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ABSTRACT The battery system is one of the core technologies of the new energy electric vehicle, so the
frequent occurrence of safety accidents seriously limits the large-scale promotion and application. An inno-
vative extreme learning machine optimized by genetic algorithm (GA-ELM)-based method is proposed to
estimate the current system status, which improves the accuracy and timeliness of fault identification. It is
feasible in the application of electric vehicles. To ensure the effectiveness of the signal, the proposed method
is adopted using the simple mean filter to clean the data with eliminate wrong points. After the variance
analysis, covariance, a horizontal variance of the filtered data, a modified feature parameters matrix is
presented. The dimension is reduced by principal component analysis to improve the engineering application
ability. Furthermore, a comprehensive GA-ELM-based identification method is proposed to reduce the
resulting identification error of extreme learning machines due to the initial value change. More importantly,
the sensitivity and accuracy of different solutions are compared and verified, which shows the technique has
great potential in battery fault diagnosis based on the voltage signal.

INDEX TERMS Lithium-ion battery, fault diagnosis, extreme learning machines, feature parameters.

I. INTRODUCTION
With the improvement of human living environment require-
ments, countries worldwide have paid great attention to the
deterioration of the global environment and climate warming.
The zero-emission electric vehicle industry has become an
essential field of competition and development among coun-
tries, and battery-driven electric vehicles and hybrid electric
vehicles have entered a period of rapid evolution [1]–[4].
As the energy storage carrier of electric cars, battery safety,
and reliability significantly affect the performance of elec-
tric vehicles [5]. Compared with other batteries, lithium-ion
power battery has been widely used in the electric vehicle
industry due to the advantages of wide working temperature
range, high energy density, high power density, and low
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self-discharge rate [6]. However, many electric vehicle fire
incidents have been caused mainly by battery failure [7]–[9].
The batteries themselves are a highly complex system
with interdependent features. A feasible solution is urgently
needed to achieve the reliable classification of characteristic
battery parameters [10] to diagnose battery faults accurately.
Batteries are primarily in complex turbulence, vibration, and
impact conditions. Lithium batteries may have a virtual con-
nection and short circuits without detecting and diagnosing
their fault state, resulting in hidden safety risks [11]. There-
fore, good fault detection and management system in engi-
neering applications are essential [12]–[14]. BatteryManage-
ment System (BMS) usually collects relevant data informa-
tion for the battery system through sensors and then carries
out state identification and fault diagnosis [15]–[17].

The BMS is critical in the whole operation of electric
vehicles, which can respond to any battery fault with the
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fastest speed, determine the fault location and cause, and
give reasonable treatment methods [18]. Failures that the
BMS cannot detect cause safety problems in electric vehicles.
Common battery faults can be divided into four categories:
overcharging [19], excessive discharge [20], internal short
circuits [21], and external connection faults [22]. Excessive
charge and discharge, internal short courses, or connection
failure can lead to abnormal voltage fluctuations and over-
heating. Excessive charge and discharge can be avoided by
monitoring parameters such as voltage, while external con-
nection faults are the most serious, which will lead to a sharp
rise in battery temperature and induce thermal runaway [23].
Many scholars put forward two methods based on tempera-
ture and voltage to avoid related faults according to different
battery faults.

Because of the closed structure of the lithium battery, the
internal temperature changes with the operation of the lithium
battery. The research shows that the battery short circuit
fault is crucial for thermal runaway and ignition. The early
detection of the battery short circuit has become an essential
task of batterymanagement.When the temperature difference
between individual cells increases by 5◦, the battery capacity
will decrease by 1.5-2%. The uneven temperature will also
reduce the accuracy of battery pack fault diagnosis [24]. The
temperature sensor is generally uniformly arranged on the
surface of the battery based on the temperature method.
The battery operation can be analyzed in real-time according
to the collected temperature data [25]–[27]. Literature [28]
proposed that the capacity and internal resistance differences
were calculated to represent the abnormality of capacity and
temperature by combining temperature and voltage parame-
ters. In Literature [29], thermal power generation was taken
as one of the fault indicators. The fault diagnosis of lithium
battery was carried out using the electrochemical-thermal
coupling model, which provided a new idea for the online
detection algorithm. Although the temperature measured on
the battery surface can infer the current operating state of
the battery, the temperature has the problem of lag reaction.
Other researchers compared the preset threshold value with
voltage, current, and temperature rise rate [30] to identify
the external connection faults of the battery. Because sur-
face temperature is a nonlinear system determined by power,
internal resistance, sensor position, and other influencing
factors, fault diagnosis based on temperature alone may lead
to misjudgment.

