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ABSTRACT The use of robotics olfaction for gas source localization or mapping has become a concern
given the issues of terrorism or industrial accidents that may cause damage to the environment. A typical
scenario is to send a robot to a place where a dangerous gas leak has just occurred. The robot’s task is to map
gas concentrations in the region of interest as effectively as possible. This paper addresses how the robot
performs gas exploration in a large and unknown environment. One of the issues that needs to be addressed
is the fact that the computation time of the path planning, frontier detection, goal decision making and gas
distribution mapping is slower if all cells in the occupancy grid map are involved in a large environment.
Consequently, the Rapidly-exploring Random Tree (RRT) algorithm is chosen as the main algorithm. The
RRT graph guides the robot’s navigation, utilizes the vertices as goal candidates, gas mean and variance
value, and searches for a new frontier. A new strategy is proposed to address the frontier exploration and gas
exploitation trade-off. Finally, a Robot Operating System (ROS), Gazebo, and a 3D gas simulator are used

to compare the proposed strategy performance with the others in a large outdoor environment.

INDEX TERMS Robot olfaction, robot exploration, rapidly-exploring random trees.

I. INTRODUCTION

In this modern era, robotics systems are very popular for use
in search and rescue missions, which are very dangerous if
they are done directly by humans [1]. A robot is expected to
explore the affected area to obtain as much information as
possible to support the evacuation process. A typical search
and rescue mission is when a hazardous gas contaminant is
dispersed, whether in an industrial area [2] or because of
a natural disaster [3]. From a comprehensive review in [4],
it can be concluded that some important things that must be
considered in the use of robots in related missions are battery
efficiency, exploration of coverage areas, and exploitation in
a region of interest. The complexity of computing is also a
problem, especially for missions in an extensive area. The
use of multiple robots can overcome this scalability problem
[51, [6]; however, using multiple robots is expensive.
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In terms of gas distribution mapping, [7] developed a
method to drive a robot using an artificial potential field
method, while [8] used a particle filter algorithm to perform
gas source localization. However, the problem was not com-
plex, as the environment was assumed to be known and free
from obstacles. Recent research by [9] used optimal policies
to perform gas distribution mapping in a cluttered environ-
ment, but the robot previously knew the occupancy map.
Another researcher [10] developed an integration between
Simultaneous Localization And Mapping (SLAM) [11] and
gas distribution mapping in an unknown area, but the robot
was controlled remotely. By aggregating all the problems
above, we address the development of a fully autonomous
robot to explore and exploit hazardous gas contamination in
a cluttered and unknown large area.

Exploration in a wide area requires a scalable algorithm.
Using all cells in a vast grid map for the path and goal
candidates will increase the processing load. This means
that all of the cells should be involved in the computation.
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Therefore, graph-based representation is chosen because it is
lighter and computationally tractable. However, graph repre-
sentation is less optimal in generating the trajectories than
grid representation, but at least it suits motion planning prob-
lems, as mentioned in [12]. The graph is generated over
the obstacle-free area, which is utilized as the robot’s path.
This approach then takes advantage of the vertices as the
goal candidates of the robot. Inspired by [13], a Rapidly-
exploring Random Tree (RRT) is chosen as the algorithm that
can rapidly generate a tree graph. However, although there
are fast non-grid-based path planning based on evolutionary
algorithms exist such as [14], [15], we still choose RRT as
it has multi-functions. RRT can be exploited not only for
path planning, but also for frontier search, gas distribution
representation and goal candidates which will be explained
in detail in the next Section. Moreover, in an exploration
mission, we need an explorative path as the RRT algorithm
generated.

There is a gas measurement problem in search and rescue
missions in an area contaminated with hazardous gases. Aside
from the gas sensor noise, which is quite large, the time
variant of gas propagation also makes it difficult to measure
because it is influenced by wind flow, gas diffusion, or object
movement. Therefore, the value of the gas variance is sig-
nificant in determining the certainty of a gas concentration
value in a particular place. Some researchers have developed
several gas map extrapolation methods that produce vari-
ance values, including kernel gas distribution mapping plus
Variance (Kernel DM + V) [16], [17], a Gaussian Markov
random field [18], or a Gaussian process [19]. From these
methods, Kernel DM + V is the method that has the lowest
computational complexity. For instance, [7] used a Gaussian
Markov random field in a large cluttered environment but
needed simulation with a 10000 second duration because
of the big time complexity of the model. In this case, the
robot needs to get the update of the gas distribution model
in real-time. To get the update faster, we do a modification
by approximating the grid-based Kernel DM + V into a
graph-based Kernel DM + V although the graph represen-
tation will be less accurate. In addition to being faster, graph-
based Kernel DM + V is also more suitable for application
in nonconvex environments as it can utilize any type of graph
that suits in nonconvex areas such as RRT graph.

