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ABSTRACT As research attention in deep learning has been focusing on pushing empirical results to a
higher peak, remarkable progress has been made in the performance race of machine learning applications
in the past years. Yet deep learning based on artificial neural networks still remains difficult to understand
as it is considered as a black-box approach. A lack of understanding of deep learning networks from the
theoretical perspective would not only hinder the employment of them in applications where high-stakes
decisions need to be made, but also limit their future development where artificial intelligence is expected to
be robust, predictable and trustable. This paper aims to provide a theoretical methodology to investigate and
train deep convolutional neural networks so as to ensure convergence. Amathematical model based onmatrix
representations for convolutional neural networks is first formulated and an analytic layer-wise learning
framework for convolutional neural networks is then proposed and tested on several common benchmarking
image datasets. The case studies show a reasonable trade-off between accuracy and analytic learning, and
also highlight the potential of employing the proposed layer-wise learning method in finding the appropriate
number of layers in actual implementations.

INDEX TERMS Deep learning, CNNs, layer-wise learning, explainable AI, trust in AI.

I. INTRODUCTION
Convolutional neural networks (CNNs) have been success-
fully utilized for various applications with image inputs such
as image classification, pattern recognition, object detection,
image segmentation. Numerous CNN structures have been
proposed over the years in attempts to obtain better empirical
results for different applications. From a simple structure with
just several convolutional layers in LeNet [1], deeper and
larger convolutional neural networks have been constructed
over time, such as AlexNet [2], and VGG [3]. The learning of
these deep networks, deep learning (DL), is largely based on
backpropagation (BP) of the gradient information of the loss
function [4], where the training requires 2 passes: forward
and backward. In the forward pass, the data is propagated
from the input layer to the output layer to produce an output
error, and then in the backward pass, the gradient of the loss
function based on the error is propagated backward to the
front layers to adjust the weights. Although CNN models
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trained by BP have achieved great successes, majority of
the achievements are from the empirical perspective. The
theoretical understanding of these successes still remains
unknown, and the deep models trained by BP algorithm are
well known to be black-box [5] and thus difficult to explain.
In high-stake decision making, humans cannot put their trust
in something of which they have no knowledge. Improving
the theoretical understanding of deep networks and their
learning algorithms is crucial for their robustness and trust-
worthiness. While gaining understanding of deep learning
networks, some trade-offs could be acceptable such as the
decrease of the model accuracy [6]. Developing a theoretical
framework for a better understanding of deep learning would
pave the way for artificial intelligence (AI) to be deployed
in an extensive scale and in higher-stakes applications in the
future.

Besides black-box property, some inherent issues of back-
propagation have been known over the years such as back-
ward locking (the weights in a specific layer have to wait
for the signal to propagate through other layers before
they can be updated) [7], memory reuse problem [8], and
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biologically implausibility [9]. Recently there is an increas-
ing interest in an alternative of BP algorithm, layer-wise
learning of deep neural networks, in which the large black
boxes are dissected into smaller pieces. The idea was orig-
inally used as a pre-training method called greedy layer-
wise pre-training [10], where the whole network still needs
fine-tuning using backpropagation of global errors after pre-
trained. Themethod as a complete learning algorithmwithout
fine-tuning of whole networks has attracted more interest
in the machine learning (ML) community recently under
different concepts such as forward thinking [11], or learn-
ing using local errors [9], [12]. The approach is believed
to produce fairly comparable accuracy to global backprop-
agation in a number of applications. However, despite the
reasonably good performance, the theoretical analysis was
not sufficiently considered, and there was no convergence
analysis for these algorithms [9]–[12].

The problem of convergence analysis in deep networks
is well-known to be very challenging. The optimization
problems in deep networks are high-dimensional, highly
non-convex and thus very complicated to analyze. This is
one of the reasons why convergence issue has not received
sufficient considerations fromML scientists. A learning algo-
rithm without ensuring convergence could pose a risk when
employed in systems that requires stability and robustness,
such as in control and robotics [13]–[15]. The ignorance of
convergence issue can also hinder the future development and
deployment of deep learning. Thus, more efforts have been
made recently in analyzing the convergence of the gradient
descent method in network learning.

For ease of analysis, most results have considered only
shallow networks with one or two hidden layers and dif-
ferent techniques have been used to prove the convergence
in learning of the shallow networks [16]–[20]. In [16],
the convergence of a two-layer network was analyzed by
adding an identity mapping to the standard structure. For net-
works with standard structures, most studies have considered
over-parameterization networks [17], [18] where the widths
of the hidden layers are assumed to be very large so that
the problem can be analyzed mathematically. Moderating the
over-parameterization property was the aim of some recent
studies [19], [20] but the results are still limited to shallow
networks.

Recently, few works have been devoted to analyzing the
convergence issue in deep networks [21]–[23]. In [21],
an analytic layer-wise learning framework with guarantee
of convergence was developed for multilayer fully connected
networks. The learning algorithm can be applied to both
classification and regression problems in offline and online
robotic applications such as real-time robot control. However,
the framework is limited to fully connect networks (FCNs),
which therefore cannot be used for full CNNswhose structure
is different from the FCNs. In [22], [23], over-parameterized
networks were analyzed for deep learning by assuming a
huge width in each inner layer. Although these works have
contributed towards the theoretical understanding of deep

learning networks trained by gradient descent, there is still
a huge gap between these theoretical analyses and practical
experiments. In particular, the theoretical assumption of hav-
ing huge width in deep networks has made it impractical. As a
result, there were also no experimental results to support the
theories given in those studies [22], [23].

