted as the identity matrix.

Finally, the optimization problem of nesi with collision
avoidance constraints can be expressed as

min
Zi,s

J ′i,s =
1
2
ZTi,sH

′
i,sZi,s + f

′
i,sZi,s

s.t. Π ′i,sZi,s ≤ b′i,s. (38)

By solving (38), ni can get the predicted control sequence
of nesi at K future time points, and then the future state
sequence of nesi can be predicted through the dynamic
equation of UAV. The whole process of the proposed
neighbors trajectory prediction algorithm is shown in Fig 3.
Similar to the above method, ni can calculate its own collision
avoidance constraints. Different from the case of nesi ,
pi[k + t0] can only be obtained by pi[(k − 1) + (t0 +
1)|k − 1] in the predicted state sequence of ni at the last
time. Similarly, the optimization problem of ni with collision
avoidance constraints is as follows:

min
Zi

J ′i =
1
2
ZTi H

′
iZi + f

′
iZi

s.t. Π ′iZi ≤ b′i. (39)

By solving this problem for UAV ni, its control quantity at
the current instant k and predicted state sequence of K future
time points can be obtained.

C. DETAILED DESCRIPTION OF THE ALGORITHM
Algorithm 1 shows the sequential implementation form of
multi-UAV trajectory planning based on DMPC. The input
is UAVs’ initial positions (p0) and target positions (pf ),
the output is their flight trajectories. In the first line of
Algorithm 1, 3 is used to store the trajectories of UAVs.
UAVs’ initial positions are assigned by p0, their initial
velocities are set to 0.When UAVs do not all reach their target
points and the flight time does not reach the specified time,
for an UAV ni, we need to judge whether it has reached its
target point. If it has, stop updating its trajectory and start
to consider the next UAV (lines 5-6). If not, it will conduct
a safe check to obtain information about other individuals
and static obstacles in its sensing area and safe area. Then,
by solving an optimization problemmodeled by Algorithm 2,
ni gets its own control quantity sequence in the future and
the predicted future trajectories of neighbors. The future state
sequence of ni can be predicted. The position point of ni
at the next time is added to the trajectory sequence of ni
in 3, and the first quantity in ni’s future state sequence is
selected as its state quantity at the next time, the first quantity
in ni’s control quantity sequence is selected as the control
quantity at the current time (lines 7-11, t ∈ {1, 2, . . . ,K } in
line 8, the same below). The distances between UAVs and
their target points are calculated. When all UAVs arrive at
their target points or the flight time reaches the specified
time, the algorithm ends and returns to the trajectory of each
UAV.

Algorithm 2 describes the establishment and solution of
an optimization problem based on the proposed neighbors
trajectory prediction algorithm for a certain UAV (assumed
as ni). Supposing the current time is k , the input includes the
state and control sequence of ni, as well as the information
of neighbors and obstacles perceived by ni at the current
instant and the neighbors’ information calculated by ni at the
last instant. The output is the control sequence of ni in the
future K instants, the neighbors’ control quantities at instant
k and state sequences in the future K instants predicted by
ni. If there are no other UAVs and static obstacles in the safe
area of ni, the control sequence of ni in the future K instants
can be obtained by solving a quadratic programming problem
without collision avoidance constraints (lines 1-2). If there
are other UAVs in ni’s safe area, for each neighbor nesi , ni
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Algorithm 1 DMPC-Based Multi-UAV Trajectories Plan-
ning in the Environment Without Communication and With
Static Obstacles
Input: Initial and final positions
Output: UAVs’ trajectory
1: [3(0), x(0)]←InitialAllTrajectory(p0)
2: k ← 0, AtTarget ← 0
3: while not AtTarget and k ≤ Tmax
4: for each UAV ni(i = 1, 2, . . . ,N )
5: if TargetDistCheck(pi(k))< Dmax
6: continue
7: [nei_UAV , nei_obs, seni_UAV , seni_obs]←SafeCheck(3, du, do, ds)
8: [ai[k + t − 1|k],Snei [k + t|k], anei [k|k]]←Algorithm2
9: Si[k + t|k]←GetStates([Si[k + t − 1|k], ai[k + t − 1|k])
10: 3i[k + 1]← pi[k + 1|k]
11: Si[k + 1], ai[k]← Si[k + 1|k], ai[k|k]
12: AtTarget ←TargetDistCalcu(3[k + 1], pf )
13: k ← k + 1
14: return 3