In an unknown environment, it is necessary to perform
online obstacle mapping. The occupancy map formed by 2D
LIDAR contains several frontiers, which are the border areas
between the free map and the unknown map. As developed
by [20], the frontiers can be searched rapidly using the RRT
algorithm. We utilize it even further by using the graph to
construct a robot path as well. Every vertex is considered a
goal candidate. The proposed graph-based Kernel DM + V
can also utilize the graph. Each vertex has attributes of the
gas concentration mean and variance.

In this paper, an Unmanned Aerial Vehicle (UAV)-type
robot is used for evaluation of the method. The UAV is
installed with a gas sensor and 2D LIDAR. It is sent to an
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unknown area by the operator. Mapping the whole area of a
large area takes a long time. The UAV only has a short time
operation. Therefore, by using our proposed strategy, it is
efficient if the robot only explores and exploits the gas in the
hazardous area. Our proposed strategy has a switching mech-
anism between ““frontier exploration” and ‘““gas exploitation”
which will make a robot only covers the hazardous area.

Initially, the robot builds the occupancy grid map from the
beginning and then generates the graph to find the frontier.
The first state active is ‘““frontier exploration”. This indicates
a set of frontiers as candidates for the robot’s goal. The
optimal frontier point is the point that has the maximum
information gain according to the occupancy map and the
distance between the frontier and the robot.

If there is at least a vertex with a high gas concentration
mean and variance detected/estimated by Kernel DM+-V, the
robot will enter the ““gas exploitation” state. In this state, the
robot goes to the vertex that has the following two conditions:
highest variance and concentration mean value above the
predetermined threshold. Thus, the robot will visit an area
with the most uncertain and high expected gas contamination.
More gas samples measured in one area will decrease the
variance of gas measurement in that area. Practically, in the
recovery and mitigation process after hazardous gas has
leaked, an area containing a high gas concentration is more
dangerous than an area containing a low gas concentration.
Moreover, gas contamination sources with high probability
might be located in areas with high gas concentrations.

As long as a vertex with a high gas concentration mean
and variance exists, the state remains at “gas exploitation”.
In this state, the robot visits the vertices around the area
contaminated with high gas concentration. It will stay in this
state and collect measurements in the aforementioned area.
With an increasing number of measurements, the variance of
the gas concentration distribution in that area decreases, and
then the robot will switch back to the “frontier exploration”
state. It will explore different areas of the map and try to find
other high gas concentration measurements.

Several simulations with various scenarios are conducted
to evaluate the proposed strategy toward exploring and
exploiting hazardous gas in an unknown wide area. The sim-
ulations are performed in a Robot Operating System (ROS)
and Gazebo platform exploiting the use of a 3D gas dispersion
simulator [21]. To the best of our knowledge, there is no past
research about gas exploration in an unknown environment
with some obstacles in which the robot is fully autonomous.
However, the evaluation of the proposed method is also com-
pared with some methods based on the scalar objective func-
tion and Artificial Potential Field (APF) from [7], although,
in the original paper, APF was implemented in a free obstacle
environment. In particular, APF strategy uses three objectives
directing the robot towards areas. The objectives are: (1) high
estimated mean, (2) high estimated variance, while maximiz-
ing the coverage area (3). The first and second objectives
are achieved by visiting some areas with high estimated
mean and variance. The third objective is implemented by a
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repulsive potential generated by placing charges at all prior
gas measurements.

The mission can also be conducted using the manual tele-
operated method as in reference [10]. However, the manual
teleoperated method has a disadvantage in that it requires very
good communication between the robot and the station so
that the command can be given in real-time, although this
incurs a considerable cost in reality. Moreover, it requires
a human operator to control the robot. He or she must be
far away from the location because of the danger of gas
contamination, while the method proposed in the present
paper does not require a human operator. In other words, the
robot can operate autonomously.

The main problem addressed in this paper is how to
autonomously drive a mobile robot in a large, non-convex
and unknown environment to explore the gas contamina-
tion in a relatively short time. To deal with this problem,
the robot needs to do path planning that is adapted to
such a complex environment. As no prior information about
the map is available, the robot should partially extend the
map into new territory using a frontier exploration algo-
rithm. An online decision-making mechanism towards the gas
exploration should be implemented so that the gas distribu-
tion model can be computed in real-time. Moreover, as the
robot has a relatively short time operation, it should exploit
the gas only in the hazardous area once the robot finds a gas
contamination.

Those problems will be solved considering some assump-
tions as follows. The experiments are conducted in a
computer simulation using the Robot Operating System plat-
form. The expected area of the environment is 500m x 700m
without a dynamic obstacle. There is only one stationary
gas source. The UAV has a precise localization using IMU
and RTK-GPS which is combined with an Extended Kalman
Filter. A 2D LIDAR with low uncertainty is installed in the
simulation so that the occupancy grid map can be accu-
rately obtained. The occupancy grid map is limited in two
dimensions so that the path and goal candidates are generated
on a 2D plane. In other words, the UAV flies at a static
altitude. Jetson TX2 with 8GB RAM and Quad-Core ARM
Cortex A57 CPU is used as the processing board in the
simulation.

