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ABSTRACT The existing body of work on video object tracking (VOT) algorithms has studied var-
ious image conditions such as occlusion, clutter, and object shape, which influence video quality and
affect tracking performance. Nonetheless, there is no clear distinction between the performance reduction
caused by scene-dependent challenges such as occlusion and clutter, and the effect of authentic in-capture
and post-capture distortions. Despite the plethora of VOT methods in the literature, there is a lack of
detailed studies analyzing the performance of videos with authentic in-capture and post-capture distortions.
We introduced a new dataset of authentically distorted videos (AD-SVD) to address this issue. This dataset
contains 4476 videos with different authentic distortions and surveillance activities. Furthermore, it pro-
vides benchmarking results for evaluating ten state-of-the-art visual object trackers (from VOT 2017-2018
challenges) based on the proposed dataset. In addition, this study develops an approach for performance pre-
diction and quality-aware feature selection for single-object tracking in authentically distorted surveillance
videos. The method predicts the performance of a VOT algorithm with high accuracy. Then, the probability
of obtaining the reference output is maximized without executing the tracking algorithms. We also propose
a framework to reduce video tracker computation resources (time and video storage space). We achieve
this by balancing processing time and tracking accuracy by predicting the performance in a range of spatial
resolutions. This approach can reduce the execution time by up to 34%with a slight decrease in performance
of 3%.

INDEX TERMS Video object tracking, in-capture and post-capture distortions, video quality assessment,
video tracking prediction.

I. INTRODUCTION
Video object tracking (VOT) is one of the most studied areas
in computer vision and multimedia processing. VOT is a
complex computational process that makes possible to locate
and follow one object over time using video streaming. This
can be applied in human-computer interaction, robotics, and
video surveillance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

Recently, several studies and competitions have proposed
different VOT approaches [1]–[4]. Nonetheless, to the best of
our knowledge, these approaches have notmodeled and quan-
tified the influence of post-capture and in-capture distortions
on video object tracking performance. Post-capture distortion
refers to those quality impairments (i.e., blur, compression
artifacts, and additive noise) introduced synthetically after
capturing the video. By contrast, in-capture distortions are
authentic quality impairments or combinations such as over-
exposure, low exposure, and defocus aberration acquired
during the video capture. State-of-the-art trackers usually
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perform well on videos with few or no distortions. However,
the performance of VOT algorithms can decrease when they
are tested on videos affected by authentic distortions such as
lack of exposure, over-exposure, and defocus.

A. LITERATURE REVIEW
The correlational filter (CF) technique has been used success-
fully in several VOT algorithms, such as DeepSTRCF [5], [6],
owing to its low computational cost and speed. From the first
frame, the object is tracked by correlating the filter in regions
close to the detected object across the following frames [7].
The correlation is carried out in the Fourier domain using the
Fast Fourier Transform (FFT) to increase the tracker speed.
CF can be divided into four categories according to their
components [8]: categorized features [9], space weight fac-
tors [10]–[12], scale factors [13], and expert strategies [14].
Yuan et al. [15] propose the self-supervised deep correla-
tion tracker (self-SDCT) that exploits internal correlations
by using a Siamese network and generating pseudo-labels of
consecutive frames. Also, as an alternative to CF-based VOT
algorithms, Chen et al. [16] introduce an attention-based fea-
ture fusion network to learn long-term relationships, named
TransT inspired by the transformer architecture. TransT out-
performs several state-of-the-art tracking algorithms on six
challenging datasets.

Previous studies on the impact of distortions on the per-
formance of machine vision algorithms have addressed tasks
such as object and face detection [17], dermoscopy [18],
and face recognition in long-wave infrared (LWIR) images
[19]–[21]. These approaches are usually based on natural
scene statistics (NSS) or deep relevant quality features that
account for post-capture distortions such as blur, additive
noise, and uneven illumination. In addition, most existing
literature on the effect of distortions on VOT performance
[22]–[24] deals with post-capture distortions, such as blurring
caused by shaking motion [25], and deblurring [26].

In [27], the authors proposed a method for the robustness
measurement of VOT algorithms based on accuracy rate and
performance stability. The performance of ten existing visual
tracking algorithms was evaluated by the proposed assess-
ment method, using the Quality-degraded Video Database for
Visual Tracking (QDVD-VT). This resource contains videos
affected by post-capture distortions such as compression,
contrast changes, resolution variation, white noise, and frame
rate changes. This study concludes that it is challenging
to track objects in distorted videos using the tested visual
tracking algorithms.

In [26], Guo et al. present a benchmark dataset con-
taining 500 videos with different levels of motion blurs
for 100 scenes. They evaluated 25 tracking algorithms on this
dataset and group them into four classes according to the
representations used: i) intensity-based features [28]–[32],
ii) HoG Features [5], [10], [33]–[37], iii) Deep Features [9],
[38]–[45], and iv) mixed features [46]–[48]. The authors
in [26] concluded that the light motion blur improved in most
of the trackers, while heavy blur significantly decreased their

accuracy. Similarly, they studied the effects of two state-of-
the-art deblurring methods [49], [50], concluding that deblur-
ring can improve tracking accuracy on heavily blurred videos
while having little effect on those with light blur impairments.
Finally, they proposed a new GAN-based tracking scheme
that adopts the fine-tuned discriminator DeblurGAN [49]
as an adaptive blur assessor to selectively deblur frames,
improving the accuracy of six state-of-the-art trackers [5],
[32], [36], [38], [40], [46]. However, the blur distortions
studied in [26], despite being called ‘‘realistic’’ blur in some
studies [51], [52], are properly classified as post-capture
distortion because they were added after capturing the video.
Furthermore, based on the findings of [26], it remains an
open question whether deblurringmethods as [53], [54] could
improve the performance on tracking tasks.