On the other hand, the battery voltage value is easier to
be accurately collected than the temperature and can bet-
ter reflect the current operating state of the lithium battery.
A particular voltage signal is organized based on the voltage
method to diagnose and locate battery faults, evaluate battery
status [31]–[33]. Xiong et al. [34] proposed to combine the
least square way and unscented Kalman filter to determine
the error between the estimated value and the actual value
of the cell SOC and identify the fault location by com-
paring with the set threshold. In reference [35], a multi-
scale thermoelectric-chemical model was adopted to detect

excessive charging-discharge faults combined with termi-
nal voltage signals generated by extended Kalman filtering.
Yang et al. [36] proposed a diagnostic algorithm based on
the first-order equivalent circuit model and random forest
algorithm combined with the root mean square error of volt-
age, which can effectively predict the electrolyte leakage
problem of lithium batteries. Liu et al. [37] proposed an
integrated learning method for battery fault diagnosis based
on Ruboost and reformulated three indicators to charac-
terize essential electrode qualities. Their test was carried
out using capacity information from lithium titanate and
lithium iron phosphate batteries. This model can deal with
the fault problem well. Yu et al. [38] proposed using the
ammeter method to correct SOC and compared and studied
the main features of various open-circuit voltage models in
an application, which provided a reference for the direc-
tion of fault diagnosis of lithium batteries based on voltage
method.

Both temperature-based and voltage-based fault diagnosis
methods are data-driven by collecting many original data
signals, extracting characteristic parameters for data analysis
to achieve the purpose of fault diagnosis. With the progress of
artificial intelligence technology, data-driven methods have
achieved rapid development [39], [40], and commonly used
techniques can be divided into traditional machine learning
and deep learning. Sbarufatti et al. [41] proposed an adaptive
fault diagnosis model based on radial basis function neural
network (RBFNN). In this method, the particle filter (PF)
is used to identify parameters, and the terminal voltage is
measured in real-time to provide fault diagnosis for a lithium
battery. The method has good accuracy. However, the data
set used in the modeling process is measured in a specific
environment, different from the data generated by the actual
vehicle operation or the data generated by a test standard of
electric vehicle operating conditions. Therefore, the appli-
cation ability of this method in actual working conditions
remains to be verified. Zhao et al. [42] introduced a fault diag-
nosis method driven by a 3σ multi-level screening strategy
and machine learning using actual vehicle operation data for
several months. This method uses a neural network to fit the
battery faults in the battery pack. It can detect and screen the
faults of the lithium battery pack according to the abnormal
terminal voltage by using the 3σ strategy. Compared with
other methods, the reliability of this model is verified, but
the reliability of this method is based on high time cost and a
large amount of data.

With improved computer computing power and data acqui-
sition channels, deep learning methods based on big data
acquisition have been widely used. Wang et al. [43] pro-
posed transforming signals into images and achieving classi-
fication and recognition of different types of faults through
an optimized convolutional neural network (CNN) model.
Compared with the traditional neural network algorithm,
the model can eliminate the complicated parameter tuning
process and diagnose the fault directly, with an accuracy
of 97%. However, the pooling layer of the convolutional
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neural network will lose a lot of valuable information, and
it is easy to ignore the overall and local relevance of data.
The sequence structure of long short-term memory (LSTM)
neural network makes it more suitable for lengthy sequence
data processing. Hong et al. [44] first used the term LSTM
neural network for fault diagnosis of the battery system.
In this paper, many actual taxi operation data are used to
conduct off-line training of LSTM recursive neural net-
work, and voltage anomalies are predicted and diagnosed
during lithium battery operation. The results show that this
method can accurately diagnose the battery power supply
fault. Although the deep learning algorithm can save the
tedious steps of feature extraction, it has high requirements
on processor hardware, the large amount of data required
for model building, and engineering practicability to be
improved.

A. MAJOR CONTENT
Through the above analysis, the main contribution of this
paper can be divided into four aspects from the perspective
of engineering application:

(1) The integrated test bench has been introduced to pro-
vide the environmental pressure of the battery system in the
electric vehicle operation.

(2) Considering data mining principles and engineering
practicability, it simply cleans the actual data and eliminates
the bad points.

(3) The modified features parameters, which only depend
on the fluctuation value of the voltage signal, are employed
as the state identification vector, which can effectively avoid
the hysteresis of the temperature signal and the difficulty of
collecting the current signal.

(4) The GA-ELM is adopted to deal with the reduced
dimension feature parameter matrix, which improves the
reliability and practicability of the synthesis algorithm. The
detailed test information is shown in Fig. 1.

The proposed method uses a genetic algorithm to opti-
mize the initial weight and threshold value of an extreme
learning machine. Compared with other traditional meth-
ods, it does not need iterative calculation, has faster oper-
ation speed, and has stronger engineering practicability.
Compared with deep learning neural networks, this method
has a short operation time, low requirements on hard-
ware, and requires less data for model building and oper-
ation, so it does not need a large amount of data for
training.

B. ORGANIZATION OF THE PAPER
In Section 2, the information about the test platform
and battery are described in detail. The technique for
a battery module in series is proposed in the third
section, and the optimization principle and the modifica-
tion process of feature quantity are explained systemati-
cally. The reliability verification of the synthesis algorithm
and the overall conclusion is summarized in the last two
sections.