The contributions of this paper are an extension of
Kernel DM+V and an autonomous strategy toward gas
exploration-exploitation in a large-scale area. The exten-
sion of Kernel DM+V to graph representation is developed
because it is more scalable and suitable to implement in a
nonconvex area. The goal-oriented decision-making strategy
in hazardous gas exploration-exploitation is developed by
exploiting the RRT algorithm as the goal candidates, frontier
search and path planning support.

The paper is organized as follows. Section II elaborates
the methods proposed to solve the specifics of the related
problems. Section III discusses the results of conducted simu-
lations. Section I'V concludes the paper and discusses several
future works.
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Il. METHODOLOGY

In this section, some methods are elaborated according to the
problem addressed by this paper. The RRT graph is grown on
a partially expanded occupancy grid map. The graph-based
Kernel DM+V is used to acquire the mean and the variance
value of the gas concentration by using the generated graph.
Some frontiers are also detected by the graph, while the opti-
mal goal location is determined by a finite state machine that
considers the gas concentration mean and variance according
to the graph-based Kernel DM+V. The operator may choose
the robot’s priority for either exploration over exploitation or
vice versa. The robot performs exploration to gather more
gas information in an unexplored area. It does exploitation
to investigate the most interesting region with a high gas
concentration.

A. GENERATING THE RRT GRAPH

In this paper, the very basic RRT graph is used since it has
the fastest computation. In our case, RRT is not only used
for path planning but also used for frontier detection. The
frontier should be detected as fast as possible. That is why
we choose the fastest RRT. However, the basic RRT path is
less optimal than RRT*, informed RRT, etc. Therefore, the
guidance mechanism is modified to not follow the original
graph. This mechanism is usually called path pruning. The
robot can go straight to the farthest vertex, that is, Line of
Sight (LoS) with the robot. This technique will be elaborated
in subsection II-B.

The robot generates the graph from the beginning on the
occupancy grid map, initially opened by the robot’s 2D laser
range finder. Let G = {V, E} be a graph with a set of ver-
tices (V) and edges (E) that are generated over the obstacle-
free map. Each vertex will be used for goal candidates.
Each vertex also has mean and variance gas concentration
attributes which will be explained in Section II.D. Each edge
has length attributes used to calculate the approximation
distance between two vertices. This graph is used for robot
path planning and frontier detection which will be explained
in Section II.B and II.C respectively.

A 2D LIDAR with a point cloud form is converted into a
grid map by this technique. If a cell contains a laser point, then
it will be considered as an occupied cell. Some cells that are
passed by the laser line, then it will be considered as free cells.
Otherwise, they are unknown cells. The occupancy grid map
is denoted as a matrix occ(x). A grid cell x is free if occ(x) is
equal to 0. A grid cell x is unknown if occ(x) is equal to —1.
Otherwise, the value of occ(x) is between 1 and 100 which x
is considered as an occupied cell.

Two RRT graphs, global and local RRT graphs with dif-
ferent functions, are generated. Global RRT is used for robot
path planning (Section II.B). At the same time, both global
and local RRT are used for frontier detection (Section II.C).
These are generated based on the very basic RRT algorithm
from [22]. The graph is generated from the initial robot
position and continually expanded, taking a random point
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inside the area where the robot should explore. In short, a new
vertex and edge are appended to the existing graph as long as
they are free from the obstacle.

Due to the LIDAR noise and inaccurate grid interpolation,
it is necessary to check whether a graph element coincides
with an obstacle or not. There is a very rare condition where
a cell is considered as a free cell but the truth is occupied by
an obstacle. Therefore, a module is created to check whether
there is an edge that coincides with the obstacle. If this occurs,
then the vertex or edge and its children have to be removed,
as it is dangerous for the robot if it is chosen as a goal.
Notably, if there is a graph element that coincides with the
obstacle, the robot should hold the position because removing
some children takes time. After updating the graph, the robot
can continue to navigate again to its current goal.

Algorithm 1 Algorithm for Generating Global RRT Graph
Input: 9max, Mmin, 0CC, I, w
Output: G, new frontier

// initialize with empty graph

1: Viocal <— {Xrobor };
2. E «<—
3: Glocal <— (Vlocals Elacal);
4: while true do
5:  Xrand <— UniformRandomSample(/, w);
6: Xnearest < NeareSt(G = (Va E), Xrand» nmax);
70 Xpew <— Steer (xnearesh Xrand )
8: it (llxnew Xnearest | > Nmin) and
ObsFree(xXnew, Xnearest) then
9: if occ(xpew) = O then
10: // cell is free
11: V «— V U {xpew}; #/ add a new vertex
12: E«—VU {(xnew, xnearest)}; // add a new edge
13: G <— (V, E); // assign updated graph element
14: else if occ(xpew) = —1 then
15: // cell is unknown
16: PublishNewFrontier(xpew);
17: end if
18:  end if
19:  for (x;, x;) € E do
20: if not ObsFree((x;, x;)) then
21: HoldRobotPosition();
22: // remove children belong to vertex (x;, x;)
23: E <— E\Children((x;, x;));
24: V <«— V\Children(x;);
25: G <«— (V,E),
26: end if