In this paper, we develop a layer-wise theoretical frame-
work for learning deep convolutional neural networks.
As compared to fully connected networks with only dense
weight matrices, the weight sharing in convolutional filters
and the presence of pooling layers in CNNs create a unique
problem which cannot be directly solved by techniques used
in FCNs. The convolutional neural networks are in fact a
more general model for image classifications as they con-
sist of convolutional layers, pooling layers and also fully
connected layers. In this paper, we explicitly introduce the
matrix representations for different types of layers in CNNs
to derive a general model of deep CNNs. The weight sharing
property of the convolutional layers is clearly formulated in
the model. Based on the model, a layer-wise learning algo-
rithm for CNNs is proposed and the convergence is analyzed.
The proposed method does not require the assumption of
over-parameterization. The method is then tested on several
common image datasets and the results show a reasonable
trade-off between test accuracy and analytic learning. Though
there is a trade-off in test accuracies in some case studies, the
results also show that some deep CNNsmay not need asmany
convolutional layers as in their original structure to achieve
reasonable accuracies. This demonstrates the possibility of
using the layer-wise learning method as an indicator to deter-
mine the appropriate number of layers in final implementa-
tions of the models.

The rest of this paper is organized as follows. Section II
presents the problem formation where the maxtrix repre-
sentations of the mathematical operations taking place in
CNNs are introduced and the full equation of CNN models
is derived. Section III presents the learning algorithms where
the theoretical analysis is provided to prove the conver-
gence of the proposed algorithms. Section IV presents the
case studies where different CNN structures and databases
are employed to demonstrate the efficacy of the proposed
method.

II. PROBLEM FORMATION
We consider the problem of supervised learningwith a dataset
containing input images and their labels. The aim is to
approximate the true mapping between the input images and
their labels for predicting the labels of unknown images.
Denoting X ∈ Rn×n×nc as an input image (where n is the
width and also the height, and nc is the number of channels
(or depth) of the image), and y ∈ Rp as the output variable
representing the image’s label (where p is the number of
classes in the classification problem), the true mapping f can
be described as

y = f (X) (1)
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FIGURE 1. An example of a CNN with 3 convolutional layers and 2 fully connected layers.

FIGURE 2. Convolution with 2D Images.

The mapping f in (1) is to be approximated by a CNN.
An example of CNNs is shown in Fig. 1. Normally, a CNN
can be divided into 2 main parts: convolutional (Conv) part
which includes convolutional layers and pooling layers, and
fully connected (FC) part which includes fully connected
(or dense) layers. Between the 2 parts, there is a flattening
operation which reshapes the 3D volume of neurons into a
1D list of neurons. For simplicity, the pooling layers in our
work are accompanied with the preceding Conv layers and
referred to as pooling operations within the Conv layers. The
Conv part can thus be referred to as Conv layers, and the FC
part can also be referred to as FC layers.

In this section, we introduce the matrix representations
of various operations in a CNN, including convolution and
pooling in a Conv layer, and flattening at the end of the Conv
part.

A. MATRIX REPRESENTATIONS
1) CONVOLUTION WITH 2D IMAGES
Before considering the more complex 3D inputs, we first
study the case of 2D inputs where nc = 1. Examples of
2D inputs are black and white images which can be found
in MNIST [24] or Fashion MNIST datasets [25]. The convo-
lution operation with a 2D image is illustrated in Fig 2.

Given an input image of size n × n (pixels) with n being
the width (and also the height) of the image and a filter
with a dimension of f × f as shown in Fig. 3a and Fig. 3b
respectively.

Convolving the input image with the filter results in an
m × m convolution output where m = (n − f + 2p)/s + 1
with p being the size of zero padding and s being the stride of
the convolution operation. Fig. 3c shows the 2D convolution
output with size of m × m. For simplicity of presentation,
we present the case of no padding and stride 1, which means
m = n− f +1. Despite that, the matrix representations for the
general case are still the same. The resulting output elements
of the convolution operation can be computed as follows

z11 = v11x11 + v12x12 + · · · + v1f x1f
+ v21x21 + v22x22 + · · · + v2f x2f
+ · · ·

+ vf 1xf 1 + vf 2xf 2 + · · · + vff xff (2)

z12 = v11x12 + v12x13 + · · · + v1f x1(f+1)
+ v21x22 + v22x23 + · · · + v2f x2(f+1)
+ · · ·

+ vf 1xf 2 + vf 2xf 3 + · · · + vff xf (f+1) (3)
...

z1m = v11x1m + v12x1(m+1) + · · · + v1f x1n
+ v21x2m + v22x2(m+1) + · · · + v2f x2n
+ · · ·

+ vf 1xfm + vf 2xf (m+1) + · · · + vff xfn (4)
...

zmm = v11xmm + v12xm(m+1) + · · · + v1f xmn
+ v21x(m+1)m + v22x(m+1)(m+1) + · · · + v2f x(m+1)n
+ · · ·

+ vf 1xnm + vf 2xn(m+1) + · · · + vff xnn (5)

Equation (2) can be rewritten as

z11 = xf11v (6)
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FIGURE 3. The input, filter and output in convolution with 2D images.

where xf11 = [x11, x12, · · · , x1f , x21, x22, · · · , x2f , · · · ,
xf 1, xf 2, · · · , xff ] ∈ R1×f 2 , and

v = [v11, v12, · · · , v1f , v21, v22, · · · , v2f , , · · · , vf 1, vf 2,

· · · , vff ]T ∈ Rf 2×1 (7)

Similarly, we have

z12 = xf12v (8)
...

zmm = xfmmv (9)

Generally, for i, j = 1..m,

zij = xfijv (10)

where xfij = [xij, xi(j+1), · · · , xi(j+f−1), x(i+1)j, · · · ,

x(i+f−1)(j+f−1)]. Noting that xfij is simply a row vector (with
f 2 elements) containing all the pixels of the input image that
correspond to the output neuron at the ith row and jth column.
In other words, xfij is the vector form of the neuron’s receptive
field.
We can combine all zij and the equations for the output in a
compact form can be given as follows

z = Xf v (11)

where

z = [z11, z12, · · · , z1m, z21, · · · , zmm]T ∈ Rm2
×1 (12)

is a vector which represents the convolution output, and

Xf
= [xf11, x

f
12, · · · , x

f
1m, · · · , x

f
mm]

T
∈ Rm2

×f 2 (13)

=



x11 x12 · · · x1f x21 · · · xff
x12 x13 · · · x1(f+1) x22 · · · xf (f+1)
...