II. TEST PLATFORM AND PRINCIPLES
A. COMPREHENSIVE TEST PLATFORM
The comprehensive test platform can firstly simulate the
working state of an actual vehicle and then detect and record
the processed signal of each cell in the variable loading mode,
which provides the theoretical data for the subsequent fault
identification. The platform consists of the following parts:

(1) A battery charge and discharge tester (Digtron-600) is
adopted to simulate the current loaded value according to the
varied demand output power in the electric vehicle operation.

(2) A vibration tester is introduced to load the vibration
impact on the battery pack due to the uneven road surface
and rapid acceleration or deceleration.

(3) A multi-channel information acquisition instrument
is employed to obtain real-time signal data value through
voltage sensor, temperature sensor, etc., record and save,
and provide parameters for subsequent technical processing,
as shown in Fig. 2.

The test object of this experiment is lithium-ion cells
with the capacity of 50Ah, which Tianjin Lishen battery Co,
LTD manufactures; the specific parameters are shown in the
Table. 1. The cathode material is lithium manganite, and the
negative electrode is graphite.

B. TEST PRINCIPLE
The experimental test steps in the manuscript are mainly
based on China’s automobile industry-standard’’ General
Requirement of Traction Battery Enclosure for Electric Vehi-
cles,’’ which has been detailed provisions and instructions
on the battery system design’s reliability electric vehicles.
To ensure the various experiment’s comparability, the stan-
dard determines the environmental stress values, including
frequency, sweep range, amplitude, temperature, and other
parameters in various performance tests of the battery system.
The sweep frequency range is 10 Hz ∼55 Hz, the ambient
temperature is 298 K, and the acceleration is 10 g.

III. DIAGNOSIS METHOD
A. EXTREME LEARNING MACHINE (ELM)
The extreme learning machine is an algorithm designed for a
feed-forward neural network based on the traditional neural
network [45]. However, the connection weights from the
input layer to the hidden layer and the threshold value of
the hidden layer are given manually or randomly, so only
the connection weights between the hidden layer and the
output value need to be calculated. Therefore, the time of
error iteration calculation is reduced, and the speed of fault
identification is improved, improving learning efficiency and
optimizing parameter setting.

ELM neural network structure mainly consists of an input
layer, an output layer, and a single hidden layer [46], as shown
in Fig. 3.

For Q random distinct samples (xi, Ti; i = 1,. . . , Q),
where x ∈ Rn and Y ∈Rm represent the input matrix and
output matrix of ELM, respectively, the output matrix can be
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FIGURE 1. The overall framework of data processing.
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FIGURE 2. Picture of the battery test platform.

TABLE 1. Specification of the power battery for experiment.

expressed as:

Y =
[
y1, y2, . . . , yQ

]
m×Q (1)

yj =


y1j
y2j
...

ymj



=



L∑
i=1

βi1g(ωixj + bj)

L∑
i=1

βi2g(ωixj + bj)

...
L∑
i=1

βimg(ωixj + bj)


m×L

(j = 1, 2, . . . ,Q) (2)

where:

X =
[
x1 x2 · · · xQ

]
n×Q

=


x11 x12 · · · x1Q
x21 x22 · · · x2Q
...

...

xn1 xn2 · · · xnQ


n×Q

(3)

w =
[
w1 w2 · · · wL

]T
L×n

FIGURE 3. ELM network structure diagram.

=


w11 w12 · · · w1n
w21 w22 · · · w2n
...

...

wL1 wL2 · · · wLn


L×n

(4)

b =


b1
b2
...

bl


L×1

(5)

β =
[
β1 β2 · · · βL

]T
L×m

=


β11 β12 · · · β1m
β21 β22 · · · β2m
...

...

βL1 βL2 · · · βLm


L×m

(6)

where X = [x1,x2,. . . xQ] is the input matrix, and xij is
the ith feature parameter of the jth sample, (i = 1, 2,
3. . . , n, and j = 1, 2, 3,. . . , Q); n and Q represent the
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number of feature parameters and samples, respectively;
wi = [wi1,wi2,. . . , wiL]T is the connection weight between
the ith neuron in the hidden layer and the input layer; L is
the number of neurons in the hidden layer; bi is the threshold
of the ith neuron of the single hidden layer; βi = [βi1,
βi2,. . . , βim] is the connection weight between the ith neuron
in the hidden layer and the output layer, and m represents the
number of nodes of the output layer; g is the activation func-
tion, and the sigmoid function is used in this manuscript, as
follows:

g(x) = 1/
1+ e−x (7)

Equation (2) can be rewritten as follows:

Hβ = Y T ; (8)

where the matrix H is the output weight matrix of the hidden
layer, and its expression is as follows (9), as shown at the
bottom of the page.