27:  end for
28:  PublishGlobalRRTGraph(G);
29:  ContinueRobotNavigation();
30: end while

The pseudocodes in Algorithms 1 and 2 explain how the
global and local RRT graphs are generated. The global RRT
graph is continually expanded as long as the robot opens a
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Algorithm 2 Algorithm for Generating Local RRT Graph
Input: nmax, occ, [, w, Xiopor, F, G, tous
Output: new frontier
1: while true do
// initialize with empty graph:

2: Viocal <— {Xrobor };
3 E «— @
4 Glocal <— (Vlocal ) Elocal);
5. newFrontierFound <— false;
6:  while true do
7: Xrand <— UniformRandomSample(Z, w);
8: Xnearest D Nea-reSt(Glocal =
(Vlocal ) Elocal) » Xrand nmax);
9: Xnew <— Steer (xnearestv Xrand )
10: if ObsFree (Xnew, Xnearest) then
11: if occ(xpew) = O then
12: // cell is free
13: Viocal <— Viocal U {Xnew}; #/ add a new vertex
14: Eiocal <— Viocal U {(xneW7 xnearest)}§ // add a
new edge
15: Giocat <— (Viocal» Elocal); // assign updated
graph elements
16: else if occ(xpew) = —1 then
17: // cell is unknown
18: PublishNewFrontier(xpew);
19: RobotNavigatesTo(xpew);
20: Break; // because a new frontier is found
21: end if
22: end if
23: if Timeout(y,¢) then
// no new frontier
24: // Run Algorithm 3
25: Xgoal <—SelectFrontier(F, G, tour, Xrobot)
26: RobotNavigatesTo(xgpar);
27: Break;
28: end if

29:  end while
30: end while

new free occupancy grid map. The global RRT graph is used
to plan the robot’s path, but it is also used to search for a
new frontier. Two constants 7,,;, and 1,,,, are the lowest
and highest limits of the edge length, which are helpful to
control the number of graph elements. Using too many graph
elements will slow the computation, and some short edges do
not significantly increase the coverage performance.

The local RRT graph is only used for searching a new
frontier near the robot. This graph is very important because
when the robot opens a new free area, it should quickly find
the frontier. Then, the robot can go straight to the frontier
near the robot rather than far to one of the past frontiers. The
! and w constants are the length and width of the rectangle
where a random point (xrang) is obtained, with the center of
the rectangle being the robot position.
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There are some conditions when the robot cannot find a
frontier because the obstacle in the region of that rectangle
boundary is fully mapped, or it may be difficult to search the
frontier in a narrow area. To solve this issue, a timeout is used
to stop the local frontier search. There is no new frontier if
the timeout is reached. Therefore, the latest set of frontiers
is used as the candidate where the robot goal is. There is no
minimum edge length for the local RRT graph. It only needs
a parameter called 1,y because it should search the frontier
as quickly and flexibly as possible.

B. NAVIGATING THE ROBOT

Fig. 1 illustrates how the robot starts generating the RRT
graphs and then goes to a particular point, which is the fron-
tier, since the robot has not yet sensed any gas concentration
more than zero.

FIGURE 1. A robot initially starts and opens the grid map. The blue graph
with white text numbers in each vertex and the red graph are the global
and local RRT, respectively. The purple graph is the RRT subgraph
connecting the current robot pose to the goal. The green dots are the
frontier candidates. The yellow bar is the robot'’s final goal, while the
purple bar is the robot’s current goal since it is the nearest vertex to the
final goal and is LoS.

How the robot navigates by utilizing the global RRT graph
is shown in Fig. 2. First, the robot finds the vertex nearest
to the current robot position and the vertex nearest to the
current goal. Then, a subgraph connecting those two vertices
is formed. As shown in Fig. 2 left, if the robot applies a
straight movement directly to the goal, it will obstruct the
wall. The robot should find the vertex nearest to the goal,
which is LoS with the robot.

Ideally, the robot can go to that vertex, but if there is any
disturbance, such as wind or controller anomalies, then the
robot may not track that straight line. For example, this is
shown in Fig. 2 right by the green arrow. If this occurs, the
robot must change the current goal nearest to the ultimate
goal and LoS. Therefore, the robot should check periodically
whether the current goal is still LoS or not. In this paper, a PID
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FIGURE 2. A figure shows how a robot navigates by utilizing the global
RRT graph. The blue lines are the RRT graph vertices, with the dashed
lines being the subgraph as the guidance for the robot toward its goal.
The magenta arrow indicates an LoS line starting from the robot position
to the nearest LoS vertex to the goal. The green path is the robot path,
and the gray arrow is the past LoS line.