Algorithm 2 The Build and Solution of Optimization Model
Based on Neighbors Trajectory Prediction
Input: Si[k], ai[k − 1], nei_UAV , nei_obs, seni_UAV , seni_obs,

Si[k − 1+ t|k − 1],Snei [k − 1+ t|k − 1], anei [k − 1]
Output: ai[k + t − 1|k],Snei [k + t|k], anei [k|k]
1: if nei_UAV == ∅ and nei_obs == ∅
2: ai[k + t − 1|k]← SolveQP(Si[k], ai[k − 1])
3: elseif nei_UAV 6= ∅
4: for each neighbor s = 1, 2, . . . , l
5: pi,s(k + t)←IsNeighborBefore(s, Snei [k − 1+ t|k − 1])
6: [nei,s_UAV , nei,s_obs]←SafeCheck(seni_UAV , seni_obs, pi,s[k])
7: fircolltime1←CollTCheck(nei,s_UAV , nei,s_obs, pi,s[k + t])
8: ai,s[k + t − 1|k]←SloveQP(Si,s[k], ai,s[k − 1],fircolltime1,

nei,s_obs)
9: Si,s[k + t|k]←GetStates(Si,s[k + t − 1|k], ai,s[k + t − 1|k])
10: ai,s[k]← ai,s[k|k]
11: fircolltime2←CollTCheck(Si,s[k + t|k], nei_obs,Si[k − 1+ t|k − 1])
12: ai[k + t − 1|k]←SolveQP(Si[k], ai[k − 1],fircolltime2, nei_obs)
13: return [ai[k + t − 1|k],Snei [k + t|k], anei [k|k]]

first determines whether it is the neighbor at the last time,
if so, ni calls the future state sequence of nesi predicted at the
last time, otherwise nesi is regarded as moving at a constant
speed. Then, the nesi is checked to get the information of other
individuals or obstacles in its safe area. Determine the time
of the first collision of nesi , an optimization problem with
collision avoidance constraints is solved to obtain its future
control sequence (if there is no collision, an optimization
problem without collision avoidance constraints is solved),
and then its future K instants sate sequence is obtained.
The first value of nesi ’s control quantity sequence is taken
as its control quantity at the current time (lines 3-10). After
obtaining the states of all neighbors in K future instants,
ni judges the time of the first collision with neighbors
or obstacles, and then solves an optimization problem to
obtain its own control sequence in the future K times
(lines 11-12). The output is returned and the algorithm
ends.

IV. SIMULATIONS
In this section, two scenes are provided to verify the
performance of the proposed method. One scene is that
multi-UAV fly from one side of static obstacles to the other,
and the other scene is that multi-UAV fly from opposite sides
of static obstacles. In order to illustrate the feasibility and
effectiveness of the proposed method, we compare it with
two methods in terms of success probability and computation
time. One is the DMPC algorithm that treats neighbors
as constant velocity individuals (we call it CVN-DMPC),
and the other is the DMPC algorithm with communication.
In each scene, the experiment is repeated 30 times for
different numbers of UAVs.We call the planning failure if the
following three situations occur: (1) The distance between an
UAV and an other individual or a obstacle is less than the set
threshold; (2) the optimization problem becomes infeasible;
(3) SomeUAVs failed to reach their target within the specified
time. Otherwise, it is called planning success. For each
number of UAVs, we calculate the proportion of planning
success times of eachmethod in 30 experiments as the success
probability of this method. Computation time of each method
is the average time of its successful experiments. These
simulations are implemented as a sequence form described
in Algorithm 1.

The hardware environment is a PC with an Intel Core
i7-10875H CPU with 8 cores and 16GB RAM, running
at 2.3GHz. In these experiments, ru = 0.175m, Q =

diag(1, 1, 2), pmax = −pmin = 400m, vmax = −vmin =
3.8m/s, umax = −umin = 2.5m/s2, du = 2ru = 0.35m, do =
5du = 1.75m and ds = 10m. The discrete time step d = 0.2,
the number of discrete time steps predicted each time is K =
15, and the planned flight time is Tmax = 100s. We assume
that when ε1i,s,∗ > 0.07, UAVs will collide with others; when
ε2i,s,∗ > 0.035, UAVs will collide with obstacles. We keep
the density of the flight space constant, and there are 12 static
obstacles with a radius of 2m.

