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ABSTRACT The recent pandemic revealed weaknesses in several areas, including the limited capacity of
public health systems for efficient case tracking and reporting. In the post-pandemic era, it is essential
to be ready and provide not only preventive measures, but also effective digital strategies and solutions
to protect our population from future outbreaks. This work presents a contact tracing solution based
on wearable devices to track epidemic exposure. Our proximity-based privacy-preserving contact tracing
(P3CT) integrates: 1) the Bluetooth Low Energy (BLE) technology for reliable proximity sensing, 2) a
machine-learning approach to classify the exposure risk of a user, and 3) an ambient signature protocol
for preserving the user’s identity. Proximity sensing exploits the signals emitted from a smartwatch to
estimate users’ interaction, in terms of distance and duration. Supervised learning is then used to train four
classification models to identify the exposure risk of a user with respect to a patient diagnosed with an
infectious disease. Finally, our proposed P3CT protocol uses ambient signatures to anonymize the infected
patient’s identity. Extensive experiments demonstrate the feasibility of our proposed solution for real-world
contact tracing problems. The large-scale dataset consisting of the signal information collected from the
smartwatch is available online. According to experimental results, wearable devices along with machine
learning models are a promising approach for epidemic exposure notification and tracking.

INDEX TERMS Bluetooth low energy, contact tracing, disease outbreak, physical distancing, smartwatch,
wearables, COVID-19, proximity sensing, pandemic, artificial intelligence, supervised learning, neural
network.

I. INTRODUCTION
The global and highly contagious COVID-19 pandemic
affected everyday activities in relation to government’s lock-
downs and restrictions for slowing down and stopping the
spread. Even though such measures can effectively contain
the pandemic at least for a short-term period, they create
adverse effects on long-term economic and social develop-
ments [1]. A long-term solution, which can balance our daily
life while preventing the further spreading of the virus, would
be more practical than restrictive measures. To date, sev-
eral countries have begun to relax their restriction allowing
business reopening and supporting people to return to work.
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While relaxing the restrictions can help the economic growth,
essential preventive measures must be applied to protect
workers and customers alike from the next outbreak. Among
those measures, such as temperature checking, wearing a face
mask, and practicing hand hygiene, contact tracing is deemed
essential in monitoring the daily interaction between users
and thus providing an immediate alert to all the users when
someone is diagnosed with an infectious disease [2]–[4].

While several smartphone-based contact tracing solutions
(e.g., Pan European Privacy-Preserving Proximity Tracing
(PEPP-PT) [5], COVID-19 Watch [6], Privacy-Preserving
Automated Contact Tracing (PACT) [7], etc.) are available
nowadays, these solutions might not be effective in a working
environment because the user does not necessarily carry with
them the smartphone all the time due to the inherent nature of
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their work. Furthermore, many people might put their smart-
phones inside their pocket or backpack, which increases the
difficulty in producing proximity sensing with satisfactory
performance.

The goal of smartphone-based contact tracing is to classify
the risk of a user based on the proximity information extracted
from the Bluetooth Low Energy (BLE) signals. According to
our previous work for smartphone-based contact tracing [8],
only when both users were holding the smartphone in their
hands, the performance was high and about 90%. Five classi-
fiers were trained to classify the risk given the received signal
strength (RSS) measured from the smartphone over a certain
period. Our experimental result shows that the classification
performance drops severely when there is non-line-of-sight
(NLOS) between any two smartphones, for example, when
one of the smartphones is in the pocket and another in the
backpack. Since machine learning is a data-driven approach,
sufficient data is necessary to train a good classification
model. Data-driven approaches have been applied to many
COVID-19 problems, as reviewed by [9], we can see that
most of these problems utilize the widely available dataset
from computed tomography scans, textual data, sound data,
and embedded sensor data to either classify the COVID-19
diagnosis result [10], identify the disease infection symp-
tom [11], detect abnormal pattern from radiographical sig-
nal [12], construct a predictive model [13], etc. Unlike those
widely accessible images and sensor datasets for COVID-19
[14], the available data containing radio signal measurements
from mobile and wearable devices is relatively rare, and
most of them did not cover every possible aspect of signal
measurements. Lastly, the privacy issue is still the top concern
for contact tracing applications. Even though one can exploit
the encryption method to encrypt the user’s information,
such an encryption method can be decrypted easily once the
encryption key leaks.

An effective and low-cost contact tracing solution that
can be adopted by many users without affecting their work
routine is deemed necessary to track the exposure risk of
users, who need to constantly perform their job in a work
environment with limited access to their smartphones. Moti-
vated by the limitation of the smartphone-based approach in
facilitating contact tracing in a work environment, this work
proposes a wearable contact tracing solution based on a low-
cost smartwatch, namely proximity-based privacy-preserving
contact tracing (P3CT). Our proposed P3CT addresses the
questions we highlighted above by 1) exploiting the BLE
signals tomonitor the interaction between users, 2) leveraging
machine learning to train classification models for classi-
fying the exposure risk, and 3) designing a novel ambient
signature protocol to anonymize users’ identify. Since the
antenna position and form factor of a smartwatch is differ-
ent from a smartphone, the received signal strength (RSS)
measured by the smartwatch might exhibit different signal
behaviors, in which it is impossible to implement the exist-
ing contact tracing solution developed with the smartphone
to the smartwatch platform directly without understanding

the statistical characteristics of RSS values measured by the
smartwatch.