Algorithm 3 Algorithm for Selecting Frontier
Input: F, G, tf, Xrobot
Output: xgoa1

1: Xgoal <— Nearest(F, Xropot)

2: while true do

3:  F <«— getTheLatestFrontiers();

4:  NavigateTheRobot(xgoal);

5: if ”xgoal — Xrobot|l > €4 then

6: Continue; // because the robot has not arrived
7:  else

8: nearFrontierFound <—false;

9: while not nearFrontierFound and not Timeout(#r)

do

10: F <— getTheLatestFrontiers();
11: for f; € F do
12: cost <— Dist(G, Xrobot, fi);
13: if cost < laserRange + ¢; then
14: nearFrontierFound <—true;
15: Break; // because a frontier is found
16: end if
17: end for
18: end while
19:  end if

20:  // get the best frontier point

21:  idXgoa <— argmax;(IG(f;) — wq.Dist(G, Xropot, fi);
22: Xgoal <— ﬁdxgoal

23: end while

controller is used to control the linear velocity (viobot) Of the
robot toward the current goal (xgoal).

C. FRONTIER EXPLORATION

As explained before, the frontiers are detected by two
graphs, which in this paper are named the global and the
local RRT graphs. This method was initially invented by [20],
where the frontiers were collected in a single array and
then filtered according to their information gain and position
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on the occupancy grid map (free, unknown or occupied).
We perform a slight modification to ignore a new frontier
where the location is nearby with one of the existing filtered
frontiers. Having some adjacent frontiers only makes the
frontier selection take a longer time.

Define F = {f1, />, .., fx} as a set of filtered frontiers. Ini-
tially, assign the nearest F' as the goal. The robot will continue
to navigate as long as the goal is still far away. When the robot
is near the goal, which is less than a small distance (e4), the
robot gives priority to search for a new frontier nearby. The
distance between the robot and a frontier is intuitively less
than the laser range finder plus a small constant €; considered
as the new frontier in the newly explored area. Without this,
the robot may return to another frontier where the location is
far away from the robot, which is ineffective and gives the
robot a zigzag trajectory.

Dist(.) is the distance based on the global RRT graph (G),
which estimates geodesic distance, not Euclidean distance,
as the area is nonconvex. A timeout handle should be used
because there is a possibility that the robot cannot find a new
near frontier. After a new near frontier is obtained or a timeout
is reached, it changes the goal by using all of the filtered
frontiers as the candidates considering the information gain
in a frontier (IG(f;)) and a geodesic distance from the robot
pose to f; weighted by a constant w,. The information gain is
obtained by calculating the area of the unknown map around
the frontier.

D. GRAPH-BASED KERNEL DM+V

In this section, the proposed method, named graph-based
Kernel DM+V, is elaborated. A graph representation is used
instead of a grid representation because it is more scalable and
applied in a concave area. An illustration of how graph-based
Kernel DM+V works is shown in Fig. 3.

Define x; as the sample gas measurement point with 7
samples and x; as an element in a set of graph vertices (Vp)
located inside a circle with diameter D and center coordinates
in x;. A set Vp is formally defined in Eq. (1).

Vp = {xilx; € V,d(x;, x;) < D/2} (1

By using the Gaussian weighting function A, a set of
integrated importance weights (£2) and integrated weighted
gas measurements (R) are formulated in Eq. (2). The gas
concentration reading and the kernel width are defined by r;
and o. In this case, the function d(x;, x;) is not Euclidean but
can be made geodesic by adding the costs of edges connecting
x; and x;. Because x; is not connected to the graph, it is
approximated by the nearest vertex in Vp (Xpeqrest ), as shown
in Fig. 3.

Qi = L N, x), 0)
R = X N(d(xs, xi), o)., 2

Confidence values «; should be computed before comput-
ing the mean gas concentration r;, which are formalized in
Eq. (3) and (4), respectively. The variable ry is the average of
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< ) >

FIGURE 3. lllustration of how the graph-based Kernel DM+V is
determined. The blue lines are the graph with the blue dots being
elements of Vp in (1). The variable x; is one of the elements in a set Vp,
and x; is one of the measurement sampling poses. The variable x,,¢gest
is the nearest vertex in Vp from x;.

sensor readings, and og, is the scaling parameter.
— e /o0 3)
Ul +{1 —ai}ro 4)
Q;

After the mean gas concentrations are obtained, the inte-
grated weighted variance V; and the variance map v; can be
computed by using Eq. (5). The value of ;) is the prediction

of the mean concentration in #(Z). (i) is the nearest vertex to
xt, while vg is the average variance from every vertex.
Vi = LN @G ), 0)(r = i)’
Vi
o + {1 —ai}vo (5)

If there are more sample concentration gas readings close
to a vertex x;, then the importance weight value €2; will be
higher. The confidence value «; is exponentially increased
when the importance weight increases. Suppose the confi-
dence value in a particular vertex is high. In that case, confi-
dently, the mean and variance of the gas concentration will be
closer to the norm of integrated weighted gas measurement.
Otherwise, the mean and variance are approximated by the
average of the sensor readings and the average variance from
every vertex when the confidence is low.