...
. . .

...
...

. . .
...

x1m x1(m+1) · · · x1n x2m · · · xfn
...

...
. . .

...
...

. . .
...

xmm xm(m+1) · · · xmn x(m+1)m · · · xnn


(14)

is defined as the filter-dependent input matrix, which is con-
structed from the input image based on the filter design, and
v ∈ Rf 2×1 defined in (7) represents the unknown weights of
the filter.

When there are nf filters to exact nf features from the input
images as shown in Fig. 2, equation (11) can be extended as
follows

Z = XfV (15)
where V = [v1, v2, · · · , vnf ] ∈ Rf 2×nf with vi representing
the weights of the ith filter, and Z = [z1, z2, · · · , znf ] ∈
Rm2
×nf with zi being the resulting output feature when con-

voluting the input with the ith filter.

2) CONVOLUTION WITH 3D INPUTS
We now consider an input of size n × n × nc with n being
the width (and also the height) and nc being the number of
channels (or the depth). For the input layer of a CNN, nc
should be 1 for gray images (like previous subsection) and 3
for RGB color images. To do the convolution, each filter
should have the dimension of f × f × nc. The convolution
operation with 3D inputs is illustrated in Fig. 4.

Similar to the 2D inputs, it is possible to represent the
convolution operations in a similar form as in (10) by defining
xfij and v as follows

xfij = [xij1, xij2, · · · , xijnc , xi(j+1)1, · · · , xi(j+f−1)nc ,

x(i+1)j1, · · · , x(i+f−1)(j+f−1)nc ] ∈ R1×f 2nc (16)
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FIGURE 4. Convolution with 3D inputs.

FIGURE 5. The part of the 3D input image (receptive field) that
corresponds to the neuron at the i th row and j th column of the output.

and

v = [v111, v112, · · · , v11nc , v121, · · · , v1fnc , v211, · · · ,

vffnc ]
T
∈ Rf 2nc×1 (17)

where xijk and vijk are respectively the pixel values of the
input as seen in Fig. 5 and the weights of the filter as seen
in Fig. 6. Again, noting that xfij is simply a row vector (with
f 2 ·nc elements) containing all the pixels in the receptive field
of the ith row, jth column output neuron, and v is a column
vector (with f 2 · nc elements) containing all the weights of
the filter. Hence, the output can be calculated as

zij = xfijv (18)

Similarly, denoting z ∈ Rm2
×1 (a column vector of m2

elements) andXf
∈ Rm2

×f 2nc (a matrix ofm2 rows and f 2 ·nc
columns) as in (12) and (13) respectively, we also have

z = Xf v (19)

When there are nf filters to exact nf features from the input
images, equation (19) can be extended as follows

Z = XfV (20)

where V = [v1, v2, · · · , vnf ] ∈ Rf 2nc×nf with vi representing
the weights of the ith filter, and Z = [z1, z2, · · · , znf ] ∈
Rm2
×nf with zi being the resulting output feature when con-

voluting the input with the ith filter.

FIGURE 6. A 3D filter.

FIGURE 7. Pooling with 3D inputs.

3) ACTIVATION FUNCTION
After the convolution operation, an activation function is
applied for each element of the resulting matrix Z in (20) to
produce the matrixRwhich has the same dimension as Z (m2

rows and nf columns).

R = 8(Z) = 8(XfV) (21)

A commonly used activation function is ReLU [26].

4) POOLING OPERATIONS
The function of the pooling layer is to down-sample the
feature maps in each channel. A kernel of size kp × kp is
used to summary the key feature of the region it covers in
each channel of the feature maps. The kernel is moved with
a stride of s × s. We consider the case where the kernel size
and the stride of the pooling layer are equal, or kp = s. In this
case, with an input of size m×m× nf as in Fig. 7, the output
of the pooling operation has a size of m

s ×
m
s × nf . With R

being the matrix representation of the pooling input (output
of equation (21) above), T being the matrix representation of
the pooling output, the pooling operation can be represented
as follows:

P : R → T

Rm2
×nf → R

m2

s2
×nf (22)

As the pooling operation is done independently for each
channel, it can be represented as follows for the ith channel
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of the pooling input R (in total nf channels),

P : ri → t i

Rm2
×1
→ R

m2

s2
×1 (23)

where ri is the ith column of R, and t i is the ith column of T.
For example, an image with the size of 4×4, after pooling

with kernel size 2× 2:
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

→
t11 t12
t21 t22

using the vector representation gives: P : R16×1
→ R4×1

r11
r12
r13
r14
r21
r22
r23
r24
r31
r32
r33
r34
r41
r42
r43
r44

→

t11
t12
t21
t22

=

f (r11, r12, r21, r22)
f (r13, r14, r23, r24)
f (r31, r32, r41, r42)
f (r33, r34, r43, r44)

Two common types of pooling layers are: average pooling
and max pooling.
For average pooling, we have

t11
t12
t21
t22

=

1
4
(r11 + r12 + r21 + r22)

d 1
4 (r13 + r14 + r23 + r24)

d 1
4 (r31 + r32 + r41 + r42)

1
4
(r33 + r34 + r43 + r44)

For max pooling, we have

t11
t12
t21
t22

=

max(r11, r12, r21, r22)
max(r13, r14, r23, r24)
max(r31, r32, r41, r42)
max(r33, r34, r43, r44)

a, Average pooling Pavg
It can be shown that

Pavg(r) = 0avgr (24)

where 0avg ∈ R(m2/s2)×m2
is a matrix that does not depend on

the input vector r. Indeed, with kernel size of s× s we have

Pavg(r) = Pavg(


r11
r12
...

rmm

)

=


1
s2
(r11 + r12 + · · · + rss)

...
1
s2
(r(m−s+1)(m−s+1) + · · · + rmm)


= 0avgr (25)

where

0avg

=


1
s2
· · ·

1
s2

0 · · · 0
1
s2
· · ·

1
s2

0 · · · 0
...

. . .
...
...
. . .

...
...

. . .
...
...
. . .

...