In contrast to most contact tracing solutions that identify a
high-risk user (i.e., the user who is most likely to contract the
virus) based on the proximity information estimated from the
given RSS values, our proposed P3CT identifies the high-risk
user by jointly considering the interaction range and interac-
tion duration when any two users come into closed proximity.
This is inspired by the fact that, according to epidemiologists,
the exposure risk is low if the user spent less than 1 s in
close proximity to the infected patient, compared to the user
who spent more than 1 hr in not so close proximity, yet
still relatively near (i.e., the smartwatch still in the broad-
casting range), to the infected patient [15]. Given the RSS
data containing the interaction range and interaction duration
information, we use the machine learning approach to train
four classification models to evaluate the performance of our
proposed P3CT. Our ambient signature protocol, on the other
hand, reuses the same set of RSSmeasurements to anonymize
the user’s identity.

The major contributions of our proposed P3CT are summa-
rized as follows:

• Accurate proximity sensing: A comprehensive perfor-
mance evaluation of RSS-based proximity sensing is
provided to verify the feasibility of using RSS from
wearable devices. While RSS suffers severe attenuation
due to the effect of the human body, our empirical analy-
sis verifies that P3CT achieves satisfactory performance
with existing classification methods.

• Risk classification: we jointly consider the interac-
tion range and interaction duration when defining the
classification model. Four classification methods are
examined while other possible input features are also
explored, including the number of samples observed
by the smart-watch, the maximum RSS, the minimum
RSS, and the range of RSS measurements at a particular
interval.

• Real-world dataset: Our experimental results were val-
idated with real-world datasets collected from smart-
watches worn on the human wrists. We consolidate the
data and organize them into training and testing sets
according to the 80%-20% splitting rule. The dataset is
publicly available to encourage further research [16].

• Real-time exposure alert: By exploiting a low-cost com-
mercial off-the-shelf smartwatch equipped with BLE
technology, smartwatch-based contact tracing can be a
cost-effective solution in many workplaces. The imple-
mentation of our proposed P3CT into these low-cost
smartwatches demonstrate the practicality of our pro-
posed solution for contact tracing, as well as its ability
to trigger real-time exposure alert.

The rest of the paper is organized as follows. Section II
provides the background related to contact tracing and dis-
cusses its current development. Section III presents our pro-
posed P3CT. Section IV describes the method to classify the
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risk level. Section V discusses our experimental evaluations.
Section VI concludes this work.

II. BACKGROUND AND MOTIVATION
Traditional contact tracing relies on manual human efforts,
such as conducting interviews with the patient, tracking down
the people who have come in close contact with the patient for
the past few days. Undoubtedly, manual contact tracing is not
only labor-intensive but also is slow in fighting the rapid virus
spreading rate [3], [17]. Recognizing the urgency to have a
more effective contact tracing, this section reviews emerging
digital-based solutions and then discusses the current devel-
opment in contact tracing.

A. DIGITAL-BASED CONTACT TRACING
To date, many digital-based contact tracing solutions have
been developed to automatically identify a group of users
who are more likely at risk, while preserving the private
information of each user. These digital-based contact tracing
solutions can be categorized into the following two types:

1) SMARTPHONE-BASED CONTACT TRACING
Pervasive smartphones are the popular option for digital-based
contact tracing due to their rich sensing features, providing a
better estimation of interaction distance and duration. Many
works leverage geolocation information [18], [19] and prox-
imity sensing [5] to monitor the interaction between any two
users. Besides homogeneous sensing, there are also works
exploiting the heterogeneous sensing features to improve
the distance estimation [20]. However, these works fail to
consider the location of the smartphone when the users are
doing grocery or working. While people might carry the
smartphone with them for grocery shopping, the smartphone
will be either holding on hands or sitting inside the pocket.
Such a holding variation might affect the accuracy of distance
estimation and thus confuse the contact tracing process. In the
work environment, on the other hand, people might not carry
their smartphones with them all the time.

2) WEARABLE-BASED CONTACT TRACING
While some works utilize the physiological signals [21] or
activity tracker data [22] from the smartwatch to detect the
possible symptoms to contract COVID-19, there are not many
works utilizing the wireless signal from the smartwatch for
contact tracing. Considering the high variability with the
smartphone’s use cases, many industries start to exploit the
wearable solution to contact tracing [23]. The main motiva-
tion to exploit the wearable solution is that they can allow
their workers to resume the work routine with less distrac-
tion. For example, EasyBand [24] presents a wearable-based
contact tracing to facilitate safe social distancing practice.
The EasyBand uses a centralized server for contact tracing,
in which all the users’ data is uploaded to the cloud through
TCP/IP sockets. Such a centralized approach is not scalable
since it relies on cloud computations to identify all the pos-
sible contact for all the infected patients. Furthermore, there

is a high possibility of information leaks when the server is
compromised.

B. CURRENT DEVELOPMENT IN CONTACT TRACING
Recognizing the importance of contact tracing in resuming
the normal lifestyle while preventing the further spread of the
contagious virus, industry and academia have devoted efforts
to developing amore effective contact tracing solution to fight
against COVID-19.

1) NATIONAL-LEVEL EFFORTS
China, South Korea, and Singapore are among the first coun-
tries that have implemented the digital-based contact tracing
solution. With its country-wide surveillance systems, China
government deployed a close contact detector based on QR
code [25]. South Korea utilizes the location data (i.e., the
GPS data) from the smartphone to detect the location of
the infected patient and push a notification containing per-
sonal details of the infected patient to the nearby users [18].
Singapore developed a smartphone application, known as
TraceTogether, that exploits BLE signals transmitted by
the smartphone to detect the proximity between any two
users [26]. In general, the digital contact tracing deployed
by China and South Korea is more intrusive compared to the
TraceTogether developed by Singapore aiming to protect the
user’s privacy by tracking only the proximity between any
two users without explicit location information.