As rigorously proven in the theorems, the input weights
and thresholds can be stochastically selected when the acti-
vation function is differentiable in natural fields. That is, wi
and bi do not need to adjust the calculation. As a result, once
the algorithm starts to learn, the relevant value of the Hmatrix
will remain unchanged.

The number of the hidden layer neurons has a significant
impact on the prediction result of ELM remarkably. Accord-
ing to the calculation principle of ELM, if the number L
of nodes is not less than the number of samples, ELM can
approximate these training samples with zero error. However,
the number of hidden neurons is generally less than the
number of training samples. The optimal solution β can be
obtained, making the output error infinitely close to any small
number.

The main task of using ELM for state identification is to
find the best solution of formula (8) instead of the iterative
method to reduce the error value, that is:

β = H+Y =
(
HTH

)−1
HTY (10)

where the H+ represents the generalized Moore-Penrose
inverse of the H matrix.

B. ELM OPTIMIZED BY GA
Compared with the traditional backpropagation (BP) neural
network, ELM has fast learning speed, strong generalization
ability, and it is not easy to fall into the local optimum.
However, due to the random generation of input weights
and thresholds in the hidden layer in the ELM initialization,

the neurons in the hidden layer have almost no regulation
ability. Although the model’s accuracy can be improved by
increasing the number of hidden layer neurons, its general-
ization ability is weakened. Furthermore, even if the number
of hidden layer neurons is the same because the weight
matrix of the input layer and the threshold of the hidden layer
are randomly generated in the initial calculation, there is a
certain difference in the input amount of each count, which
will change the calculation results affect the reliability and
verifiability of the results.

A genetic algorithm (GA) is a parallel random search
optimization method that simulates the genetic mechanism
and species evolution in nature, automatically obtaining the
optimal search space under uncertain rules and adjusting
the search direction adaptively. It first encodes the param-
eters to be optimized to form a tandem population. Then
according to the fitness function, individuals are screened
through selection, crossover, and mutation, and finally, the
individuals with the best fitness are selected [47]. In this
manuscript, GA is adopted to optimize some parameters
such as wi and bi to build the best structural model and
then establish a GA-ELM neural network to improve the
robustness and accuracy of the synthesis algorithm, as shown
in Fig. 4.

1) DATA ACQUISITION AND FEATURE VECTORS
EXTRACTION
According to the experimental requirements, test and collect
the relevant data signal, based on the extensive data pro-
cessing method, conduct data cleaning and feature vector
extraction.

2) DETERMINATION OF ALGORITHM TOPOLOGY
The number of the neuron’s input layer, an output layer, and
a single hidden layer of the ELM is determined, and the
iteration times, population number, and cut-off of GA are
assigned.

3) INITIALIZATION OF POPULATION
The selected probability is determined by calculating the fit-
ness function value of each generation population parameter,
which provides the basis for the next generation population..

4) CALCULATION OF FITNESS FUNCTION VALUE
The ELM neural network’s input weights and hidden layer
thresholds are generated randomly, and binary coding gener-
ates the initial population.

H =


g(w1 · x1 + b1) g(w2 · x1 + b2) · · · g(wL · x1 + bL)
g(w1 · x2 + b1) g(w2 · x2 + b2) · · · g(wL · x2 + bL)

...
...

g(w1 · xQ + b1) g(w2 · xQ + b2) · · · g(wL · xQ + bL)


Q×L

(9)
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FIGURE 4. The network structure of GA-ELM.

5) FORMATION OF NEW POPULATION
According to the fitness value of individuals, the roulette
method is adopted to select the chromosomes in each gen-
eration. Based on the genetic, crossover, mutation, and other
operations, the amount of information used to optimize the
selection population is carried out in various ways until the
number of iterations is completed or the error meets
the requirements and other constraints.

6) COMPLETION OF SIMULATION TEST
After iterative optimization, the optimized input weights and
thresholds are obtained and then assigned to the ELM by
decoding the final population. The complex matrix H of the
hidden layer is calculated, and the weight matrixes between
the output and hidden layers are solved according to the

formula (10). Finally, the trained network model is accepted
for the simulation test.

IV. DATA ANALYSIS PROCESS
A. DENOISING PROCESSING
Based on the theoretical analysis of extensive data mining,
it is necessary to clean up the real-time collected signal data
and eliminate the bad points before the feature extraction of
data to ensure the authenticity and reliability of the subse-
quent data processing results [48]. In the process of actual
vehicle operation, the collected data often contain strong
time-varying, nonlinear, and highly complex signal features,
including standard operation signals, noise signals, and vari-
ous fault signals, etc.

Under the ideal conditions, the voltage fluctuation should
be consistent with the current variation trend; when the
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FIGURE 5. The original voltage data curve.

current is constant, the voltage curve should show a smooth
upward or downward trend with time. However, in the actual
measurement process, as shown in Fig. 5, in the actual vehicle
application of the battery system, the noise signal can not be
avoided entirely. When the voltage signal is affected by the
current fluctuation, there will be many small fluctuations on
the collected signal curve, which is similar to the information
at the initial stage of the fault, enhancing the challenge of
accurate fault diagnosis of the system.