0 · · · 0 0 · · · 0 0 · · · 0 0 · · ·
1
s2

 (26)

and

r = [r11, · · · , r1s, r1(s+1), · · · , r(s−1)m, rs1, · · · , rss,

rs(s+1), · · · , rmm]T (27)

b, Max pooling Pmax
It can be shown that

Pmax(r) = 0max(r)r (28)

where 0max(r) ∈ R(m2/s2)×m2
.

Pmax(r) = Pmax(


r11
r12
...

rmm

)

=

max(r11, · · · , r1s, · · · , rs1, · · · , rss, · · · )
...

max(r(m−1)(m−1), r(m−1)m, rm(m−1), rmm)


= 0max(r)r (29)

where

0max(r)

=

 1̃11 · · · 1̃1s 0 · · · 0 1̃s1 · · · 1̃ss 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 1̃mm


(30)

where 1̃ij is either 0 or 1. 1̃ij = 1 if max(· · · , rij, · · · ) is rij
and 1̃ij = 0 otherwise; and

r = [r11, · · · , r1s, r1(s+1), · · · , r(s−1)m, rs1, · · · , rss,

rs(s+1), · · · , rmm]T (31)

c, General representation of pooling P: In general, both
(24) and (28) can be written as

t = P(r) = 0(r)r (32)

or simply

t = P(r) = 0r (33)

For nf channels, we have

T = P(R) = 0R (34)
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Combining with (21), we have

T = P(8(XfV)) = 08(XfV) (35)

Noting that equation (35) can also be used for the convo-
lutional layer that does not have the pooling operation by
assuming s = 1. In this case, the matrix 0 is an identity
matrix.

5) FLATTENING OPERATION
In the end of the convolutional part of a CNN, a flattening
operation is required to convert the 3D output feature map
into a list of elements before being fed to the fully connected
layers. For the matrix representation, the flattening operation
is just a rearrangement of the elements in the matrix T ∈
R(m2/s2)×nf into a vector. We can write the matrix T as

T =
[
t1 t2 · · · tnf

]
=
[
01r1 02r2 · · · 0nf rnf

]
(36)

where t i is the ith channel of the output of pooling layer. The
flattening operation can be expressed as

ϕ = z[T] =


t1
t2
...
tnf

 =

01r1
02r2
...

0nf rnf

 (37)

B. EQUATION OF DEEP CONVOLUTIONAL
NEURAL NETWORKS
We consider a deep CNN with nconv convolutional layers and
nFC fully connected layers as illustrated in Fig. 8. At the jth

conv layer, denoting nj as the width and the height, ncj as the
number of channels (or the depth) of the input volume, nfj as
the number of filters, mj as the width and the height of the
output volume after the convolution operation, and sj as the
stride of the pooling operation. The output volume of the jth

conv layer can be computed by

Xj+1 = Tj = P
(
8j(X

fj
j Vj)

)
= 0j8j(X

fj
j Vj)

for j = 1..nconv. (38)

where Xj+1 ∈ R
m2j
s2j
×nfj

or Rn2j+1×nc(j+1) (at the (j + 1)th conv

layer, the width of the input is nj+1 =
m2
j

s2j
and the depth is

nc(j+1) = nfj ). Noting that the input volume Xj ∈ Rn2j ×ncj is

different from the filter-dependent matrix X
fj
j ∈ Rm2

j ×f
2
j ncj .

For the convolutional layer that does not have the pooling
operation, 0j is an identity matrix. At the last conv layer,
we have

Tnconv = P
(
8nconv (X

fnconv
nconv Vnconv)

)
= 0nconv8nconv (X

fnconv
nconv Vnconv ) (39)

The flattening operation occurs at this layer, the input of the
FC part is hence computed as follows

ϕ = z
{
Tnconv

}
= z

{
0nconv8nconv (X

fnconv
nconv Vnconv )

}
(40)

The output of the CNN can thus be computed as

yCNN = ϕnFC
(
WnFC · · ·ϕ2(W2ϕ1(W1ϕ)) · · ·

)
(41)

where Wj and ϕj are the weight matrix and the vector of
activation funtions at the jth FC layer respectively. The output
activation function vector can also be denoted as σ , ϕnFC .
Therefore, the overall equation is given as

yCNN
= σ

(
WnFC · · ·ϕ1

(
W1z

{
0nconv8nconv

×([· · · [0282([0181(X
f1
1 V1)]f2V2)] · · · ]fnconvVnconv )

})
· · ·

)
(42)

III. FORWARD PROGRESSIVE LEARNING OF
CONVOLUTIONAL NEURAL NETWORKS
A. FORMULATION
In forward progressive learning (FPL) of CNNs, the entire
CNN is trained part by part in sequence. That is, the convo-
lutional part is trained first and then the fully connected part
is trained afterwards. The convolutional part of the CNN is
learned in a layer-wise manner as illustrated in Fig. 9. Each
time, a convolutional subnet which contains 1 convolutional
layer and 1 FC layer is trained. The subnet, which can be
referred to as two-layer training CNN in this work, is detailed
in Fig. 10. The presence of the pooling action in the subnet
depends on whether the convolutional layer in the original
structure of the entire CNN has the pooling action or not.
When learning the subnet of the jth convolutional layer with
filter weight matrix Vj, an FC layer with pseudo weight

matrix WB
j is used. After the subnet is trained, the FC layer

is discarded. Vj is then frozen and the computed output Tj
of the jth convolutional layer is used as the input Xj+1 of the
subnet of the next convolutional layer. The learning process
continues until reaching the last convolutional layer.

The subsequent subsection will introduce in details the
subnets (two-layer training CNNs) in the FPL of CNNs.

B. TWO-LAYER TRAINING CNNs
Fig. 10 shows a two-layer trainingCNN as the subnet of the jth

convolutional layer of the entire CNN,with one convolutional
layer and one FC layer. The output of the two-layer training
CNN that contains one convolutional layer and one fully
connected layer can be expressed as follows

ytrCNN = σ
(
WB

j ϕj
)

= σ
(
WB

j z(0j8j(X
fj
j Vj))

)
(43)

where ϕj = z(0j8j(X
fj
j Vj)).