2) ACADEMIA-LEVEL EFFORTS
In contrast to the intrusive approach, academic researchers
have initiated several privacy-preserving contact trac-
ing solutions [27], [28]. For example, Pan European
Privacy-Preserving Proximity Tracing (PEPP-PT) estimates
the proximity based on the broadcast BLE packet containing
a full anonymous ID [5]. COVID-19 Watch automatically
alerts the user when he/she is suspected to be in contact with
the infected patient [6]. The Privacy-Preserving Automated
Contact Tracing (PACT) exploits the BLE signals in com-
bination with secure encryption to detect possible contacts
while protecting users’ privacy [7].

Even though many initiatives exploit the BLE signals for
contact tracing purposes, most of the contact tracing solutions
simply develop their application assuming perfect proximity
sensing scenarios with BLE signals. Unfortunately, BLE sig-
nals from the smartphone are highly inconsistent regardless of
the smartphone is held steadily and remains stationary in the
same location. So far, there is no work examining the BLE
signals transmitted by the smartwatch for contact tracing.
Considering the form factor of the smartwatch, as well as its
processing capability, the BLE signals from the smartwatch
might suffer a different attenuation and distortion, in which
we cannot simply adopt the existing solution that was devel-
oped based on the RSSmeasurement by the smartphone to the
smartwatch without understanding the signal behaviors from
the smartwatch.
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To bridge the gap, this work presents extensive experi-
ments to validate the feasibility of using BLE signals from
the smartwatch for proximity detection, before developing
classificationmodels based on themachine learning approach
to classify the exposure risk of a user. Since the smartwatch
should be always worn on the human’s hand, the likelihood
of NLOS is relatively low. Most of the time, NLOS happens
when the signals are blocked by the human body. This can be
observed when two users wear the smartwatch on the same
hand while standing side by side. However, signal distortion
due to body shadowing always has a certain distortion pat-
tern that can be learned if there are sufficient data unveiling
this distortion pattern. Lastly, we manipulate the RSS values
measured by the smartwatch to construct an ambient signa-
ture for each user rather than having to hard-code a user’s
identity based on an encryption key. Since the RSS values
vary spatially as well as temporally, it is almost impossible
for the attacker to duplicate the signature. Note that a smart-
watch differs from a smartphone in its form factor, processing
capability, antenna position, and available memory. Hence,
it is hard, if not infeasible, to adopt the existing solution with
smartphones onto smartwatches directly without a thorough
understanding of the signal behaviors.

III. PROPOSED PROXIMITY-BASED
PRIVACY-PRESERVING CONTACT TRACING
Our proposed P3CT leverages the BLE technology avail-
able on the smartwatch for proximity sensing. To achieve
privacy-preserving contact tracing, we adopt the same signa-
ture protocol proposed by our previous work [8] to define the
BLE advertising packet. The main framework describing the
contact tracing based on BLE technology is shown in Fig. 1.
It has the following two phases.

A. INTERACTING PHASE
The interacting phase keeps track of the daily interaction
including the interaction distance and interaction duration.
A contact tracing application should be able to detect when
any two persons are in proximity with each other at the
same time keeping track of the duration they remain in close
proximity. An effective contact tracing application should
be able to detect the proximity with high accuracy rather
than seeking to estimate the exact distance, which is quite
expansive considering the dynamic movement of humans.

B. TRACING PHASE
When a person is diagnosed with an infectious disease, trac-
ing down a list of people who have been in close contact with
the infected patient is of critical importance because these
people are more likely to get affected. If this group of people
can get informed almost immediately, it reduces the chances
for the virus to continue to spread to others. However, many
people are concerned about exposing their identity during
the tracing phase. Hence, a privacy-preserving contact trac-
ing should provide these two pieces of information without
disclosing one’s sensitive information.

FIGURE 1. When users A and B are in proximity to each other, their
smartwatches will log the received BLE packet containing the signature
information into their local storage. When user A is diagnosed with an
infectious disease, the watch will upload his/her own signatures to the
signature database. All the other users can download those signatures
and compared them to a list of signatures they have observed in the past
14 days. An alert will be triggered when the downloaded signatures
match one of the signatures on the list.

When two users are in proximity to each other, that is,
when the smartwatches are within the broadcasting range,
they can listen to the incoming packet and measure the RSS.
The smartwatches will log the packet including the measured
RSS value into its local storage, as shown in Fig. 1(a). The
packet contains the ambient signature information observed
by the user’s smartwatch at a particular timestamp. When
a user is diagnosed with an infectious disease, as shown in
Fig. 1(b), the smartwatch will upload the user’s own signa-
tures generated for the past 14 days to the signature database
(the number of days depends on the epidemiological situa-
tion and can change dynamically). All the other users will
download the infected signatures into their smartwatch for
signature matching. In other words, the signature matching
process is taken place in the user’s smartwatch rather than
the cloud server. In this case, there is no way for others
to know who has come into close contact with the infected
patient. The smartwatch will automatically trigger an alert
when it found a matched signature. Based on the alert, the
user can take the necessary action, such as self-quarantine
and acquire coronavirus testing, to prevent the further spread
of this highly contagious disease.

The proposed P3CT has two main parts, the proximity
sensing and the signature protocol.