Mean filtering is called linear filtering, and its core is to
remove the mutation value of the numerical value by calcu-
lating the average value of one point and adjacent points. The
equation is as follows:

f ′ (n) =
1
M

n+l∑
i=n−l

f (i) (11)

where f ′(n) is the measured value after mean filtering; f (n)
represents the actual measured value; n indicates the number
of measurements, n = 1,2,3 . . . , N , and N is the total amount
of measured data. f (i) is the filtering center;M is the window
length of the filter, which satisfies the following conditions:
M = 2l+1.

Since the influence of initial fault on voltage fluctuation is
similar to that of noise interference filtering, if the filtering
times are too many, the initial mark is not easy to detect.
Even the voltage changes with the currency fluctuation will
be seriously distorted. Therefore, to ensure the effectiveness
of voltage fluctuation and keep the battery authenticity in the
initial fault state to the greatest extent, this manuscript only
carries out simple mean filtering, as shown in Fig. 6(a).

Although the filtered voltage curve still contains noise, the
amplitudes of the curve fluctuation within each frequency
band are improved to some extent.

B. FEATURE PARAMETERS EXTRACTION
Generally, data mining extracts a series of feature parameters
from the time domain or frequency domain of the collected
signal data, called feature functions. The feature extraction is

the critical content of machine learning, which can transform
the original data into a more representative representation
of the potential problems and features for the prediction
model.

1) COVARIANCE MATRIX
The covariance matrix is commonly used to judge the total
error of two variables in probability theory and statistics.
Generally, if the changing trend of the two feature quantities
is consistent, the covariance cij is positive, and cij ∈(0,1];
if the changing direction of the two distinct quantities is
opposite, the covariance cij is negative, and cij ∈[−1,0); if the
two specific quantities are independent of each other, cij = 0.
If a data set consists of N groups of data values (x1, x2),

where n = 1,2,. . . , N , then the covariance formula can be as
follows:

c(x1,x2)=
1

n− 1

n∑
i=1

(
xi,1 −

1
n

n∑
i=1

xn,1

)(
xi,2 −

1
n

n∑
i=1

xn,2

)
(12)

where the c(x1,x2) represents the covariance value between x1
and x2, a value without unit.

In actual vehicle operation, the state data of the battery
system is generated and collected continuously in real-time,
resulting in a vast amount of signal data, which aggravates
the dependence on hardware. The real-time prediction of
the covariance algorithm is based on the principle of the
covariance calculation, and m is set as the window length
value of processing data, which is convenient for simplifying
the calculation. As shown in Fig. 6(b), the red shaded part
is the data processing window. The covariance values can be
described as:

c(v1,v2) =
1

m− 1

m∑
i=1

(
vi,1 −

1
n

m∑
i=1

vm,1

)

×

(
vi,2 −

1
m

m∑
i=1

vm,2

)
(13)

where the Vi represents the voltage value of the ith cell in the
acquisition signal.

The covariancematrix for the system in thismanuscript can
be expressed as (14), shown at the bottom of the next page.

where m is the window length for calculating the covari-
ance value, k is the total number of the cells. C(i,j) is the
covariance vector value between cell i and cell j. N is the
total number of collected signal data, and N-m+1 expresses
the dimension value of the covariance matrix.

2) HORIZONTAL VARIANCE MATRIX
The above two feature parameters mainly show the fluctua-
tion curve of cell parameters with time. To obtain the feature
parameters that can accurately and comprehensively repre-
sent the current system’s working state, the battery system’s
variance when t = ti is used as the feature parameter to
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FIGURE 6. The filtered voltage data curve. (a) global voltage curve, (b) local voltage curve.

display the current distribution of the system data, as shown
in Fig. 6. (b). The equation can be expressed as follows:

ss2j =
1
k

k∑
i=1

(
xi,j − x̄

)2 (15)

where xij indicates the voltage signal value of the i-th cell at
the j-th time, i = 1,2,3,. . . ,k; j = 1,2,3,. . . , N, k is the number
of single cells, and N is the total number of sampling data.
The horizontal variance matrix can be defined:

SS2 =
[
ss21 ss22 · · · ss2N

]
(16)

3) VARIANCE MATRIX
In statistics, the variance is the average of the square value
of the difference between each sample value and the average
of all sample values, which mainly represents the deviation
degree of samples. The data processing window valuem is set
according to the covariance processing method. The signal of
the red shadow part in Fig. 6(b) is the variance data of every
single cell calculated. The formula is as follows:

s2 =
1
m

m∑
i=1

(xi − x̄)2 (17)

The variance matrix value can be shown as:

S2 =
[
s21 s22 · · · s2k

]
(18)

where the S2 is a high latitude matrix with the dimension
(N-M+1)×k, and s2i is the ith cell’s variance value.