B. CONTRIBUTIONS
To the best of our knowledge, this is the first work that intro-
duces a database dedicated to modeling the effects of authen-
tic in-capture distortions on VOT. The proposed dataset
is Authentically Distorted Surveillance Videos Dataset
(AD-SVD) and contains 4376 authentically distorted videos
with different visual content and activities.

In addition, we developed a framework to predict the
performance of VOT algorithms on authentically distorted
videos and reduce video tracker computation resources.
These include execution time and the disk space required
for storage by predicting the VOT algorithm performance
and determining the optimal spatial scale to process a video.
Furthermore, this approach complements our previous work
in which we demonstrated the impact of authentic distortions
on state-of-the-art video trackers and developed a quality-
aware-tracker for post-capture distortions [55], [56].

The remainder of this paper is organized as follows:
Section II presents the proposed AD-SVD dataset and the
benchmarking of video trackers, Section III describes the
details of our video tracker performance prediction method,
Section IV discusses our proposed method for video tracker
execution time reduction, Section V analyzes the experimen-
tal results, and Section VI concludes the paper.

II. AUTHENTICALLY DISTORTED SURVEILLANCE VIDEOS
DATASET
Because a similar resource is not available, we created
an Authentically Distorted Surveillance Videos Dataset
(AD-SVD) acquired by four different surveillance cam-
eras (VIVOTEK IP8165HP, VIVOTEK IB8367A, VIVOTEK
IB8381, AXIS P14), and affected by several levels of
in-capture distortions. This dataset is publicly available at
IEEE DataPort.1 It contains 4476 videos recorded at three
outdoor and four indoor locations, containing a variety of
activities as shown in Figures 1, 2, and 3. Written informed
consent was obtained from all participants.

1https://ieee-dataport.org/open-access/authentically-distorted-
surveillance-videos-dataset
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FIGURE 1. Indoor locations.

Table 1 shows the number of videos grouped according
to condition, location, and activity. AD-SVD contains the
activities listed below [57]:
• Fighting in Group (FG): 3 or 4 people fighting each
other.

• Leaving Package in a Public Place (LPP): A person
leaving a suspicious package in a public place.

• Passing Out (PO): A person who faints.
• Person Pushing Person (PPP): A person is pushing
another person.

• Person Running (PR): A person is running in a closed
loop.

• Prowl (PW): A person makes suspicious movements in
search of something or someone.

• Robbery with Knife (RK): Simulation of robbery with
a knife where a person assaults another person.

• Walking (WL): A person is walking in a closed loop.
Several datasets are currently used to evaluate the VOT

algorithms. Figure 4 summarizes the characteristics of 11 of
the most commonly used video datasets. At the same time,
Table 2 presents the average number of video frames and the
number of videos per dataset. LaSOT [63], VOT2020-LT [2]
and UAV20L [60] are used for long-term tracking (LTT)
evaluation. By contrast, AD-SVD was created for short-
term tracker (STT) assessment. AD-SVD and LaSOT [63]
stand out among the other benchmarks for their number of
videos and frames. To the best of our knowledge, AD-SVD
is the largest, densely annotated, and authentically distorted
video object tracking benchmark for STT. Even though recent
works on benchmarking of thermal VOT algorithms have
been proposed in [67]–[69] that address challenges such as
real-world scenarios along with deformable and blurry tar-
gets, in this work we focus on authentically distorted visible
light surveillance videos.

A. BOUNDING BOX ANNOTATIONS
In AD-SVD, each video has an associated .txt file contain-
ing per frame annotations. The notation used is [x, y,w, h],

FIGURE 2. Outdoor locations.

FIGURE 3. Activities recorded in AD-SVD dataset.

where x and y are the coordinates of the upper-left corner
of the rectangle (Bounding Box), w is the width and h is its
height. The labeling process relies on theDarkLabel tool [70]
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TABLE 1. AD-SVD specifications: number of videos per condition,
scenario, and activity.

FIGURE 4. VOT benchmarks with high quality dense (per frame)
annotations, including VOT-2014 [58], VOT-2020ST [2], VOT-2020LT [2],
OTB50 [59], OTB100 [59], UAV20L [60], UAV123 [60], TC128 [61],
NUS-PRO [62], LaSOT [63], VQUAD [64], TrackingNet [65], Got-10k [66] and
AD-SVD. The circle diameter is proportional to the number of frames in a
benchmark. The proposed AD-SVD has a higher number of videos than
the other VOT datasets, except by TrackingNet and Got-10K.

annotating every five frames. An interpolator algorithm was
used to obtain all the labels for each frame in the video,
based on those five-frames annotations. Since AD-SVD eval-
uates STT algorithms, the region of interest (ROI) is present
throughout the entire sequence, and each frame is labeled.