Denoting nj as the width and the height, ncj as the number
of channels (or the depth) of the input volume, fj as the
kernel size of the filters, nfj as the number of filters, mj
as the width and the height of the output volume after the
convolution operation, and sj as the stride of the pooling
operation, nflj as the number of neurons after the flattening
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FIGURE 8. A deep CNN with nconv convolutional layers and nFC fully connected layers.

FIGURE 9. The forward progressive learning of CNNs.

FIGURE 10. A two-layer training CNN: The subnet of the j th conv layer.

operation. Hence, X
fj
j ∈ Rm2

j ×f
2
j ncj is the filter-dependent

input matrix, Vj ∈ Rf 2j ncj×nfj is the filter matrix, z is the
denotation for the flattening operation in which the matrix

R(m2
j /s

2
j )×nfj becomesRnflj×1 (nflj =

m2
j

s2j
nfj ), ϕj ∈ Rnflj×1 is the

vector after flattening,WB
j ∈ Rp×nflj is the FC pseudo weight

matrix, and y ∈ Rp×1 is the output vector of the network.
The flattening operation can be expressed as

ϕj = z[Tj] =


t j,1
t j,2
...

t j,nfj

 =

0j,1φj,1(X

fj
j vj,1)

0j,2φj,2(X
fj
j vj,2)

...

0j,nfjφj,nfj
(X

fj
j vj,nfj )

 (44)

Equation (43) can be rewritten as follows

ytrCNN =σ
([

WB
j,1 WB

j,2 · · · W
B
j,nfj

]

0j,1φj,1(X

fj
j vj,1)

0j,2φj,2(X
fj
j vj,2)

...

0j,nfjφj,nfj
(X

fj
j vj,nfj )


)

or

ytrCNN = σ
( nfj∑

i=1

WB
j,i0j,iφj,i(X

fj
j vj,i)

)
(45)

where WB
j,i ∈ Rp×(m2

j /s
2
j ) denotes a sub-matrix of WB

j , vj,i is
the ith column vector of matrix Vj, and φj,i is the i

th column
vector of matrix 8j. It can be seen that vj,i and φj,i corre-
spond to the weight of the ith filter and the respective output
(i = 1..nfj ).
Each two-layer training CNN is trained through 2 phases:

Pre-training and fine-tuning. For the pre-training phase, the
FC layer (WB

j ) can be trained by using any standard learning
algorithm for the output weights such as least square meth-
ods [27], [28] or one-layer update algorithm for FCNs [21].
The fine-tuning phase for the subnet is presented in the sub-
sequent subsection.

C. FINE-TUNING ALGORITHM
In this section, we develop update laws to fine-tune concur-
rently the filter weights Vj and the pseudo output weights
WB

j of the two-layer training CNN. With sufficient neurons
in the hidden layer, there exist optimal weight matrices Vj
and WB

j such that the output of the training CNN given in
(43) can approximate the target y in (1). At the k th learning
step, we have

y(k) = σ
(
WB

j z[0j8j(X
fj
j (k)Vj)]

)
(46)

The weight matrices Vj and WB
j are updated incrementally

by 2 update laws. Their estimated values at the k th step of
learning are denoted as V̂j(k) and ŴB

j (k) respectively. The
estimated output ŷ(k) at the k th step is defined as

ŷ(k) = σ
(
ŴB

j (k)z[0̂j(k)8j(X
fj
j (k)V̂j(k))]

)
(47)

VOLUME 10, 2022 14277



H.-T. Nguyen et al.: Layer-Wise Theoretical Framework for Deep Learning of Convolutional Neural Networks

The output estimation error at the k th step can be calculated
by e(k) = y(k)− ŷ(k). Hence,

e(k) = σ
(
WB

j z[0j8j(X
fj
j (k)Vj)]

)
−σ

(
ŴB

j (k)z[0̂j(k)8j(X
fj
j (k)V̂j(k))]

)
(48)

Let

δ(k) , WB
j z[0j8j(X

fj
j (k)Vj)]

−ŴB
j (k)z[0̂j(k)8j(X

fj
j (k)V̂j(k))] (49)

which can be written as

δ(k) = ŴB
j (k)1ϕj(k)+1WB

j (k)ϕ̂j(k)

+1WB
j (k)1ϕj(k) (50)

where 1ϕj(k) = z[0j8j(X
fj
j (k)Vj)] − z[0̂j(k)8j

(X
fj
j (k)V̂j(k))], ϕ̂j(k) = z[0̂j(k)8j(X

fj
j (k)V̂j(k))], and

1WB
j (k) =WB

j − ŴB
j (k).

Properties of 1ϕj(k). Similar to (45), we have

ŴB
j (k)1ϕj(k) =

nfj∑
i=1

ŴB
j,i(k)1ϕj,i(k) (51)

where

1ϕj,i(k) = 0j,iφj,i(X
fj
j (k)vj,i)− 0̂j,i(k)φj,i(X

fj
j (k)v̂j,i(k))

(52)

For average pooling, 0j,i = 0̂j,i(k). For max pooling, 0j,i ≈
0̂j,i(k) in the fine-tuning phase. In this phase, it is also
possible to use the following property

0j,iφj,i(X
fj
j (k)vj,i)− 0̂j,i(k)φj,i(X

fj
j (k)v̂j,i(k))

≈ 0̂j,i(k)8′j,i(k)X
fj
j (k)1vj,i(k) (53)

where8′j,i(k) ∈ Rm2
j ×m

2
j is a diagonal matrix whose diagonal

entries are defined as

φ̂′j,i,l(k) =
dφj,i,l(x(k))

dx(k)

∣∣∣
x(k)=xj,rl (k)v̂j,i(k)

(54)

with φ̂′j,i,l(k) being the l th-row, l th-column entry of 8′j,i(k),

xj,rl(k) being the l th row of X
fj
j (k). Therefore,

ŴB
j (k)1ϕj(k) =

nfj∑
i=1

ŴB
j,i(k)1ϕj,i(k)