C. MODIFIED FEATURE PARAMETERS MATRIX
The actual voltage covariance curves for each cell are shown
in Fig. 7, which indicates some similarities between each
cell’s signals but still quite different. Mainly in two aspects:
firstly, the overall covariance curve of the movement is con-
sistent with the fluctuation of the voltage signal; secondly,
the covariance signal has a slight diversification due to the
difference in the working state of each cell. Therefore, the
fluctuation value of covariance data can be summarized into
two parts, as shown in Fig. 7. C1 represents the influence of
real-time current on voltage data, which leads to the fluctua-
tion of covariance data. C2 represents the relative difference
and primarily reflects the cell performance variable, mainly
by the connection impedance, internal resistance, health state,
and aging condition, and is the core object in this manuscript.

Because the value of C1 is much larger than the value
of C2, the complex issues that can represent the working
state of the system contained in the collected signal can not
be highlighted, which increases the risk of accurate state
identification. The filtered voltage data is decentralized to
reduce the current influence on the acquisition signal, and the
equation is as follows:

v′ij = vij −
1
k

k∑
i=1

vij (19)

where vij is the collected signal data of the jth cell at the ith
time, and i = 1,2,3,. . . , N ; j = 1,2,3,. . . ,k.
The voltage change curve after decentralization is obtained

based on the above equation, as shown in Fig. 8.

C =
[
C1,2 C1,3 · · · C1,k C2,3 C2,4 · · · C2,k · · · Ck−1.k

]
=


c11,2 c11,3 · · · c11,k c12,3 c12,4 · · · c12,k · · · c1k−1,k
c21,2 c21,3 · · · c21,k c22,3 c22,4 · · · c22,k · · · c2k−1,k
...

...

cN−m+11,2 cN−m+11,3 · · · cN−m+11,k cN−m+12,3 cN−m+12,4 · · · cN−m+12,k · · · cN−m+1k−1,k

 (14)
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FIGURE 7. The voltage covariance data curve.

FIGURE 8. The decentralized voltage curve.

However, compared with the voltage variation trend in
Fig. 6(a), the current influence on the decentralized voltage
variation trend has been dramatically weakened, resulting in
the relative variation of each cell being highlighted.

According to equation (14), a novel covariance curve is
acquired, as shown in Fig. 9. Compared with Fig. 7, the
results show that the modified data has better sensitivity for
varying voltage signals. Especially when the current is set to
a fixed value, the differences fo the covariance curves of each
cell voltage are highlighted, which will be conducive to the
accurate identification of the system.

Based on the above description of the data signal pro-
cessing method, the new voltage variance matrix is calcu-
lated according to the formula (17), as shown in Fig. 10(b).
Meanwhile, to further verify the method’s effectiveness, the
variance matrices of the centralized and non-decentralized
voltage data are calculated, respectively, providing parame-
ters for comparing the subsequent results. The specific con-
tent will be discussed in the fifth section.

FIGURE 9. The covariance curve of the decentralized voltage data.

From Fig. 10, it is seen that the curve in Fig. 10(a) is
the same as the standard covariance curve, which is mainly
caused by the change of the current real-time data, and the
signal difference between the cells is relatively weak in the
constant current state. However, the variance matrix curve of
the decentralized voltage data decreases in the overall order
of magnitude, as shown in Fig. 10(b). As a result, the diversity
of the cell signal changes is further increased, which is easy
to enhance the system state identification later.

According to the horizontal covariance matrix’s calcula-
tion formula, it is found that the data of decentralization and
non-decentralization remain unchanged, as shown in Fig. 11.

D. PRINCIPAL COMPONENT ANALYSIS (PCA)
In the actual operation of electric vehicles, the battery pack
usually consists of hundreds of cells in a series-parallel mode,
resulting in many feature parameters such as covariance and
variance among the cells, which leads to excessive data
redundancy and increases the risk of system misjudgment.

Principal component analysis (PCA) is a standard tech-
nique to reduce the parameter dimension, effectively they are
reducing parameter redundancy and improving the fault diag-
nosis efficiency. The data correlation analysis can transform
the original data into effective parameters, independent of
each other and contain the primary information. PCA first
analyzes the features of the standardized correlation matrix
and calculates the eigenvalues and corresponding eigenvec-
tors. Then according to the cumulative variance contribution
rate..

For a given feature parameter matrix A:

A =


a11 a12 · · · a1p
a21 a22 · · · a2p
...

...

an1 an2 · · · anp

 (20)
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FIGURE 10. The voltage variance data curve (a) non-decentralized variance curve, (b) decentralized variance curve.

FIGURE 11. The horizontal variance-covariance data curve.

where n and p indicate the number of the specimen and fea-
ture parameters, respectively, aij is the jth feature parameter
of the ith model.

Then the sample data is standardized, and the new feature
parameter matrix A∗ is:

A∗ =


a∗11 a∗12 · · · a∗1p
a∗21 a∗22 · · · a∗2p
...