C. PROXIMITY SENSING WITH BLE TECHNOLOGY
Our proposed P3CT exploits the proximity sensing infor-
mation extracted from the received BLE signals to moni-
tor the interaction between users. As a popular short-range
communication over the 2.4 GHz ISM band [29], [30],
BLE is readily available in many smart devices including
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smartwatches, earbuds, smart thermostats, beacons etc. [31],
[32]. BLE communicates through either non-connectable
advertising or connectable advertising [33]. The latter adver-
tising mode allows another device to request a secure con-
nection through handshaking. Our proposed P3CT uses the
former non-connectable advertising mode, which rejects any
incoming connection requests, as the major communication
platform for contact tracing. Hence, it is almost impossible
for any malicious device to connect to the smartwatch and
get access to sensitive information.

Note that our proposed P3CT is a wearable solution
based on commercial off-the-shelf smartwatches. Being
a low-cost device equipped with essential BLE technol-
ogy, the smartwatch has become an ideal solution for
privacy-preserving contact tracing in workplace environ-
ments. The non-connectable advertising mode allows the
smartwatch to broadcast a short advertising packet periodi-
cally according to the system-defined advertising interval, Ta.
Each smartwatch can measure the RSS values upon receiving
the advertising packet. RSS is inversely proportional to the
square of the distance as according to the inverse square
law [34], [35], i.e., Pr ∝ 1

dn where Pr indicates the RSS
value in the scale of dBm, d is the distance between any two
smartwatches, and n is the path loss exponent
While the RSS-distance relationship holds for the signal in

the free space, RSS values suffer a great distortion in practical
environments owing to the multipath [36] and body shad-
owing effects [37], [38]. The unexpected distortion causes
signal variation even though two smartwatches remain still
in the same position. This signal variation can be minimized
by applying some signal filtering methods, such as moving
average. As shown in Fig. 2, the RSS values at each distance
are more distinct and with less variation when a moving
average is applied (shown in Fig. 2(a)) as compared to the
raw RSS data (shown in Fig. 2(b)). While we can set a cut-
off threshold, for example, any value greater than -75 dBm as
being in close proximity, such a thresholding approach will
result in the high false negative with raw RSS value and high
false positive with filtered RSS value. Rather than using a
thresholding approach, Section IV presents machine learning
methods for high-risk and low-risk classification given the
RSS data.

D. PRIVACY-PRESERVING SIGNATURE PROTOCOL
Wedesign a privacy-preserving protocol that encapsulates the
BLE packet with an ambient signature packet rather than the
user’s identity or location-related information. The novelty
of the signature protocol is to construct a signature vector
that can be fit into the length-constrained advertising packet
(i.e., the available payload is only 31 bytes). Specifically, each
smartwatch is configured to execute the following functions:
i. Signature Generation: The smartwatch scans for the

ambient environmental features. These features are
selectively processed to generate a unique signature that
fits into the 31 bytes advertising payload. The signature
will be updated every few minutes.

FIGURE 2. Comparing the RSS values at each distance given (a) the raw
RSS value, and (b) the filtered RSS value.

ii. Signature Broadcasting: The smartwatch broadcasts the
advertising packet containing the unique signature peri-
odically according to the advertising interval of Ta. The
packet is broadcasted through non-connectable advertis-
ing channels.

iii. Signatures Observation: The smartwatch scans the three
advertising channels to listen to the advertising packet
broadcast by the neighboring smartwatches. The scan-
ning is performed in between the broadcasting event.

The signature is a 31-dimensional transformed vector
containing the ambient environmental features. Upon the gen-
eration of signature, the smartwatch will encapsulate this sig-
nature information into its advertising packet and broadcast
the packet through the non-connectable advertising channels.
The nearby smartwatches can see the packet when it scans on
those advertising channels where the packet is transmitted.

The timing diagram for the advertising, scanning, and
signature generation activities, in which each activity is trig-
gered periodically according to their interval, i.e., generation
interval Tg, advertising interval Ta, and scanning interval
Ts, is shown in Fig. 3. Given Ts, the smartwatch will only
stay active to listen for the incoming packet for a duration
defined by the scanning window Tw. While it is possible to
use continuous scanning (i.e., by setting Tw = Ts) to increase
the packet receiving rate, such a scanning approach has an
adverse effect on energy consumption.

IV. RISK CLASSIFICATION WITH MACHINE LEARNING
Rather than using themeasuredRSS value for proximity sens-
ing based on the thresholding method, this work leverages
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FIGURE 3. The timing diagram for the advertising, scanning, and
signature generation activities. All the generated and observed signatures
will be logged in the local database, together with a timestamp τ .

machine learning, in particular, supervised learning, to clas-
sify the risk of a user with respect to his/her interaction
distance and interaction duration with the infected patient.
While [39] presents the interaction between a smartphone and
a beacon equipped with BLE signals, the work only discusses
the interaction distance but did not cover the interaction
duration. For a contact tracing application, it is necessary
to understand the interaction duration besides the interaction
distance. This is because the likelihood for a user to contract
a virus does not depend on the interaction distance only, but
also on the interaction duration.

This section first discusses the useful features we can
obtain from the proximity sensing information, before pre-
senting our hypothesis to risk classification using these fea-
tures. Next, we describe the four classification models that
we will train for our experiments. Our main novelty is on
selecting the meaningful features from the proximity sens-
ing for risk classification, whereas designing a classification
model is not the main focus of this work. Rather a few general
classification models are described to provide an idea on how
to adopt our selected features to train a classifier.