≈

nfj∑
i=1

ŴB
j,i(k)0̂j,i(k)8

′
j,i(k)X

fj
j (k)1vj,i(k)

(55)

Properties of δ(k). Let the activation functions σ bemono-
tonically increasing and their derivatives be bounded above
by fσ , the following properties will hold:

i, The corresponding elements of e(k) in (48) and δ(k) in
(49) have the same sign, i.e.

ei(k)δi(k) ≥ 0, ∀i = 1..p (56)

ii, The absolute value of each element of e(k) in (48) is
less than or equal to fσ times the absolute value of the
corresponding element of δ(k) in (49), i.e.

|ei(k)| ≤ fσ |δi(k)|, ∀i = 1..p (57)

Based on the output estimation error e(k), the learning law
to update the estimated weight ŴB

j (k) is proposed as follows

ŴB
j (k + 1) = ŴB

j (k)+ α2L(k)e(k)ϕ̂
T
j (k) (58)

where α2 is a positive scalar, L(k) ∈ Rp×p is a positive
diagonal matrix.
In (58), let wB

j,h denote the h
th column vector of matrix WB

j ,

ŵB
j,h(k) the h

th column vector of ŴB
j (k) and ϕ̂j,h(k) the h

th

element of vector ϕ̂j(k). The update law (58) can be rewritten
in vector form as

ŵB
j,h(k + 1) = ŵB

j,h(k)+ α2ϕ̂j,h(k)L(k)e(k) (59)

The learning law to update the estimated filter weight
matrix V̂j(k) based on the output estimation error e(k) is
proposed as

v̂j,i(k + 1) = v̂j,i(k)+ α1X
fj
j

T
(k)Pi(k)e(k) (60)

where v̂j,i(k) denotes the the ith column vector of matrix
V̂j(k), α1 is a positive scalar. It can be seen that vj,i corre-
sponds to the ith filter in totally nfj filters of the convolution
operation. Pi(k) is chosen as

Pi(k) = 8
′T
j,i (k)0̂

T
ji (k)Ŵ

BT
j,i (k)L(k) (61)

To prove the convergence, an objective function is defined
as

V (k) =
1
α2

nflj∑
h=1

1wBT
j,h (k)1wB

j,h(k)

+
1
α1

nfj∑
i=1

1vTj,i(k)1vj,i(k) (62)

where1wB
j,h(k) = wB

j,h− ŵ
B
j,h(k) and1vj,i(k) = vj,i− v̂j,i(k).

Using (59) and (60), the objective function at the next step of
learning can be expressed as

V (k + 1)

=
1
α2

nflj∑
h=1

1wBT
j,h (k + 1)1wB

j,h(k + 1)

+
1
α1

nfj∑
i=1

1vTj,i(k + 1)1vj,i(k + 1)
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=
1
α2

nflj∑
h=1

(
1wB

j,h(k)− α2ϕ̂j,h(k)L(k)e(k)
)T

×

(
1wB

j,h(k)− α2ϕ̂j,h(k)L(k)e(k)
)

+
1
α1

nfj∑
i=1

{(
1vj,i(k)− α1X

fj
j

T
(k)Pi(k)e(k)

)T
×

(
1vj,i(k)− α1X

fj
j

T
(k)Pi(k)e(k)

)}
(63)

A change of the objective function from current learning
step k th to the next learning step (k + 1)th can therefore be
calculated as

1V (k) = V (k + 1)− V (k)

1V (k) =
1
α2

nflj∑
h=1

(
− α2ϕ̂j,h(k)1wBT

j,h (k)L(k)e(k)

− α2ϕ̂j,h(k)eT (k)LT (k)1wB
j,h(k)

+ α22 ϕ̂
2
j,h(k)e

T (k)LT (k)L(k)e(k)
)

+
1
α1

nfj∑
i=1

(
− α11vTj,i(k)X

fj
j

T
(k)Pi(k)e(k)

− α1eT (k)PTi (k)X
fj
j (k)1vj,i(k)

+ α21e
T (k)PTi (k)X

fj
j (k)X

fj
j

T
(k)Pi(k)e(k)

)
= −ϕ̂

T
j (k)1WBT

j (k)L(k)e(k)

−

nfj∑
i=1

1vTj,i(k)X
fj
j

T
(k)Pi(k)e(k)

− eT (k)LT (k)1WB
j (k)ϕ̂j(k)

−

nfj∑
i=1

eT (k)PTi (k)X
fj
j (k)1vj,i(k)

+ eT (k)
(
α2

nflj∑
h=1

ϕ̂2j,h(k)L
T (k)L(k)

+ α1

nfj∑
i=1

PTi (k)X
fj
j (k)X

fj
j

T
(k)Pi(k)

)
e(k)

(64)

Denoting

3j(k) , α2

nflj∑
h=1

ϕ̂2j,h(k)L
T (k)L(k)

+ α1

nfj∑
i=1

PTi (k)X
fj
j (k)X

fj
j

T
(k)Pi(k) (65)

From (50), we have

1WB
j (k)ϕ̂j(k)

= δ(k)− ŴB
j (k)1ϕj(k)−1WB

j (k)1ϕj(k) (66)

Next, substituting into (64) gives

1V (k)=−
[
δT (k)−1ϕTj (k)Ŵ

BT
j (k)−1ϕTj (k)1WBT

j (k)
]

×L(k)e(k)−

nfj∑
i=1

1vTj,i(k)X
fj
j

T
(k)Pi(k)e(k)

− eT (k)LT (k)
[
δ(k)− ŴB

j (k)1ϕj(k)

− 1WB
j (k)1ϕj(k)

]
−

nfj∑
i=1

eT (k)PTi (k)X
fj
j (k)1vj,i(k)+ e

T (k)3j(k)e(k)

= −δT (k)L(k)e(k)− eT (k)LT (k)δ(k)

+ ξT (k)L(k)e(k)+ eT (k)LT (k)ξ (k)

+ eT (k)3j(k)e(k)

+ 1ϕTj (k)1WBT
j (k)L(k)e(k)