B. AUTHENTIC VIDEO DISTORTIONS
The authentic distortions affecting the recorded videos are
defocus aberration (Defocus), over-exposure, sub-exposure
(Exposure), and a combination of Defocus and Exposure,

TABLE 2. Tracking benchmarks summary.

hereafter referred to as Defocus+Exposure. We selected
these authentic impairments because they allow us to analyze
different distortion levels (which is more difficult with other
impairments such as color or artifacts). Figures 5, 6 and 7
illustrate distortions at three levels. We exported distorted
videos (according to the compression standard H.264) into
three different qualities: 100%, 75%, and 50%. Each distor-
tion is categorized as low (1), medium (2), or high (3).

Since the configuration of the distortion levels in the
four video cameras is not identical, and there are differ-
ent brands and models, we used the No-Reference Video
Quality Assessment (VQA) metric V-BLIINDS [71] to test
the consistency of the parameter settings of the cameras
used to record the AD-SVD videos. Figure 8 shows the
box plots of V-BLIINDS values on the AD-SVD and the
VOT 2018 datasets. We randomly selected 892 videos
(20% of the total number of videos 4476) in the AD-SVD
dataset to carry out this analysis. We chose this reduced set
because V-BLIINDS is computationally expensive. Defocus,
Exposure, and Defocus+Exposure distortions and pristine
videos were represented by 283, 292, 284, and 33 videos,
respectively. The higher the V-BLIINDS values, the worse
the perceptual visual quality of the video. We observe that
perceptual quality decreases (V-BLIINDS scores increase) in
the following order: pristine, Exposure, defocus, and com-
bined Exposure, and defocus distortions, as expected. Videos
affected by exposure distortions exhibit more considerable
variability in V-BLIINDS scores for AD-SVD. By contrast,
V-BLIINDS [71] scores of videos affected by defocus and
commingled defocus and exposure impairments show minor
variance.

C. BENCHMARKING OF VIDEO OBJECT TRACKERS
Despite the plethora of competitive VOT methods presented
in contests such as VOT 2017 [72] and 2018 [4], there is a
lack of detailed studies analyzing performance on videos with
authentic in-capture and post-capture distortions. To conduct
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FIGURE 5. Examples of frames with different exposure levels.

FIGURE 6. Defocus levels.

FIGURE 7. Defocus+Exposure levels.

FIGURE 8. V-BLIINDS distributions on AD-SVD and VOT 2018 datasets, where the V-BLIINDS score is inversely proportional to
the video quality.

this study, we selected 10 of the best algorithms (fast trackers
with publicly available source code) of the VOT short-term
challenge: three taken from the 2017 contest, seven selected

from the 2018 contest, and one additional tracker scale
DL-SSVM [73]. Table 3 describes the algorithms chosen
along with the VOT ranking and features.
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TABLE 3. Evaluated trackers.

The proposed AD-SVD dataset is unique because it
contains authentic in-capture and post-capture distortions
in controlled levels in videos with surveillance activities.
Figure 9 shows the performance of seven state-of-the-
art trackers (LADCF [77], MFT [78], DeepSTRCF [5],
CPT [79], DLST [81], RCO [4], and SRCT [80]) in 8 selected
videos, at the original scale, in the AD-SVD dataset.

We measured the performance of the 11 trackers in the
AD-SVD using the success rate, defined as the percentage of
frames with an overlap greater than θi, where θi is the overlap
threshold. The success rate for different values of θ is called
the success plot as shown in Figure 10
The area under the curve (AUC) (i.e., area under the

success plot) of each tracker allows us to understand the
algorithm attaining a higher percentage of successful matches
(Overlap > θi) as the threshold increases. The higher the
AUC, the more accurate the video tracker. Table 4 organizes
the trackers according to their AUCs. In line with the AUC
of each algorithm, the SRCT [80] tracker achieved the best
performance, while the Scale DLSSVM [73] tracker yielded
the worst performance. The winners of both contests (VOT
2017 [72] and VOT 2018 [4]) did not perform as well as
the trackers with lower ranks. These results demonstrate the
impact of authentic distortions on VOT performance. The
best-performing tracker in AD-SVD (SRCT [80]) uses a
combination of Salient Region-Based (SRB) and Efficient
Convolution Operators (ECO [38]) techniques, which have
also been the basis of other state-of-the-art video trackers.

High-ranked VOT algorithms in the VOT 2018 and
2017 challenges such as LADCF [77], MFT [78], and
CFWCR [74] are based on discriminative correlation filters.
These algorithms do not outperform the others in AD-SVD.
Their feature representation relies on hand-crafted (HOG and
color features) and deep features extracted from shallow lay-
ers such as conv-3 in VGG network that provide spatial infor-
mation instead of semantic information. By contrast, SRCT,
MCCT, and CPT_fast ranked high in AD-SVD but relied on

2CNN: Convolutional Neural Network. ECO: Efficient Convolution
Operators. DCF: Discriminative Correlation Filters. HOG: Histogram of
Oriented Gradients. SRB: Salient Region Based. VGG: Visual Geometry
Group. MSE: Multi-Scale Estimation. LK: Linear Kernels.

salient-regionmodeling and discriminative correlation filters.
Nonetheless, their feature representation is based on an object
shape model or deeper layers (conv-3 VGG) encoding richer
semantic features than shallower layers. We hypothesize that
deep convolutional features and hand-crafted features rep-
resenting object semantic traits properly encode a valuable
representation, making VOT algorithms more robust with
respect to authentic video distortions.

TABLE 4. Evaluated trackers in AD-SVD: AUC.