A. PROXIMITY SENSING
Proximity sensing has been employed in many scenarios,
for example, to identify the user proximity to museum col-
lection [40], to gallery art pieces [41], to other human [42]
etc. There are works that study proximity detection in dense
environment [43], or proximity accuracy with filtering tech-
nique [44]. Most of these works study the proximity detec-
tion between a human and an object attached with BLE
beacon [45]. In this work, we study the proximity sensing
between the devices carried by two human beings. While
estimating the distance can help to check if the user partic-
ipates in a safe physical distancing, an exact distance, such

as 2 meters, should not be a rigid requirement in classifying
the risk of a user. Rather, we are more interested to know the
proximity between any two users, and how long they remain
in proximity.

BLE is the best technology for the above purpose since
BLE is a short-range communication that can only be heard
when two smartwatches, A and B, are in the communication
range of each other. Upon receiving the advertising packet
from another smartwatch B, smartwatch A can measure the
RSS and thus estimate its proximity to the nearby smartwatch
B. We classify the proximity into two classes, i.e., far and
close. We define close proximity when the distance between
any two smartwatches is less than a predefined threshold, for
instance 2 meters, and any distance greater than 2 meters but
less than the broadcasting range is considered far. In other
words, the two smartwatches are not in proximity if they are
outside the broadcasting range of each other.

The RSS distributions for far and close proximity is shown
in Fig. 4. It is clear that there will have a lot of errors if we
decided the proximity by simply setting an RSS threshold.
For example, if we set everything above -80 dBm as close
proximity, chances are some values greater than -80 dBm
are from the smartwatch located at a distance greater than
2 meters. Hence, it is unreliable to identify the risk of a user
simply based on the proximity. At the same time, some users
might be in very close proximity when they pass by each
other. Hence, we also consider the interaction duration when
we want to identify the risk of a user.

FIGURE 4. RSS distributions for two types of proximity: far (blue color
bars) and close (orange color bars).

B. HYPOTHESIS TO RISK CLASSIFICATION
While it is more likely to be infected when the user is in close
proximity to the infected patient, the risk of getting infected
is relatively low if the user spends less than 1 s in such close
proximity. On the other hand, the exposure risk can be high
if the user spends a very long time with the infected patient,
even if they are keeping a safe physical distance from each
other. The possible risk of getting infected with respect to the
interaction range and interaction duration between the user
and the infected patient is shown in Fig. 5.
The problem of classifying the potential risk of a user

can be modeled as a binary hypothesis test. Let x be an
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FIGURE 5. The user is considered to have a high risk of being infected
when he/she is in close proximity with the infected patient or has spent a
very long time with the infected patient within a confined space even if
the distance between them is greater than the physical distancing
threshold.

m-dimensional feature vector (containing information related
to the interaction time and interaction duration) and consider
a risk mapping functionR: (x) −→ {+1,−1}, where+1 indi-
cates high-risk and −1 low-risk, then we have the following
two hypotheses:

H+: R(x) = +1

H−: R(x) = −1 (1)

where H+ denote the hypothesis that the user belongs to the
high-risk (+1) group,H− the hypothesis that the user belongs
to the low-risk (−1).

For our problem setting, we only consider the people who
received the BLE signals. So, we do not need to consider the
null hypothesis H0 because the null hypothesis only occurs
when the user is outside the communication range of the
infected patient. Miss detection is undesirable because the
user might be at risk but the system considers the user safe.
False negative, on the other hand, misclassified the high-risk
user to low-risk. This may give a wrong impression to the
user that the possibility for them to get infected is low, but in
fact, the possibility could be high. While false positive is a
bit more conservative by misclassifying the low-risk user to
high-risk, it is a relatively safer outcome than miss detection
and false negative.

C. CLASSIFICATION MODELS
We apply supervised machine learning methods to train a
classification model. The training and testing phases are
described in Fig. 6. During the training phase, the data is
divided into training and validation set before feeding the data
for model learning. The objective is to learn a set of weights
that fit the hypothesis function R(x,C) defined by the corre-
sponding classification model C . 10-fold cross-validation is
performed to evaluate the learned model as well as to prevent
the model from overfitting. If necessary, model fine-tuning
can be performed to improve the classification performance.

Mathematically, the learning process aims to fit the risk
mapping function R: (x) −→ y given a set of n training

FIGURE 6. A classification model can be learned, validated, and
fine-tuned using the collected data. The trained model is loaded to a
smartwatch to classify the risk of a user given a set of feature vectors
stored in the smartwatch for a number of past days.

samples {(x1, y1), . . . , (xn, yn)}, where x = (x1, . . . , xm)T is
an m-dimensional feature vector and y = {+1,−1} is the
classification output indicating the risk of a user.

In this work, we exploit four classification methods: deci-
sion tree (DT), linear discriminant analysis (LDA), naive
Bayes (NB), and k nearest neighbors (kNN).

1) DECISION TREE (DT)
The top-down approach is a commonly used method to learn
a classification tree. More precisely, DT starts by choosing a
feature from the feature vector that provides the best splitting
in connection to the target risk label and then repeats the same
splitting procedures for each separated branch until it reaches
a final decision. Let θ = (x, γ ) be the splitting rule given
feature x and threshold γ , we can split n samples of training
data T into two subsets, i.e.,

Tr (θ ) = (x, y)|x ≤ γ

Tl(θ ) = T \ Tr (θ ) (2)

where Tr and Tl are the resultant subsets representing the data
for right and left branches, respectively.