...

a∗n1 a∗n2 · · · a∗np

 (21)

a∗ij =
(
aij − a′j

)/
sj (22)

where a′j and sj represent the mean and variance of the jth
feature parameter, respectively.

Incidence matrix R of feature parameters:

R =
A∗TA∗

n− 1
(23)

The eigenvalue decomposition is performed on the
matrix R according to Eq. (24).

Rµi = λiµi (24)

where λi is the ith eigenvalue of matrix R, and µi is the
corresponding eigenvector (i = 1,2,3,. . . ,p). The eigenvalues
satisfy λ1 ≥ λ2 ≥ · · · ≥ λp, and µ1 ≥ µ2 ≥ · · · ≥ µp are
the corresponding eigenvectors.

According to Eq. (25) and (26), each feature parameter’s
variance contribution rate ηi and cumulative variance contri-
bution rate ηsum are calculated. When ηsum ≥ 95%, it shows
that the first m principal components contain most of the
sample information.

ηi = λi

/ p∑
i=1

λi (25)

ηsum (m) =
m∑
i=1

ηi (26)

The eigenvector corresponding to the principal component
can be expressed as:

Up×m =
[
u1 u2 · · · um

]
(27)

Finally, a new data set Zn×m = A∗n×pUp×m =(
z1 z2 · · · zp

)
is obtained. It can be found from the derivation

that the newly acquired principal component variable z is
a linear combination of the original variable a, indicating
that each principal component variable zi will contain all the
valuable information of the actual variables a.

According to the calculation process of the above
algorithm, the eigenvalues of the decentralized and
non-decentralized matrices of the collected signal are
obtained, respectively, as shown in Table. 2. (D: decentral-
ized; N: non-decentralized)

From Table.2, it can be seen that based on the above
equation, the proportion of eigenvalues of each order matrix
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FIGURE 12. The eigenvector curve (a) after non-decentralization, (b) after decentralization.

TABLE 2. The first three eigenvalues proportion (%).

is obtained. The proportion of the first three order eigenval-
ues of non-decentralizing and decentralizing are as follows:
99.99%, 0.0047%, 0.0027% and 87.07%, 11.86%, 0.55%.

The first-order eigenvalues of the non-decentralizing
matrix account for 99.99%, while the first-order eigenvalues
of the decentralizingmatrix only account for 87.07%.Accord-
ing to the ηsum ≥ 95%, the first two columns of eigenvectors
are selected as the final simplified features parameter matrix
to facilitate the comparison between the decentralized and
non-decentralized processing. The eigenvector is shown in
Fig. 12. Since the second eigenvalue of the non-decentralizing
matrix accounts for 0.0047%, the corresponding eigenvector
is only a horizontal line close to 0, as shown in Fig. 12. (a).

V. VERIFICATION
A. DETERMINATION OF THE MOVING WINDOW LENGTH
To realize the online state identification, the feature values of
the collected signals need to be calculated in real-time. How-
ever, during the test process of the battery system, the voltage
signal will be collected and sent by the sensor according to
the set sampling frequency, resulting in an increasing amount
of signal data. Therefore, the information can be updated
by setting the moving window length to ensure sensitivity
to the fault. Meanwhile, the excessive amount of data can
be avoided, and the requirements for hardware systems can
be reduced, which guarantees the engineering application of
the algorithm in this manuscript. It should be noted that the

TABLE 3. The meaning of the state category.

window length m is closely related to the sensitivity and
reliability of the fault identification. According to (12)-(18),
for the same group of voltage signal data, the shorter the
window length is, the more pronounced the fluctuation of the
state parameter curve is, indicating that the higher the diag-
nostic precision of real-time fault identification is. However,
in the process of real-time data acquisition, the noise signal
will always exist in the collected signal to a varying degree.
If the window length is too small, the feature parameters
will be relatively increased by the noise, which will affect
the robustness to a certain extent. So this manuscript sets the
optimal window length to 150 to obtain strong robustness to
noise signal and low computational complexity.

B. DIVISION OF DATA SETS
With the battery experiment, the fault degree is gradually
severe, from the initial hard to detect to the final mars burst,
and the temperature has a sharp increase. At the same time,
the fluctuation degree of the voltage signal also raises rapidly.
Therefore, the voltage values of different cycle periods are
selected in this manuscript, as shown in Fig. 13.

As shown in Fig. 13, the voltage curve fluctuation in
the graph increases sharply with the progress of the exper-
iment. According to the fluctuation degree of the collected
signal, the working state of the battery module presents
four situations, namely: good condition (I), the primary fault
condition (II), intermediate fault condition (III), and severe
fault condition (IV), as shown in Table. 3
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FIGURE 13. The voltage fluctuation curve of different cycles (a) n = 5, (b) n = 8, (c) n = 10, (d) n = 12.