The metrics robustness and accuracy are used to evalu-
ate tracker performance per distortion. Robustness R is the
number of times the tracker failed and had to be reinitialized.
A video tracker fails (and a reinitialization is triggered) when
the overlapφi (Eq. 1) drops to 0.AGt andATt are the areas of the
ground truth and detected target, respectively. The failure rate
Fk increases with each reinitialization. R is the probability
that the tracker will still successfully track the object up to
the S frames from the last failure. Once the complete video
sequence is evaluated, R (Eq. 2) is calculated, assuming a
uniform failure distribution that does not depend on previous
failures [82]. Accuracy A in Eq. 3 is the average overlap over
all the frames in a video sequence [4], [82], where the number
of frames is Nframes.

φ =
|AGt ∩ A

T
t |

|AGt ∪ A
T
t |

(1)

Rk = e
( −SFkNframes

)
(2)

A =
1

Nframes

Nframes∑
i=1

φi (3)

Table 5 presents the most accurate and robust trackers for
the distortion. Concerning robustness, trackers CPTfast [79]
and CPT [79] exhibited an outstanding performance. On the
other hand, the most accurate trackers were DeepSTRCF [5],
MCCT [76], SRCT [80], and CPTfast [79]. Table 5 shows
that the deep feature-based models, DeepSTRCF and Gnet,
are accurate and robust when used to track objects in the
pristine videos of the AD-SVD dataset. Furthermore, the
most accurate tracker under defocus and defocus+exposure
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FIGURE 9. Qualitative comparison. The first column shows the target’s initial position (ground-truth), and the other columns show the tracking results for
seven trackers. These videos are chosen from AD-SVD dataset, which are 0274Pri, 0314Fo, 0302Exp, 0350ExFo, 1113Pri, 1149Fo, 1137Exp, 1185ExFo
(Indoor - Outdoor) from top to bottom. The frame number is displayed in the top left corner.

distortion is SRCT, and the most robust tracker is CPT_fast
with respect to all distortions. SRCT hinges on a probabilis-
tic color and shape model to discriminate the target region
from the background. Since the defocus distortion does not

induce abrupt changes in either shape or color, SRCT handles
this distortion properly but might be vulnerable to varia-
tions of illumination conditions presented in videos impaired
by exposure distortions [83]. The feature representation of
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FIGURE 10. Success plot for each tracker after evaluating in the AD-SVD. Tracker:AUC.

CPT_fast relies on a dynamic channel number for selected
convolutional layers. Hence, channel pruning tracker (CPT)
via channel pruned model and feature maps use more deep
convolutional layers with rich semantic features, making it
suitable for object tracking in authentically distorted video
sequences.

TABLE 5. Best performing trackers for each considered distortion.

III. VIDEO TRACKER PERFORMANCE PREDICTION IN
AUTHENTICALLY DISTORTED VIDEOS
Visual tracking is a very active area in the Computer Vision
field. Choosing a tracker for a particular application is chal-
lenging, given the high number of competitive algorithms
published each year [82]. To facilitate comparisons across
different approaches, we designed a model-agnostic (inde-
pendent of the tracker model [84]) framework that predicts
performance without running the corresponding tracking
algorithm. To this end, we learn a mapping [23] between the
input video and the area under the curve (AUC) of the success
plot. This process is carried out in two stages, as shown in
Figure 11: i) extraction of a fixed-size set of features, and
ii) AUC estimation using a support vector machine regression
model.

FIGURE 11. Performance prediction framework.

A. FEATURE EXTRACTION
C3D [85] spatio-temporal features extracted from the action
recognition task in authentically distorted sports videos have
shown useful representation abilities in tasks such as action
recognition [86], action similarity labeling, scene classifica-
tion, and object recognition [85]. C3D Network was trained
using the Sports-1M dataset [87], which comprises more
than 1 million YouTube videos belonging to 487 classes.
Similarly, other studies have demonstrated that a CNN trained
for object and video recognition could be useful in deter-
mining human perceptual characteristics [86], [88]–[90].
We believe that C3D low-level spatio-temporal features
help learn perceptual quality features and predict VOT
performance in authentically distorted surveillance videos.
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Therefore, we represent a video V ∈ Rh×w×n with n frames
(h× w size) by the feature vector x ∈ Rd .We obtain this fea-
ture vector by averaging the deep convolutional 3-D (C3D)
features [85] such that:

x =
1
n

∑
n

C3D(V ).

In our experiments, we computed 4096 C3D features
extracted from the sixth fully connected (fc6) layer, as is
shown in Figure 12.We found better performance when using
the corresponding 1024 principal components projections
with a retained variance of 99%.

B. SUPPORT VECTOR MACHINE REGRESSION MODEL
Our regression task consists of estimating the AUC zi ∈
R from a feature representation of the i-th video sequence
xi ∈ Rd . For this purpose, we trained a support vector
machine regression (SVR)model using the formulation intro-
duced in [91]:

min
α,α∗

f (α, α∗) =
1
2
(α − α∗)TK (α − α∗)

+ ε

l∑
i=1

(αi + α∗i )+
l∑
i=1

zi(αi − α∗i )

subject to
l∑
i=1

(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C, i = 1, . . . , l,

where α and α∗ are learned weights, C is an upper bound,
and K (xi, xj) is a Gaussian radial basis function defined by

exp( ||xi−xj||
2

2σ 2
) . To predict the new values, we used

ŷ =
N∑
i=1

(αi − α∗i )K (xi, x)+ b

where ŷ is the estimated AUC performance and b is a bias
term. We set the hyperparameter C = 50 as the one that per-
forms the best in a search in {0.01, 0.1, 0.5, 0, 10, 50, 100}.