The larger the global RRT graph is, the longer the computa-
tion time of this graph-based Kernel DM+V. This also causes
adelay in the selection of the optimal goal. The computational
complexity of graph-Kernel DM+V is O(n|Vp|) (n is the
number of gas samples and |Vp| is the number of vertex
elements inside D area). Therefore, we use three concurrent
modules to calculate this graph-based Kernel DM+V. The

O[,'Zl

ri = Q;

Vi = O
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first module updates all of the mean and variance values in
each vertex, while the second module updates only the mean
and variance in the vertices near the robot. The third module is
needed to collect and associate the data from modules one and
two. As each edge has a distance cost, adding some costs from
some edges is faster than calculating the Euclidean distance.

E. GAS EXPLORATION-EXPLOITATION STRATEGY

The graph-based Kernel DM+V provides the mean and vari-
ance, and their values are considered two important factors
affecting gas exploration-exploitation strategy. A particular
area with a high mean value in gas distribution mapping
means that the gas concentration is high or dangerous. A spe-
cific area with high variance means no close gas sensor
reading, or the set of gas sensor readings in that area has
a high standard deviation due to wind disturbance. If there
is a vertex where the mean value is high but the variance
is still high, then the robot will go there, as it is interesting
to exploit because the concentration is high. Moreover, the
variance value will decrease as the amount of gas sample near
that vertex increases.

If there is no vertex with a high mean value with high
variance, the robot can explore another place, visiting one
of the nearest frontiers. The robot will open a broader map
and exploit the gas again if another vertex is interesting
to visit (high mean and variance value). The Finite State
Machine (FSM) diagram is shown in Fig. 4.

frontier
exploration

FIGURE 4. The finite state diagram of the proposed strategy. There are
four states: (1) start mission, (2) frontier exploration, (3) gas exploitation,
and (4) end mission. The four transitions are (A) if a frontier is detected,
(B) if there is at least a vertex with high mean and high variance, (C) if all
of the vertices with high mean have low variance and a frontier exists,
(D) if all of the vertices with high mean have low variance and no frontier
is detected anymore.

The mean threshold (m;,) is defined as a particular percent-
age value of the current maximum mean, while the variance
threshold (vy,) is a constant. For instance, if the current max-
imum mean is 100 ppm and the percentage value is 5%, then
the mean threshold is 5 ppm.

If we set the percentage of the mean threshold lower, then
the robot will exploit more areas containing lower concen-
tration gases and take a longer time. Instead of exploiting
low “nonimportant” gas concentrations, exploring a new area
is more important, even if the mission area is very wide.
The variance threshold is also related to the trade-off. The
robot waits until the variance is low enough before it goes for
exploration. The lower the variance threshold, the longer the
robot does the exploitation and the more limited the coverage
area.
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It needs to be clarified that the robot will not explore
the same area that has been previously visited except for
this particular case. The robot has to go to another frontier
and pass the previously explored area. In that area, the gas
variance increases due to measurement change. Measurement
changes occur because of the dynamics of gas propagation.
Because the gas variance increases above vy, the robot will
explore that area until the variance reduces to below vy,.

F. SYSTEM INTEGRATION
The complete system integration is explained below and illus-
trated by a diagram in Fig. 5.

- occupanc - )
| updating and regenerate gridpmapy updating J&—robot position
z checking I(?cal RRT occupancy |&— robot orientation
lobal RRT rid maj 2D laser scan
l—
Llocal RRT graph
global hold position/resume navigation
RRT graph
is v
5
8% i
$58 searching
28y $ 4 ¢ A4 and filtering
g2 )
g% 133 update update frontier
o ¥ = | global value local value "
82 neares
i @ frontier
2 £ mean & variance mean & variance point
52 all vertices near vertices A A A

exploration-
mean & explo_\tgtlon
variance decision

all vertices

data
association

5| navigating
goal the robot

FIGURE 5. The whole system diagram.

As shown in this figure, the whole system consists of nine
modules that a robot must run. A mapping algorithm is run to
generate the occupancy grid map using 2D LIDAR and robot
position and orientation information obtained by GPS and
Inertial Measurement Unit (IMU) sensors. The occupancy
grid map is then used as the RRT algorithm reference so that
the global RRT graph can be used as the goal candidates,
the graph-based Kernel DM+-V vertices, and the navigation
guidance. When a graph element coincides with an obstacle,
the robot should hold the position so that the RRT module
has to send a signal to the navigation module. Global and
local graphs are also used to find the frontier points, which
are filtered according to their information gain value [20].

The robot pose is used along with the gas sensor to update
the set of gas readings using the proposed graph-based Kernel
DM+V method. There are three modules according to the
graph-based Kernel DM+V that are explained in the previous
subsection. All mean and variance values are used to decide
the exploration-exploitation problem to generate the best goal
for the robot.