+ eT (k)LT (k)1WB
j (k)1ϕj(k) (67)

where

ξ (k) , ŴB
j (k)1ϕj(k)−

nfj∑
i=1

L−T (k)PTi (k)X
fj
j (k)1vj,i(k)

(68)

Replacing (61) and (55) into ξ (k) leads to ξ (k) ≈ 0. Thus,
(67) becomes

1V (k) = −δT (k)L(k)e(k)− eT (k)LT (k)δ(k)

+ eT (k)3j(k)e(k)

+ 1ϕTj (k)1WBT
j (k)L(k)e(k)

+ eT (k)LT (k)1WB
j (k)1ϕj(k) (69)

At the fine-tuning phase where the errors are adequately
small, the last 2 terms in (69) can be negligible as they are
of O3 while the other terms are of O2. The equation (69)
becomes

1V (k) = −δT (k)L(k)e(k)− eT (k)LT (k)δ(k)

+ eT (k)3j(k)e(k) (70)

Using the properties (56), (57) yields

1V (k) ≤ −
2
fσ
eT (k)L(k)e(k)+ eT (k)3j(k)e(k)

(71)

When L(k) is selected such that
2
fσ
L(k)−3j(k) > 0 (72)

or

2
fσ
L(k)−

(
α2

nflj∑
h=1

ϕ̂2j,h(k)L
T (k)L(k)

+ α1

nfj∑
i=1

PTi (k)X
fj
j (k)X

fj
j

T
(k)Pi(k)

)
> 0 (73)
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then 1V (k) ≤ 0 for any e(k). Hence, the value of the
objective function satisfies V (k + 1) ≤ V (k). Moreover, the
function V (k) is bounded from below as it is non-negative,
we thus have 1V (k) converges. So, from (71) we have e(k)
converges when k increases.
Remark 1: For networks with insufficient number of hid-

den neurons, it can be guaranteed that 1V (k) ≤ 0 if

‖e(k)‖

≥
b

2
(
2Lm
fσM
− dML2M

)[4Lm
fσM
+

2LM
fσm

+

√
8Lm
fσM

dML2M +
8LM
fσm

(
4Lm
fσM
− dML2M

)
+

(
2LM
fσm

)2]
(74)

and
2Lm
fσM
− dML2M > 0 (75)

where b denotes the upper bound of the NN approximation
error, Lm and LM respectively denote the minimum and max-
imum eigenvalues of the matrix L(k) for ∀k , fσm and fσM
respectively denote the lower and the upper bounds of the
derivative of σ , and dM is a positive constant such that

eT (k)
(
α2

nflj∑
h=1

ϕ̂2j,h(k)L
T (k)L(k)

+α1

nfj∑
i=1

PTi (k)X
fj
j (k)X

fj
j

T
(k)Pi(k)

)
e(k)

≤ dML2M‖e(k)‖
2 (76)

Therefore, there exists an ultimate bound such that the error
always stay within the bound after reaching it. Noting from
(74) that this ultimate bound tends to zero when the bound of
the NN approximation error tends to zero.
Remark 2: While the convergence issue in deep learning

has only received more attention from the ML community
recently due to the interests of explainable AI (XAI), con-
vergence and stability analyses have always been important
for neural network-based learning control since the early
days of its research [13]–[15]. For robotic applications, the
neural network-based control has also been an active research
topic [29]–[35]. These problems are mostly formulated as
regression problems for dynamic control and most of the
studies has focused on shallow networks only. In [21], mul-
tilayer fully connected networks were employed for both
regression and classification tasks in robotic systems where
Lyapunov-like method was developed for convergence anal-
ysis of deep learning networks. It has thus bridged the gaps
between the fields of deep learning, control and robotics,
so that deep dense networks can be used reliably in robotic
applications. These formulations are all based on dense or
fully connected networks, but for image classification tasks,
deep convolutional neural networks have shown to be more
effective. The convolutional neural networks can be treated
as more general networks for image classification tasks as

they consist of convolutional layers, polling layers and fully
connected layers.

IV. CASE STUDIES
In this section, the proposed FPL method for CNNs is
evaluated based on different network architectures and
datasets. Comparisons are made with the stochastic gradient
descent (SGD) method.

A. SVHN
The first classification task is based on SVHN dataset [36].
It is a dataset that contains real-world images of house num-
bers in 10 classes, each class for each digit. It has 73,257
digits for training, 26032 digits for testing. Each of these
images has the size of 32×32 pixels. SVHN dataset is similar
to the classical MNIST dataset [24], but it contains natural
images of house numbers instead of images of handwritten
digits.

The VGG11 [3] was used for the classification task of
SVHN. The architecture of the VGG11 is shown in Fig. 15.
The VGG11 has 8 convolutional layers with pooling oper-
ations at conv 1, 2, 4, 6 and 8, and 3 fully connected layers.
The activation functions of the convolutional layers and inner
fully connected layers are ReLU, and the activation function
of the output layer is sigmoid.

1) CONVERGENCE ISSUE IN SGD
The SGD optimizer was first used to train the VGG11. For
consistency with the FPL method, the batch size for SGD
was chosen as 1. The number of epochs was set at 300. The
learning rate was initially set as 0.01, and scheduled to be
halved after the 150th epoch. The learning converged at first,
but then failed to converge after the 100th epoch, as can be
seen in Fig. 11 and Fig. 12.

2) NETWORK PERFORMANCE
To illustrate the performance of the proposed method, the
convolutional part of the VGG11 was trained by FPL through
training 8 conv subnets sequentially, each of which was a
two-layer training CNN, and the fully connected part of the
network was trained by FPL through training 2 FC subnets.
There were 2 phases in learning of each subnet: pre-training
and fine-tuning. In pre-training phase, the output layer, i.e. the
fully connected part, of the subnet was trained in 2 loops by
using the one-layer update algorithm of fully connected net-
works [21]. In this phase, the learning gain was automatically
calculated. In the fine-tuning phase, the update laws (58) and
(60) were used where the convolutional part were updated.
There were about 200-600 loops for fine-tuning of each conv
subnet and 100 loops for each FC subnet. For the conv
subnets, the training stopped at the 200th, 500th or 600th loop
when the overfitting was likely to start happening. The initial
gain for the fine-tuning of all subnet was set at 0.01. To make
sure that the initial gain was not too large for convergence,
in the first several loops, the gain was automatically reduced
by checking the condition (73). After the gain was adjusted
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FIGURE 11. SVHN with VGG11: Accuracies of the traning set and test set
in SGD with learning rate 0.01. The convergence failed after 100 epochs.