IV. VIDEO TRACKER EXECUTION TIME REDUCTION
Video storage and speed demands for video surveillance
applications are challenging. For instance, the storage of
videos acquired by surveillance cameras may require tens
of gigabytes per day. This storage demand can be alleviated
by applying compression techniques. Compression can be
obtained by increasing the quantization factor, changing the
frame rate, or decreasing the frame resolution [92]. Because
these compression alternatives can reduce not only the video
quality perceived by a user but also the performance of
analysis algorithms such as VOT [27], [93], it is essential to
monitor and predict these performance changes. This section
focuses on developing a framework to reduce video tracker
computation resources (such as time and disk space required

for storage). This is achieved by predicting the VOT per-
formance on authentically distorted surveillance videos to
determine the optimal frame resolution scale for process-
ing the video. This optimal scale reduces the video storage
demands and execution time of the video tracker, preserving
its performance.

As the experiments presented in Section V show, a reduc-
tion in the spatial resolution of the videos typically implies
a reduction in the performance of a tracker. However, the
performance loss (pl) depends on the tracker, video, and
spatial resolution reduction. We proposed a predictor of the
performance loss of a tracker defined as

plstv = p1tv − pstv,

where s is the resolution reduction scale, t represents one of
the trackers, v is one of the videos of the dataset, and pstv
is the AUC obtained from the tracker t in the video v in the
scale s. p1tv is the AUC obtained at the original resolution
of the video. Suppose pl is known before using the tracker.
In that case, it is possible to decide whether the tracker should
be used on the original video or a compressed version, with a
controlled loss in performance but with a gain in processing
time. The decision criterion is the threshold for pl. Figure 13
illustrates this process.

Similar to Section III, we chose an SVR as our model
type and we used the C3D features to train the models.
We followed the ensemble model approach in which 10 SVR
models were trained and they differed in the hyperparameter
and training set used. The final prediction was the average
value of the 10 estimates. The hyperparameters were selected
based on the performance results of themodels on a validation
set. We explored two different types of kernel functions:

K1(xi, xj) = exp( ||xi−xj||
2

2σ 2
) and K2(xi, xj) = (<xi,xj>

2σ 2
)d with

d ∈ {1, 2, 3, 4, 5}. We varied the hyperparameter C with
the values in {0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}.
For each different scale and tracker we trained a different
predictor.

V. EXPERIMENTS
A. VOT AUC PREDICTION ON THE AD-SVD DATASET
Tables 6 to 12 tabulate the Spearman-Rank Correlation
Coefficient (SRCC), Pearson Linear Correlation Coefficient
(PLCC), and the Root Mean Squared Error (RMSE) cal-
culated between the predicted ŷ AUC performance and the
actual value y obtained after applying each tracker on a given
test set in the seven locations listed in Table 1 (blue/red indi-
cate the best/worst performance, respectively). We changed
the size of the test set in such a way that the training set
contains 75%, 25%, 5% and 0%, of the videos recorded in a
given outdoor-indoor location as shown in Figures 1 and 2.
When the set size represented in training set increased,
the prediction of the AUC became more accurate. For
instance, the correlations (PLCC, SRCC) of GNet in Theater
location (Table 6) were (0.9034,0.8584), (0.7216,0.7279),
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FIGURE 12. C3D architecture [85].

FIGURE 13. Framework for time reduction - thr represents the threshold
for maximum performance loss that the system will allow.

(0.4837,0.4467), and (0.1763,0.1547) for 75%, 25%, 5% and
0% distribution mixes, respectively. DeepSTRCF exhibited
acceptable performance in most cases, outperforming the
others in Tables 7, 8, 10, and 11. Moreover, the performance
of all trackers on the Parking Lot 2 location was low, even
when the set size was 75%. This location represents a chal-
lenge because of the limited number of videos available for
this scenario (41 videos as shown in Table 1).
As an alternative to the C3D features, we used a Two-Level

Video Quality Model (TLVQM) based representation [94],
but the AUC prediction was unsuccessful. TLVQM is a fea-
ture encoder that extracts so-called low complexity features
(computed on the whole sequence) and high complexity fea-
tures (calculated on a subset of representative frames). These
results confirm our hypothesis that deep convolutional 3D
features properly encode a valuable representation that can be
used to predict VOT performance on authentically distorted
videos.

B. FRAME SPATIAL RESOLUTION AND TIME REDUCTION
Figure 14 depicts the performance of the trackers when the
spatial resolution of each frame in the video was reduced to

1/2, 1/4, 1/10, 1/16, and 1/20 of the original resolution. For
these experiments, 1385 videos from AD-SVD were selected
such that they had 30 fps. Video trackers Alpha-Refine [95],
SiamRPN++ [42],MFT [78], TFCR [96], LADCF [77], self-
SDCT [15], and TransT [16] were selected, because they have
been recently proposed and deliver state-of-the-art perfor-
mance at the original video resolutions. The results indicate
that Alpha-Refine achieved the best performance on all the
spatial scales tested.