Ill. EXPERIMENTAL RESULTS

In this experiment, two different buildings are used to eval-
uate the method. The 3D buildings of the environment are
shown in Figs. 6 and 7 which are a refinery and campus
building, respectively. A static gas source is placed in each
building environment. A rotary-wing UAV flying with static
altitude is used as the robot and initially starts the mission
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somewhere in the building. A simple anti-windup PID con-
troller is used. The flight time is limited to 20 minutes. The
sensor is mounted in the bottom center of the UAV-type
robot. A simulation using a Robot Operating System (ROS)
platform is conducted, whereas the environment and vehicle
model are run in the PC with Gazebo, and the mapping,
navigation, graph Kernel DM+-V, and other processes related
to the modules in Fig. 5 are processed in NVIDIA Jetson
TX2. GADEN (a 3D gas simulator) and a Computational
Fluid Dynamics (CFD) software are used to simulate the gas
dispersion.

Two metrics are used to measure the performance of our
proposed method: (1) the average of variances on the ver-
tices that have a mean concentration greater than a thresh-
old and (2) the coverage area in the regions where the gas
concentration is high. The average of variance is calcu-
lated by using the estimated variance of graph-based Kernel
DM+-V. Two scenarios are conducted in different environ-
ments. Scenarios I and I are conducted by using a refinery
(300 m x 200 m) and campus building (500 m x 700 m),
as shown in Figs. 6 and 7, respectively.

& OLS -

FIGURE 6. 3D illustration of the oil refinery building.

FIGURE 7. 3D illustration of Institut Teknologi Bandung (ITB) campus.

A. SCENARIO I

In this scenario, a simulated UAV-type robot starts the mis-
sion far from the gas source. The result of using exploration
with frontier only and with a simple objective function with
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exploration-exploitation trade-off toward the global maxi-
mum of mean and variance are also shown to compare our
proposed method. The objective function equation is shown
in Eq. 6, whereas « and S are constant for weighting the mean
and variance, respectively. Five simulations of each method
are run and averaged to test the repeatability.

Xgoal = argmax (ari + Bvi) (6)
i

Comparison Average Variance (%)

1.0 1 —— proposed V¢, :0.95, my,: 0.1
——— proposed V¢, : 0.95, m¢, : 0.05
0.9 = proposed V¢ :0.90, my, : 0.05

Eg. 6 (global max. mean & var)
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FIGURE 8. Comparison of average variance between five different
decision-making strategies.

Fig. 8 shows the average variance only at the hazardous
area against time. Sometimes, the average variance increases
because the robot finds a new interesting vertex, but the aver-
age variance trend decreases. The coverage of the hazardous
area against time is illustrated in Fig. 9.

Comparison Coverage Hazardous Area (m2)

1000 {1 —— proposed v, :0.95, My, : 0.1
= proposed V¢, : 0.95, My, : 0.05
= proposed V¢, : 0.90, My : 0.05
- Eq. 6 (global max. mean & var)
- frontier

800 A

600 A

Area (m2)

400

200 A

0 100 200 300 400 500 600 700 800
Time (s)

FIGURE 9. Comparison of hazardous coverage area between five
different decision-making strategies.

Three different constants are used while testing our pro-
posed method. The trade-off clearly shows that the lower the
variance value is, the lower the coverage area. This means
that the more confident the gas concentration value obtained,
the less hazardous the area mapped. The user can then define
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FIGURE 10. Comparison of scores between five different decision-making
strategies.

the constant according to the needs. The lower the variance
threshold (vy,) is, the more confident the gas distribution map
obtained but the smaller the coverage area. The lower the

mean threshold (m;;,) is, the wider the coverage area, but the
more uncertain the gas distribution map obtained.

From the average of variance and the coverage in a haz-
ardous area, a score that is calculated by dividing the coverage
area by the variance is obtained and shown in Fig. 10. The
frontier-only exploration has the lowest score, and our pro-
posed method and the global maximum optimization method
have almost the same performance depending on the con-
stants used.

B. SCENARIO 11

In this scenario, a simulated UAV-type robot starts the mis-
sion near the gas source in the middle of the campus area.
The performance graphs are shown in Figs. 12 and 13. The
characteristics of the average variance and the coverage area
obtained are the same as those in the prior scenario. However,
the frontier, global maximum optimization and APF cannot
cover a wide area. The frontier exploration strategy does not
consider the gas mean and variance. The global maximum
optimization strategy and APF do not revisit the hazard area
and decrease the variance. Both APF and global maximum

FIGURE 11. Some typical robot trajectories using: (a.) switching, (b.) global maximum optimization, (c.) frontier only and (d.) APF. White paths are the
robot trajectories, purple to red color is the ground truth concentration of gas distribution, white polygons are the obstacles. S is the start position of

the robot.
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FIGURE 12. Comparison of average variance between five different
decision-making strategies on the ITB campus.
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FIGURE 13. Comparison of hazardous coverage area between five
different decision-making strategies on the ITB campus.

optimization strategy do not have a mechanism to open a new
territory rapidly as the frontier exploration does.