The common measure used to govern the splitting rule is
the Gini impurity G(·), which tells how likely the model will
produce a misclassification if the model predicts the labels
based on the label’s distribution from a randomly chosen
feature. Mathematically, the Gini impurity can be computed
as follows:

G(T , θ) =
nl
n
H(Tl(θ ))+

nr
n
H(Tr (θ )) (3)

where nl and nr are the number of training samples for each
subset, and H(·) is the entropy function, i.e.,

H(x) =
∑

y={+1,−1}

py(1− py)

= −

∑
y={+1,−1}

py log(py) (4)
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and py denotes the probability of correct classification. Sup-
pose that I = {1, 0} be the indication function and ỹ be the
predicted output, then we have

py =
1
n

∑
∀x∈x

I(ỹ = y) (5)

The objective of DT is to find the parameters that produce the
best splitting rule, i.e.,

θ∗ = argminG(T , θ) (6)

2) LINEAR DISCRIMINANT ANALYSIS (LDA)
Assume that the covariance for each class is the same, LDA
learns a classifier by fitting a Gaussian density to each class.
Let P(x|ỹ = y) be the conditional distribution for each class
y = {+1,−1}, by applying Bayes’ rule, we obtain:

P(ỹ = y|x) =
P(x|ỹ = y)P(ỹ = y)∑
y={+1,−1} P(x|y)P(y)

(7)

Then, the class (i.e., the risk) can be determined by selecting
the output with the highest posterior probability.

3) NAIVE BAYES (NB)
Following a naive assumption that each feature is conditional
independence, we can apply Bayes’ theorem to learn a clas-
sification model.

By simplifying P(x|y,∀x ∈ x) to P(x|y), we have:

P(y|∀x ∈ x) =
P(y)

∏m
i=1 P(x|y)
P(x)

. (8)

Since P(y|∀x ∈ x) is proportional to P(y)
∏m

i=1 P(x|y),
then we can use maximum a posteriori (MAP) to estimate the
probability for each class P(y) and the conditional probability
for each class given the feature P(x|y). The output risk can
then be predicted based on the following rule:

ỹ = argmax
y={+1,−1}

P(y)
m∏
i=1

P(x|y) (9)

4) K NEAREST NEIGHBORS (kNN)
The goal of kNN is to maximize the probability of correct
classification. Let pi indicate the probability that a training
sample i is classified correctly, according to the stochastic
nearest neighbors rule, we have:

pi =
∑
j∈Ti

pij (10)

where Ti is a subset of data belonging to the same class as the
training sample.

Given pi, the goal of kNN can be defined as follows:

argmax
y={+1,−1}

n∑
i=1

pi (11)

These four classifiers can be further extended by assuming
different distribution functions. One of the possible future
works is to calibrate the classifier based on the prior empirical

distribution knowledge about a certain environment. More
precisely, different environments might produce different dis-
tributions, and if we can acquire this information, it could
help to better calibrate the classifier and thus improve the
classification performance.

V. EXPERIMENTS AND EVALUATIONS
Supervised learning, such as classification, requires a set
of labeled data, which is not readily available in the
context of smartwatches. In contrast to the abundant
and open-accessible sources of text-based (e.g., WikiLens,
BookCrossing, etc.) or image-based (e.g., MNIST, imageNet,
etc.) datasets, there are not many publicly available datasets
including the BLE signals received by the smartwatch.
We developed an application on the smartwatch to collect the
BLE data and store them in a public available dataset [16].

This section first presents the experimental setup with
smartwatches and then describes the data we have collected
through our smartwatch applications. We consolidated the
collected data from both smartwatches before dividing them
into training and testing datasets. Lastly, we evaluate the
experimental results obtained from different classifiers.

A. EXPERIMENTAL SETUP FOR DATA COLLECTION
For the experiment, we used Fossil Sport, a smartwatch based
on Google’s Wear OS. The smartwatch is powered by a Qual-
comm Snapdragon Wear 3100 processor and has an internal
memory of up to 1 GB. The 8 GB internal storage is sufficient
to store the generated and observed signatures for at least
14 days. The small form factor (i.e., 1.28in AMOLED screen
with 44 mm case size and 12 mm case thickness) makes
the smartwatch an ideal candidate for contact tracing in the
workplace. As shown in Fig. 7, the smartwatch can trigger the
alert automatically when any two smartwatches are in close
proximity to each other.

FIGURE 7. When any two persons come close to each other, (a) the
smartwatch will vibrate with an alert, and (b) the smartwatch will also
trigger an alert notification to remind the users to practice safe physical
distancing.

We programmed the smartwatch application to broadcast
the advertising packet in the background. For experimental
purposes, we also programmed the application to log all the
advertising packets it received at every distance. Besides the
advertising packet, the smartwatch also logged the following
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information: the truth distance, name of the smartwatch,
MAC address of BLE chipset, the packet payload, RSS val-
ues, time elapsed, and timestamp. The time elapsed indi-
cates the time difference between the previous broadcast
packet and the current broadcast packet, whereas the times-
tamp is the exact time when the smartwatch received the
packet.

We performed the experiment by asking two subjects to
stand at a certain distance from each other, from 0.5 m up to
5 m. A measuring tape is used as a reference to the ground
truth distance. The subjects were asked to wear the smart-
watch on different hands and repeat the experiment. Specifi-
cally, volunteer A wore the smartwatch on her left hand, and
volunteer B on her right hand (i.e., left to right (LR)). After
that, the same experiment was repeated with right hand to
left hand (RL), left hand to left hand (LL), and right hand to
right hand (RR). Since LR and RL constitute a direct view
between two smartwatches and LL and RR constitute the
crosswise view, we categorize these four hand-combinations
into two groups: a) direct, and b) crosswise, as illustrated
in Fig. 8.