We executed VOT algorithms in different computer envi-
ronments. The experiments of LADCF (implemented in
MATLAB), SiamRPN++, TransT, and Alpha-Refine track-
ers were implemented in a computer with the following
specifications: processor Intel I7-8750H, 64 GB DDR4-2666
RAM, SSD disk of 512 GB M2, GPU NVIDIA Geforce
GTX 1060 with 6GBmemory, OSUbuntu 18.04 LTS (Alpha-
Refine) and Windows 10 OS (LADCF, SiamRPN++). MFT
and self-SDCT experiments were conducted on a computer
with the following specifications: Processor Intel I7-8700K,
40 GB DDR4-2666 RAM, SSD disk of 2 TB, GPU NVIDIA
Geforce Titan XP with 12 GB memory, OS Ubuntu 18.04
LTS. TFCR experiments were carried out on the Frontera
Computing System at UT Austin, the 13th most powerful
supercomputer globally. The specifications for the usedMav-
erick node in Frontera are two (2) Processors Xeon(R) Plat-
inum 8160 CPU @ 2.10GHz with 24 cores, RAM 192 GB,
and two (2) Nvidia Tesla P100 16 GB GPUs.

Figure 15 shows themedian time required by the trackers to
process the video. These results indicate that TFCR andMFT
need more time and have lower performance than Alpha-
Refine [95] and TransT [16]. The average time required
to calculate C3D Features measured in the computer with
the Intel I7-8700K processor for a 1920 × 1080 frame
is 0.0048 seconds. Therefore, 2.1793 seconds are required
to calculate C3D features for all the 451 frames of one
video from AD-SVD. These times include a post-processing
stage, using MATLAB, to generate the matrix containing
the features for the whole video. The video set used to
measure processing time comprises a subset of 140 videos,
processed serially to guarantee that the computer/node used
did not execute other demanding tasks simultaneously. Once
the C3D features have been calculated, the median time
needed to predict the AUC is 15 ± 4.4 ms. We measured
this median time from the execution of models which used
C3D features and predicted the performance of trackers if the
resolution of the videos were reduced to 1/10 of their original
resolution.
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FIGURE 14. Tracker performance with spatial scale variation. The original resolution of the videos was reduced at 1/2, 1/4, 1/10, 1/16, 1/20 of the
original resolution.

TABLE 6. Theater location.

To train and obtain predictions for the performance
loss, we used a 10-fold cross-validation approach. For the

training, we used, as software tools, Python version 3.7.9
with the library scikit-learn version 0.24.1 [97]. For each
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TABLE 7. Parking Lot 2 location.

TABLE 8. Parking Lot 1 Location.

FIGURE 15. Median time (seconds) required by the trackers to process a
video with 450 frames of AD-SVD.

of the 10 test sets, the remaining videos were used to
build the training and validation sets. The selection of the
ten training and validation sets for each test was carried
out randomly. We used 139 videos for testing, 208 videos
for validation, and 1038 videos for training, which corre-
sponds to 10%, 15%, and 75% of the entire set of videos,
respectively.

Figures 16 and 17 depict the results of the framework
illustrated in Figure 13 with different values for the threshold.
Figure 16d shows that SiamRPN++ tracker [42] dropped
0.025 in performance on a 1/4 scale while achieving a 34%
time reduction in the total processing time. Figure 17d shows
that the TFCR tracker [96] achieves a 65% time reduction
with only 0.03 in performance loss measured by the median
AUC. Nonetheless, it is important to consider that the median
performance of SiamRPN++ changed from 0.75 to 0.725
at 1/4 spatial scale, which is still high performance. Mean-
while, at the spatial scale of 1/4 (Figure 17d), the TFCR
changed from 0.66 to 0.62, which is comparable to the per-
formance achieved by SiamRPN++ at the spatial scale of
1/10 (Figure 16e). TFCR achieves the largest improvement
in time reduction with 80% and 84% at spatial scales of
1/10 (Figure 17e) and 1/16 (Figure 17f), respectively. These
results can also be perceived from the drop in the median
time required per video by TFCR, as depicted in Figure 15.
However, the performance drop of the TFCR is 0.16 and 0.31,
at spatial scales of 1/10 and 1/16, respectively. In general,
the best results were obtained on scales 1/4 and 1/10 due
to the requirements imposed by video tracker algorithms on
input video resolution. A scale smaller than 1/4 or 1/10,
depending on the tracker, does not imply a larger reduction
in the median time needed per video. Hence, there may be a
reduction in VOT performance but not in the time required
for VOT algorithm execution.
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FIGURE 16. Time reduction vs performance loss.

TABLE 9. Media room location.

Figure 18 shows the results of the proposed framework on
two of the trackers presented in Tables 3, 4, and Figure 10.
Figure 18a depicts the results for the LADCF tracker with

the performance loss threshold of 0.11. Figure 18b depicts
the results for the MFT tracker with the performance loss
threshold of 0.16. We selected a scale of 1/10 of the original
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FIGURE 17. Time reduction vs performance loss.

resolution for these demonstrations. The proposed framework
allows to obtain performances similar to those observed at
the original resolution and reduces the execution time and
memory requirements for video storage.

We performed an additional test on the VOT-2020 Short
Term Dataset [2] on the proposed method to reduce the
scale and preserve the VOT algorithms performance.We used

58 videos of the VOT dataset, with spatial resolutions ranging
from 640 × 480 to 1920 × 1080 (lower than the Full HD
resolution of all videos in the AD-SVD dataset). These videos
contain different scenes and objects’ sizes.We concluded that
the video resolution in the original scale and the bounding
box’s size significantly impact the proposed method’s perfor-
mance. In some cases, it was not possible to obtain results in
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FIGURE 18. Success plots of the proposed framework on trackers LADCF and MFT. Scale:AUC.