Fig. 11 shows how the robot moves by different strategies.
The switching strategy keeps the robot in a hazardous area.
The frontier strategy always opens a new area, while the
global maximum optimization strategy is slow to explore.
The decision-making computation in the global maximum
optimization strategy is slower because it should use all of
the gas samples.

Using the global maximum optimization and APF requires
all gas concentration samples, including low values outside
the hazardous area, as it has to decrease the variance in an
area where the robot takes the sample. If the low value is
filtered, the robot will remain in a place where the variance
does not decrease. By using the global maximum optimiza-
tion strategy, the Kernel DM+V process is slower than the
switching strategy, although there is a local update mech-
anism. Therefore, one of the advantages of the switching
strategy is that it does not need a low gas concentration
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Comparison Coverage Area Between
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FIGURE 14. Comparison of coverage area between two different frontier
exploration strategies. (a.) using method from [20]. (b.) using proposed
algorithm in Algorithm 3.

sample so that gas extrapolation can be performed faster.
Global maximum optimization and APF are not suitable
for large and unknown areas because they do not con-
sider how to open unknown areas as frontier exploration
does.

In this scenario, the result of using Algorithm 3 as the
frontier exploration is shown and compared with the standard
frontier selection without handling the new near frontier.
As shown in Fig. 14, the coverage area of using Algorithm 3
is wider.

C. COMPARISON BETWEEN GRID AND GRAPH KERNEL
DM+V IN NONCONVEX AREA

A graph-based approach to estimate the gas distribution map
is proposed, named the graph Kernel DM+V. In this sub-
section, the grid and graph Kernel DM+V performance in
a nonconvex area with a map size is 20 x 20 meters with
one-meter grid size.

It is shown both in Fig. 15 and Table 1 that computing
the grid-based Kernel DM+V in a nonconvex environment is
very slow. The computation time of the grid Kernel DM—+V is
significantly longer than that of the graph-based model, even
with fewer gas samples.

From the original paper on the Kernel DM+V [17],
in which the gas distribution map is estimated in a free-
obstacle map, the computation complexity is O[n(%)] with n,
o and c are the number of gas samples, the kernel distance and
grid cell size, respectively. In a building which is not free from
obstacles, the Dijkstra algorithm should be used to compute
the distance as the obstacle exists so that the complexity
is O[n(%)z]. With a graph-based approach, the mean gas
concentration of a vertex influences other vertices, and the
cost of each edge is initially available by the RRT algorithm.
Therefore, the complexity computation of the graph-based
Kernel DM+V is O[n.|Vp|] with Vp being a set of vertices
inside the kernel.
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Comparison of computation time between graph and grid Kernel DM+V
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FIGURE 15. Comparison between grid and graph Kernel DM+V in
nonconvex area.

TABLE 1. Comparison of computation time between graph and grid
Kernel DM+V.

Computation time (sec)

Number of sample .
Graph Kernel DM+V  Grid Kernel DM+V

1 0.003 0.72
2 0.001 222
3 0.002 5.04
4 0.003 4.08
5 0.002 7.45
100 0.07 174.74

IV. CONCLUSION
We have proposed a strategy for a robot to conduct area explo-
ration, especially in a 2D spatial gas distribution. By incor-
porating an RRT graph, frontier selection and graph-based
Kernel DM+-V, the robot can accomplish the mission in a very
wide environment.

Overall, the performance obtained in the experimental
results shows that our proposed method is slightly better
than the others but with selected appropriate constants. The
methods that are used for generating the RRT graph, frontier
selection and goal decision making still need constants selec-
tion. This problem must be addressed in future work, as the
constants need to be found with empirical simulation.

Generally, our approach can be used not only for UAV, but
also unmanned ground vehicle or unmanned surface vehi-
cle as long as they carry a 2D LIDAR, RTK-GPS and gas
sensor. In a real mitigation mission, instead of driving the
robot manually or based on waypoints, our approach is more
effective as the robot does not have to explore areas that are
not contaminated. The most important thing that should be
set before the mission is the gas mean and variance threshold.
If the operation time of the robot is short, it is suggested to
choose relatively big values of both gas mean and variance
threshold to allow the robot covers a vast area with a short
time although the confidence of the gas distribution map will
be relatively low.
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Our future work is also focused on the experiment with
a real UAV in a real field. Moreover, an adaptive strategy
for the gas exploration-exploitation trade-off will eliminate
some constants related to the mean and variance value of
the gas concentration. However, it is challenging to apply
it to a spatial gas distribution, as this is very dynamic. This
work will be extended by using a multi-robot by keeping
one global RRT graph and one global Kernel DM+V update
and some local RRT graphs and local Kernel DM+V updates
corresponding to the number of robots.

An extension to 3D for the gas exploration in a very large
area is another issue. However, the use of graphs in a 3D
space will make a significant difference compared to the use
of grids. Also, if the UAV needs to fly with low altitude
(1-2 meters), some dynamic obstacles must be considered.
This may be done by modifying our algorithm by effi-
ciently reconstructing the graphs and frontiers according to
the appearance of the dynamic obstacles.
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