FIGURE 8. Four combinations of smartwatches on hand’s position have
been tested, i.e., left hand to right hand (LR), right hand to left hand (RL),
left hand to left hand (LL), and right hand to right hand (RR). These four
combinations can be classified into two categories: (a) Direct (LR and RL)
and (b) Crosswise line (LL and RR).

All the experiments were conducted in indoor environ-
ments with a lot of interference from commercial BLE
devices, such as tablets, smartphones, earbuds, smart ther-
mostats, etc. Furthermore, the data collection were executed
at different times with uncontrolled indoor environmental
settings (for example, having people using the microwave,
having some people walking around, and also having differ-
ent furniture arrangements).

The goal is to collect sufficient data capturing the signal
distortion subject to the environmental dynamics. Since out-
door environments are less dynamic as compared to indoor
environments, the classification models that we have trained
should have better, or at least the same performance, as what
we have achieved with the indoor setting. All the mea-
surement data is saved into a ‘‘comma-separated values’’
(.csv) file format and exported to Matlab for training and
testing.

B. DATA PREPARATION AND PROCESSING
In total, we have collected 37,644 data points from all four
combinations, as shown in Table 1. We consolidated the data
from RR and LL into a single dataset (i.e., the crosswise
dataset). We applied segmentation with 90% overlapping
when sampling the data from the 37,644 data points. Such
a segmentation results in a total of 17,282 training samples
and 4320 testing samples with six training features. These
features are computed from the raw RSS data. These six
input features include 1) the number of samples observed by
the smartwatch, 2) mean RSS, 3) standard deviation RSS,
4) maximum RSS, 5) minimum RSS, and 6) RSS range
(i.e., maximum RSS − minimum RSS). The number of sam-
ples observed by the smartwatch tells how long the smart-
watch are in proximity to each other. To encourage future
work, we have included the raw RSS data for people who
would like to exploit other features.

TABLE 1. Total data from each combination.

Next, an 80%-20% splitting rule was applied to split the
data into training and testing sets. Similarly, we applied the
same segmentation and splitting rule to the consolidated data
from RL and LR (i.e., the direct dataset), resulting in 12,834
training samples and 3208 testing samples. Both direct and
crosswise datasets are shared openly in our Github repository,
along with example codes to provide a detailed walk-through
on reproducing our work [16].

C. EVALUATION METRICS
We used four metrics (i.e., precision (p), recall (r), F1-score
(f1) and accuracy (a)) to evaluate the performance of these
classifiers. Let T+, T−, F+ and F− denote the true positive,
true negative, false positive, and false negative, respectively,
then the above four metrics can be computed as follows:

p =
T+

T+ + F+
(12)

r =
T+

T+ + F−
(13)

f1 = 2
rp

r + p
(14)

a =
T+ + T−

T+ + T− + F+ + F−
(15)

Intuitively, precision tells how many are actually at the
high risk out of all the predictions as positive. High precision
indicates the capability of a classifier in producing a low false
positive, avoiding creating unnecessary tension and anxiety
to the people. Recall, on the other hand, tells how many we
predicted as high-risk are in fact having high-risk of being
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TABLE 2. The performance of each classifier for the direct dataset.

TABLE 3. The performance of each classifier for the crosswise dataset.

infected. In contrast to the accuracy that considers the num-
ber of correctly classified true positives and true negatives,
F1-score considers the balance of precision and recall. The
F1-score is a useful metric when false negatives and false
positives are important factors in evaluating the classifier
performance.

D. EXPERIMENTAL RESULTS AND DISCUSSIONS
We fed the two datasets, i.e., direct and crosswise datasets,
to the four different classifiers (i.e., DT, LDA, NB, and kNN)
for training. We repeated the experiment 100 times with a dif-
ferent set of testing data. Specifically, we randomly sampled
20% of data from the dataset for testing purposes at every
iteration. For each evaluationmetric, we show themean result
and its corresponding 95% confidence interval (CI). The
overall mean results and 95%CI for both direct and crosswise
datasets are shown in Table 2 and Table 3, respectively.
An illustration of the F1-score distribution obtained from
DT with the 100 testing sets, is shown in Fig. 9. From both
tables, we can see that all the classifiers achieve satisfactory
performance with high precision and recall. In other words,
the classifier did not penalize the recall in order to achieve

FIGURE 9. The histogram illustrates the F1-score distribution obtained
from DT with the 100 different testing sets. The area in between the black
lines indicates the 95% confidence interval.

high precision. Hence, the F1-scores for both datasets are
high.

We also observed that the direct dataset gave a better per-
formance than the crosswise dataset. This can be explained
by the possible signal attenuation when the two hands are
blocked by the human body. Among all the classifiers,
DT achieves the best performance with the highest precision,
recall, F1-score, and accuracy. The precision-recall curve
for both (a) direct and (b) crosswise, is shown in Fig. 10.
The precision-recall curve provides further insight into the
trade-off between precision and recall. Both plots indicate
that DT achieves superior performance with high precision
and recall, whereas other methods tend to trade-off the recall
in order to achieve high precision.

1) IMPLICATION OF INPUT FEATURES
Previously, we used all the five input features (i.e., number of
samples observed by the smartwatch, mean RSS, maximum
RSS, minimum RSS, and RSS range) to train the model. All
the four trained classifiers were able to produce satisfactory
classification performance, i.e., at least 85% accuracy. Hence,
we would like to investigate the implication of input features
on classification performance.