TABLE 10. Industrial Lab location.

TABLE 11. Guayacanes Hall location.

small scales such as 1/20 due to the small area of the bounding
box (smaller than 20 pixels in width or height). In conclusion,
the improvements of our proposed approach are more evident
in high-resolution videos (e.g., 1920 × 1080).
As an exploratory experiment, we applied the DLSSVM

tracker on 1000 videos at different temporal scales: 1, 1/2,
1/5, 1/10, 1/20, 1/30, and 1/40. 1/n denotes the proportion
of frames with respect to the original video length. Figure 19

shows that the performance did not decrease even when using
the 1/10 scale. This would enable us to speed up the process
ten times, given that the time reduction is directly propor-
tional to the scale. Thus, temporal downscaling can reduce
the computational cost and storage requirements, which is an
advantage in video surveillance. However, further research is
needed to expand and test these preliminary findings on other
state-of-the-art trackers.
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TABLE 12. Electronics Lab location.

FIGURE 19. Temporal resolution analysis: AUC performance at different
temporal scales.

VI. CONCLUSION
This study introduced the AD-SVD dataset, which mod-
els three levels of severity of in-capture distortions: expo-
sure, lack of focus (defocus), and a combination of these
impairments. AD-SVD is the largest, densely annotated, and
authentically distorted video object tracking benchmark for
STT. We also proposed and tested a performance prediction
approach for single object tracking of authentically distorted
surveillance videos. With a high level of accuracy, this frame-
work predicts the performance of a VOT algorithm on several
outdoor and indoor locations, different visual contents, and
under diverse types and levels of authentic distortion. Fur-
thermore, this framework reduces video tracker computation
resources, such as time and disk space required for storage,
by predicting VOT algorithm performance to determine the
optimal spatial scale to process a video.

In addition, we carried out experiments to explore the
effects on VOT performance by reducing the number of
frames processed by a VOT algorithm. The proposedmethod-
ology preserves the VOT algorithm performance in these
experiments for different frame rate reductions. These reduc-
tions were up to 1/10 of the original time resolution for a
subset of 1000 videos extracted from AD-SVD, which con-
tain various distortions and visual contents. Further studies
to determine the usefulness of frame reduction in VOT might
validate these encouraging results by incorporating more
tracking algorithms and data scenes.

We also proposed and tested a performance prediction
approach for single object tracking of authentically distorted

surveillance videos. This framework predicts the perfor-
mance of a VOT algorithm, with a high level of accuracy,
on several outdoor and indoor locations, different visual
contents, and under diverse types and levels of authentic
impairments and spatial downsampling. To incorporate this
tracking prediction framework, the VOT system must allow
the offline processing of the original video that feeds the
prediction model and select the optimal downsampling scale
(that balances out accuracy and computational time).

We tested our proposed approach for video object
tracker (VOT) algorithm prediction and video tracker execu-
tion time reduction under a wide variety of conditions. For
instance, in three intensity levels of authentic distortions such
as over and under exposure along with defocus and com-
binations of these impairments. Moreover, these distortions
impair videos captured in three indoor and three outdoor
scenarios with six actors playing more than eight activities.
In addition, we tested the robustness of sixteen VOT algo-
rithms on these authentically distorted videos. We propose,
as future work, new analysis and results with respect to
additional VOT conditions such as occlusion and clutter.
These could provide a clearer understanding of the complex
interactions between perceptual and machine vision quality.
Indeed, we performed an additional test on the VOT-2020
Short Term Dataset on the proposed method to reduce the
scale and preserve the VOT algorithms performance.We used
58 videos from the VOT dataset, with spatial resolutions
ranging from 640 × 480 to 1920 × 1080 (lower than the
Full HD resolution of all videos in the AD-SVD dataset).
These videos contain different scenes and objects’ sizes.
We concluded that the video resolution in the original scale
and the bounding box’s size significantly impact the proposed
method’s performance. In some cases, it was not possible
to obtain results in small scales such as 1/20 due to the
small area of the bounding box (smaller than 20 pixels in
width or height). In conclusion, the improvements of our
proposed approach aremore evident in high-resolution videos
(1920 × 1080).
Incorporating the proposed tracking prediction tool

requires the video to be available offline. However, this
framework could be helpful on real-time VOT if the optimal
scale is estimated in one of the earliest video chunks. Surveil-
lance videos are commonly recorded at 5 FPS and below
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to reduce the storage requirements. Therefore, low-frame-
rate videos are common, as large-scale camera networks
cannot stream and store high-frame-rate videos gathered by
thousands of cameras. Instead, cameras are often configured
to send one frame every second or so over the network [98].
For this reason, a study that can reduce the FPS at which
the trackers work without reducing performance would be
beneficial in this type of application. Nonetheless, reducing
the standard frame rate increases the possibility of missing
important information from the original video sequence. For
instance, if an object appears in three frames within a second
when the frame rate is 25 FPS, the reduction to one FPS will
result in a significant decrease in the probability of finding
this object in one selected frame [99]. Hence, further research
is needed to expand and test these preliminary findings
on other state-of-the-art trackers on surveillance activities
videos.