A. SCENE 1: MULTI-UAV FLYING IN THE SAME DIRECTION
In this scene, UAVs randomly take the initial points on
one side of the static obstacles, and then fly through the
static obstacles to the other side. Their target points are
also randomly selected. It is required that UAVs do not
communicate with each other during flight and reach their
respective target points on the premise of avoiding collision
between UAVs and static obstacles. This scene is suitable for
applications such as UAVs performances and target tracking.

We test the success probability and computation time of
the proposed method, and compare it with CVN-DMPC
and DMPC with communication. The results are shown in
Fig.4. It can be seen from Fig.4(a) that when the number
of UAVs is less than 60, the success probability of the
proposed method is above 90%, and it is not very different
from the method with communication. With the increase of
the number of UAVs, the success probability of both three
methods decreased, but the gap between the proposedmethod
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FIGURE 4. The comparison between the proposed method, CVN-DMPC
and DMPC with communication under different numbers of UAVs in
scene 1 ((a) the success probability, (b) the computation time). For each
number of UAVs, the proportion of planning success times of each method
in 30 experiments as the success probability of this method. Computation
time is the average time of their respective successful experiments.

FIGURE 5. 42 UAVs pass through obstacles to form the word ‘‘HELLO’’
((a) the initial positions and targets of multi-UAV, (b) the multi-UAV
trajectories planned by the proposed method).

and DMPC with communication is not very large. However,
the success probability of CVN-DMPC decreases rapidly.
In the proposed method, UAVs need to use MPC to predict
the future trajectories of neighbors, this process increases
the computation time, which can be seen from Fig.4(b),
especially when the number of UAVs is large. However,
comparing with the other two methods, the time consumption
of the proposed method increases little.

Fig.5 shows 42 UAVs passing through obstacles from
random initial positions to their target points, which form
the word ‘‘hello’’. Because the space between the letters of
‘‘hello’’ is small, it puts forward higher requirements for UAV
collision avoidance, but our method can still successfully
complete the planning task.

B. SCENE 2: MULTI-UAV FLYING IN THE OPPOSITE
DIRECTION
In this scene, UAVs are divided into two groups. Each group
randomly takes the initial points on one side of the obstacles,
and then takes the initial points of the opposite UAVs as
their target points. They also avoid collision and fly to the
target points without communication. This scene is suitable
for multiple UAVs flying in a cluttered environment, such as
warehouses, workshops, etc.

Similar to scene 1, the success probability and computation
time of the three methods are shown in Fig 6. The scene
of opposite flight poses a great challenge to the trajectory
planning of multi-UAV. This is mainly because when UAVs

FIGURE 6. The comparison between the proposed method and DMPC
method with communication under different numbers of UAVs in scene 2
((a) the success probability, (b) the computation time). For each number
of UAVs, the proportion of planning success times of each method in
30 experiments as the success probability of this method. Computation
time is the average time of their respective successful experiments.

FIGURE 7. 20 UAVs are divided into two groups and fly through obstacles
in opposite directions ((a) the initial positions and targets of multi-UAV,
(b) the multi-UAV trajectories planned by the proposed method).

fly in the opposite direction in the environment with static
obstacles, the time available for UAV response and adjust-
ment becomes shorter. In the absence of communication,
UAVs need to predict the future trajectories of their neighbors
more accurately. As can be seen from Fig. 6(a), comparing
with DMPC method with communication, the success
probability of the proposed method is not much different.
When the number of UAVs is less than 40, the proposed
method can also maintain more than 80% success probability.
However, with the increase of the number of UAVs, the
success probability of CVN-DMPC quickly dropped below
50%. This shows that our method has better performance
than CVN-DMPC in the case of more strict requirements for
trajectory prediction accuracy. The computation time of the
three methods is shown in Fig. 6(b). Fig. 7 shows 20 UAVs
divided into two groups and flying in opposite directions.
It can be seen that the UAVs can pass through obstacles and
avoid inter-UAV collisions, then reach their respective target
points smoothly.

V. CONCLUSION
In this paper, we proposed an MPC-based algorithm for
each UAV to predict its neighbors’ trajectories when it can’t
communicate with others. Then the proposed algorithm is
integrated into DMPC framework to realize the trajectory
planning of multi-UAV in an environment with static
obstacles. In the simulation of two scenes, we showed that
the proposed method is feasible and effective. Moreover, with
only a small increase in computation time, it can achieve a
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performance close to DMPC with communication and much
better than the DMPC algorithm that treats neighbors as
constant velocity individuals. In this paper, the proposed
method is implemented in a sequential form. In the future
work, we will try to implement it in a distributed form and
carry out real machine experiments.
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