C. RESULTS COMPARATIVE ANALYSIS
This manuscript selects 6800 sets of data, including 1360 data
sets as the training set, mainly used to acquire the connection
weights between the hidden layer and the output layer and the
threshold of the hidden layer in the ELM model, and the rest
of the data as the test set to verify the algorithm’s precision.
Meanwhile, to further improve the engineering practicability
and robustness of the algorithm, the test set and training set
data are randomly generated.

In the paper, the PCAmatrix of the modified feature matrix
(PMFM) and the PCA matrix of the fundamental feature
matrix (PUFM) are both adopted as the input of the GA-ELM
model, respectively.

As shown in Fig. 14, by comparing the position and change
trend of the two curves, it shows that the accuracy of ELM
with PMFM increases from 94.25% to 97.83%, and the abso-
lute error is only 2.17%. The result is relatively acceptable
when combined with the principle of no more than 5% devia-
tion in a limited data set. While the accuracy of ELM with
PUFM increases from 92.05% to 94.5%, and the absolute
error is 5.5% (>5%), which is lower than that of ELM with
PUFM. Especially compared with the first generation, the
accuracy of ELM with PMFM is 2.2% higher than that of
ELM with PUFM without the GA influence, which indicates

TABLE 4. The prediction accuracy of GA-ELM.

that the modified feature parameter matrix has more vital
state representation ability and is conducive to the accurate
identification of system state. Secondly, the output accu-
racy of GA for ELM in two forms is improved by 3.558%
and 2.45%, respectively, which shows that ELM has strong
generalization ability and high precision. The identification
accuracy is completed in 30 iterations.

In the manuscript, PMFM and PUFM are adopted repeat-
edly to work out the identification accuracy, and the results
are shown in Table. 4

Table. 4 shows that before the GA algorithm is used,
the three diagnostic accuracy rates of ELM with PUFM are
92.25%, 91.73%, and 92.17%, respectively, with an aver-
age of 92.05%. after GA optimization, an average accuracy
increased by 2.88%. However, without GA optimization,
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FIGURE 14. Evolutionary, iterative graph of genetic algorithms.

the diagnosis accuracy of ELM with PMFM is 94.75%,
93.75%, and 95.01%, respectively, and the average value
is 94.5%. After GA optimization, the accuracy is raised
at 97.83%, 97.07%, and 97.97%, with an average increase
of 3.12%.

Through many experimental tests, the data fluctuation in
Table. 4 shows the same regular as the previous analysis,
which further verifies the effectiveness and authenticity of the
algorithm proposed in this manuscript. However, it is easy to
find that the accuracy of each identification is different by
observing the data of the prediction results. Mainly because
the division of the training set and the test set is random to
verify further the robustness and reliability of the compre-
hensive algorithm proposed in this paper, which results in the
input of the GA-ELM model is not the same, which lead to
some errors in the prediction results.

In conclusion, PMFM is more suitable as the state feature
parameter. The accuracy of the state diagnosis of the ELM
algorithm is improved by the GA optimization algorithm,
which makes the proposed comprehensive diagnosis method
more efficient and accurate.

VI. CONCLUSION
This paper studies the response of the voltage signal of each
cell to the change of fault degree when the battery system is
charging or discharging based on data-driven theory. There
are some bad points and noise interference signals in the
collected data. The data cleaning is done by simple mean
filtering to improve the signal’s practicability. Because of the
battery system’s strong time-varying, nonlinear and multi-
parameter coupling, it is pretty challenging to identify the
fault’s location and time with a single parameter. Therefore,
variance, covariance, and horizontal variance are selected as
feature parameters to determine the system’s current state.
However, the traditional feature parameters fluctuate vio-
lently with the current values, which submerges the diversity
of individual signals and increases the fault diagnosis’s risk.

Furthermore, the modified feature parameters are intro-
duced as the state input parameters of the ELM algorithm for
the first time. Because the connection weights and thresholds
of the ELM model are generated randomly, it is easy to
cause some hidden layer nodes to fail, reducing the gen-
eralization ability and accuracy. Therefore, fault identifica-
tion’s comprehensive diagnosis method is proposed based on
ELM optimized by GA algorithm. Meanwhile, the voltage
faults are divided into four levels according to the intensity
of volatility in the voltage data. Finally, the effectiveness
and robustness of the proposed method are further proved
through the comparison of various ways and the verification
ofmeasured data. In conclusion, the comprehensive diagnosis
method of the fault identification proposed in this paper can
accurately and efficiently identify the relevant information
about the fault and reflect the intensity of the current sys-
tem work, providing an innovative theoretical mechanism
and technical support for the future batty system intelligent
management.

Due to the rapid development of computer hardware tech-
nology, deep learning has been widely used. Combined with
the characteristics of the power battery itself, such as solid
time-varying, nonlinear andmulti-parameter, intelligent diag-
nosis with high identification accuracy, good reliability, and
strong robustness will be implemented in the subsequent
work.
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