APPENDIX A
TRACKERS FOR SPATIAL SCALE ANALYSIS

1) TFCR [96]: Target-Focusing Convolutional Regres-
sion: This tracker is based on a model that uses a
target-focusing loss function to alleviate the influence
of background noise on the response map, reducing
the effects of the negative samples that act on the
object appearance model. TFCR uses a target-focused
regression model to train the convolutional neural net-
work (VGGNet [100]), which pays more attention to
the target sample and reduces the influence of the
background samples on the target appearance model.
TFCR extracts search patches at different scales with
the exact central location and feeds them into the
feature extractor to resolve scale-related challenges.
Subsequently,the optimal scale factor was selected by
searching for the maximum value in the prediction
maps.

2) Alpha-Refine [95]: Alpha-Refine was the winner of
the VOT2020 Real-Time Challenge with an EAO of
0.499. It is a module implemented in Pytorch [101],
which refines the base tracker outputs and improves
the tracking performance. This module consists of a
pixel-wise correlation, a corner prediction head, and
an auxiliary mask head (which can be deactivated
at the inference stage to improve speed), introducing
pixel-level supervision into the training as the core
components. The Alpha-Refine modules were trained
for 40 epochs and 500 iterations, each on eight NVIDIA
2080Ti GPUs. This module introduces additional com-
putational loads of approximately 5-6 ms per frame.
The Alpha-Refine module was tested on six track-
ers [38], [42], [44], [102], [103], trained on some
segmentation datasets, and tested on multiple tracking
benchmarks [2], [63], [65], [66], increasing up to 7.4%
of the AUC of the original baseline tracker. In our
experiments, we used SiamRPN++ [42] as the base
tracker for the Alpha-Refine module.

3) SiamRPN++ [42]: SiamRPN++ is a tracker trained
with a ResNet-driven deep Siamese network (> 20 lay-
ers), using a layer-wise feature aggregation structure
for the cross-correlation operation. This network is
pre-trained on ImageNet [104], trained with other
sets [105], [106], and tested on tracking datasets [4],
[59], [60]. SiamRPN++ replaces cross-correlation
with depthwise correlation, reducing the computa-
tional cost and memory usage. SiamRPN++ operates
at 35 Frames per Second (FPS), but it can be increased
to 70 FPS using the MobileNet [107] backbone.
SiamRPN++ had a 0.414 EAO score on VOT2018,
which was 4.0% higher than that of the single-layer
baseline.

4) MFT [78]: MFT was the winner of the VOT2018 chal-
lenge [4]. MFT, implemented on MATLAB, consists
of hierarchical feature selection, independent group
CF online learning, adaptive multi-branch CF fusion
and a motion estimation module (which alleviates
the problem of fast motion). This tracker uses multi-
hierarchical deep features (ResNet [108] before ReLU,
reduced by PCA-256) with different semantic informa-
tion to track multi-scale objects. The motion estima-
tion module (which improves the robustness to motion
blur), based on Kalman filters, generates a Gaussian
motion map. Then, hierarchical features from differ-
ent layers are extracted by a ResNet and multiplied
by the Gaussian motion map. These deep features are
independently fed into different CFs to update the
parameters, using weights to give attention to different
channels. Finally, an adaptive weight scheme is uti-
lized to generate a final score map to locate the target.
This tracker benefits from online learning to adapt to
appearance changes and to scale variances, but with the
detriment of being computationally demanding.

5) LADCF [77]: LADCF (MATLAB implemented) con-
structs an appearance model using adaptive spatial
feature selection (by lasso regularization) and tem-
poral consistency-preserving spatial feature selection.
LADCF uses hand-crafted (HOG, Colour-Names) and
deep features of the middle convolutional layers (VGG
network) as spatial features. LADCF can simultane-
ously activate specific spatial features corresponding to
the target and background regions to form a robust pat-
tern. It should be noted that only the relevant features
are activated for each training sample, forming a low-
dimensional feature representation. Finally, LADCF
learns discriminative filters in the frequency domain
(FFT transformed) using an augmented Lagrangian
method, which is used to iteratively optimize the vari-
ables (using ADMM [109]).

6) Self-SDCT [15]: Self-SDCT (MATLAB implemented)
is a multi-cycle consistency loss based self-supervised
learning-based tracker embedded in a deep correlation
framework. This scheme copes with the issue of requir-
ing numerous manually annotated samples for training.
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In addition, Self-DCT enriches the representational
ability to reduce the overfitting risk by using a low sim-
ilarity dropout and a cycle trajectory consistency loss
to pre-train the feature extraction network jointly. Self-
DCT generates pseudo-labels of these training sam-
ples by using a forward-backward prediction under a
Siamese correlation based tracking framework. Finally,
the Siamese correlation-based tracking architecture
provides the basis for real-time tracking.

7) TransT [16]: TransT relies on a novel attention-based
feature fusion network, which integrates the template
and search region features by using attention. TransT
consists of three components: the siamese like feature
extraction backbone (ResNet50), the designed feature
fusion network, and the prediction head. The attention
mechanism creates long distance feature associations,
making the tracker adaptively focus on useful and
abundant semantic information. Several experiments
show that TransT performs significantly better than the
state-of-the-art algorithms while running at a real-time
speed. Indeed, TransTM (a variation of TransT) was
the top performer and the winner of the VOT-RT2021,
while TransTM ranked in the top ten trackers in this
contest.
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