We repeated the experiment by using only one feature
(i.e., mean RSS), and then two features (i.e., mean RSS
and the number of samples), and so on. The classification
accuracy achieved by all the four classifiers is shown in
Fig. 11. From both bar charts, we can see that kNN suffers
severe performance degradation when only one input feature
is available. Overall, the performance increases when the
number of features increases.

The performance gain of each classifier with respect to the
number of features increases, is shown in Fig. 12. Clearly,
kNN is benefited when there are more input features. Both
LDA and NB did not show improvement after two features.
Their performance saturates when the number of features is
more than two. The performance of DT also increases when
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FIGURE 10. Precision-recall curves for: (a) direct dataset, (b) crosswise dataset.

FIGURE 11. The effect of number of input features on the accuracy.

the number of features increases, even though the perfor-
mance gain is quite minimal.

In summary, some features are indeed useful in training a
good model, while some features might be redundant and can
be excluded from training. For example, the maximum RSS
andminimumRSSmight not provide good information to the
model training, whereas the RSS range provides more useful
information. The RSS range provides an indication of how
big the RSS fluctuated during a particular observation period,
and this piece of information is indeed helpful to model
learning.

2) IMPLICATION OF NUMBER OF SAMPLES
As discussed, the number of samples observed by the smart-
watch is a good indication of how long the user has been
interacting with each other. We can make a better inference
when the number of samples observed by the smartwatch
increases.

The effect of the number of samples on the classification
accuracy is illustrated in Fig. 13. The accuracy increases
when the number of samples increases and then slowly sat-
urates after it obtains a sufficient number of samples. The
increase in the number of samples has less effect on accuracy
when the system has obtained a sufficient number of samples
tomake an inference. The results show that the accuracy starts
to saturate when the number of samples reaches 100, for both
(a) direct and (b) crosswise cases. Hence, we can conclude
that most classifiers can produce decent classification output
when there are at least 100 samples. If the smartwatch is
configured to advertise the packet every 100 ms, we should
expect approximately 10 samples per second, which means
approximately 10 s is required for each classifier to reach a
stable performance.

In practice, this is a reasonable duration considering the
interaction duration between users. If the interaction duration
is less than 10 s, the risk of getting infected is very low even
though the user is very close to the infected patient.
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FIGURE 12. The performance gain achieved by each classifier.

FIGURE 13. The effect of number of input samples on the accuracy.

3) IMPLICATION OF PHYSICAL DISTANCING RULE
While Canada imposed a 2 meters physical distancing
rule [46], different countries might have different sets of
physical distancing measures. For example, Italy requires its
citizens to practice 1 meter physical distancing [47]. Con-
sidering the physical distancing differences from country to
country, we conducted an experiment to verify our classifica-
tion approach with different physical distancing thresholds.
The classification accuracy with different physical distancing
thresholds, is shown in Fig. 14. The results prove the robust-
ness of our classification approach, in which each classifier
achieves almost similar accuracy despite the differences in the
physical distancing threshold. This means that our proposed
approach is practical and can be applied by any country
directly by simply updating the physical distancing threshold
in correspondence to the set of preventive measures defined
by the government.

E. COMPARISON TO SHALLOW NEURAL
NETWORK MODEL
To further examine the classification performance, we build a
shallow 4-layers feedforward neural network (FNN) model.
The number of hidden neurons for each layer is 8, 16, 24,
and 36, as shown in Fig. 15. We compared the FNN model
to the best classifier we have achieved (i.e., DT) previously.
The classification performance of these two methods is sum-
marized in Table 4. The example code for constructing the
FNN model is also provided in our Github repository.

While FNN achieves a better performance than DT, the
FNNmodel ismore complex in terms of computation thanDT
which makes the direct implementation on the low-cost and
low-end smartwatch almost impossible. Since smartwatch-
based contact tracing is targeting industry sectors with hun-
dreds to thousands of employees, a low-end smartwatch is a
cost-effective solution.
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FIGURE 14. The effect of physical distancing threshold on the accuracy.

FIGURE 15. The feedforward neural network used in our experiment. The diagram is generated by Matlab Deep Learning Toolbox after defining the
network architecture.

TABLE 4. Classification performance comparing DT to Feedforward NN.

VI. CONCLUSION
Contact tracing is deemed to be an essential measure in
the post-pandemic to prevent and alleviate a future out-
break while slowly reopening the workplace. Even though
smartphone-based contact tracing is cost-effective consider-
ing the ubiquity of smartphones, it is not convenient to have
the user carry with them the smartphone all the time dur-
ing working. On the other hand, a smart wearable approach
provides a more practical solution to contact tracing in the
workplace. In this work, we verify the practicality of our
proposed P3CT with real-world BLE data collected from the
smartwatch. We examine the performance of our approach
while using supervised learning and four classifiers. Accord-
ing to experimental results, DT achieves the best performance
with the highest precision, recall, F1-score, and accuracy. For
future work, we can integrate the embedded sensors within

the watch to monitor users’ activity and thus to better pre-
dict their interaction behaviors. The additional knowledge of
interaction behaviors, besides the interaction proximity and
duration, provide further information to estimate the risk of
being infected. Besides that, future work can also consider
reframing the risk classification problem as a risk regression
problem so that better insights can be obtained regarding the
correlation between risk and RSS values measured in indoor
and outdoor environments.
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