FIGURE 12. SVHN with VGG11: The loss in SGD with learning rate 0.01.
The convergence failed after 100 epochs.

TABLE 1. SVHN with VGG11: Training & test accuracies (%) by FPL
and SGD.

to a suitable value, the new value of the gain matrix was kept
for the successive loops of fine-tuning.

Fig. 13 shows the best test accuracy for each subnet. It can
be seen that the test accuracy increases when adding a new
convolutional layer for the first 4 convolutional layers and
then maintains similar accuracies when adding the remaining
convolutional and fully connected layers. The accuracy for
the last hidden fully connected layer is 93.91%.

For comparison, the SGDwas used again but with a smaller
learning rate (0.005) so that the convergence did not fail
as in subsection IV-A1. There were again 300 epochs. The
obtained results are shown in Table 1. It can be seen from
the table that there is a trade-off in the performance where
the proposed FPL can guarantee convergence but the test
accuracy (full net) is slightly lower than that of SGD.

3) THE POSSIBILITY OF PRUNING TOP LAYERS
Besides ensuring convergence, another advantage of using the
proposed layer-wise learning is the possibility of constructing
the optimal number of layers of the convolutional filters.
As seen in Fig. 13, the test accuracy peaks after adding the

TABLE 2. SVHN with VGG11: The trained networks were tested with
MNIST dataset. Test set A indicates the training set of MNIST, test set B
indicates the test set of MNIST.

first few convolutional layers and then does not improve
further with more layers added. To see if the trend happens
for a new test set with unseen data as well, we have also
tested the trained subnets with the MNIST dataset where
the classification task is similar. The tests were done for
both training set and test set of MNIST. To avoid confusion,
we shall call the training set and test set of MNIST in this
case as test set A and test set B respectively. To do the tests,
we extended the number of channels of the input images
from 1 to 3, to match the number of channels of color images
of SVHN. It can be seen from Fig. 14 that the trend in the
test set of SVHN is also present for both test set A and test
set B obtained from MNIST. This indicates the possibility of
pruning the convolutional layers based on the proposed layer
wise method. The layer-wise learning can also be terminated
when the accuracies do not further improve by adding one or
two more layers.

For comparison, the entire VGG11 network trained by
SGD was also tested with the MNIST dataset. The results for
FPL (at the conv4 subnet and full net) and SGD (full net) are
shown at Table 2. It can be seen that the FPL generalizes better
for this specific problem even with the use of less layers and
parameters.

B. FASHION MNIST
Fashion MNIST [25] is a dataset of fashion products in 10
classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, ankle boot. The dataset contains 60,000 training
examples and 10,000 test examples. Each example is a 28×28
grayscale image. The dataset was intended to serve as a
replacement for the classical MNIST database.

1) AlexNet-LIKE CNN
We also conducted the experiments on a CNNwith no hidden
fully connected layers in the full net, aiming to test the FPL
algorithm for convolutional layers which has been developed
in this paper. An AlexNet-like CNN whose architecture is
shown in Fig. 16 was chosen to achieve that aim. The design
of the network was inspired by the original structure of the
AlexNet first introduced in [2]. All of the input images were
resized to 32 × 32 before being fed into the network. The
AlexNet-like CNN has 5 convolutional layers with pool-
ing operations at conv 1, 2 and 5. The activation functions
of the convolutional layers are ReLU, and the activation
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FIGURE 13. SVHN with VGG11: The test accuracies of the 10 subnets.

FIGURE 14. SVHN with VGG11: The subnets which have been trained with SVHN are tested with MNIST dataset.
Test set A indicates the training set of MNIST, test set B indicates the test set of MNIST.

TABLE 3. Number of parameters and neurons in the VGG11 whose structure is given in Fig. 15.

function of the output layer (the only fully connected layer) is
sigmoid.

The network was trained by FPL through training 5 subnets
sequentially, each of which was a two-layer training CNN.
There were 2 phases in learning of each subnet: pre-training
and fine-tuning. In pre-training phase, the output layer, i.e. the
fully connected part, of the subnet was trained in 2 loops using
the one-layer update algorithm which has been developed

in [21]. In this phase, the learning gain was automatically
calculated. In the fine-tuning phase, the update laws (58) and
(60) were used. There were 200-600 loops for training of each
subnet. The training stopped at the 200th, 400th or 600th loop
when the overfitting was likely to start happening. The initial
gain for the fine-tuning of all subnet was set at 0.001. Tomake
sure that the initial gain was not too large for convergence,
in the first several loops, the gain was automatically reduced
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FIGURE 15. The architecture of the VGG11.

by checking the condition (73). After the gain was adjusted
to a suitable value, the new value of the gain matrix was kept
for the successive loops of fine-tuning.

Fig. 17 shows the best test accuracy for each subnet. It can
be seen that the test accuracy increases when adding a new
convolutional layer for the first 4 convolutional layers and
then maintains a similar value when adding the last convo-
lutional layer. The accuracies for the 3th, 4th, 5th layer are in
fact quite similar.

The SGD optimizer was also used to train the AlexNet-like
CNN. There were 500 epochs. The learning rate was ini-
tially set as 0.001, the momentum was 0.9. The highest
accuracy for the test set was recorded during training and
is shown in Table 4. The accuracy for the training set in

FIGURE 16. The architecture of the AlexNet-like CNN.

FIGURE 17. Fashion MNIST with AlexNet-like CNN: The test accuracies of
the 5 subnets.

the table was selected at the epoch where the test accuracy
peaked.

From Table 4, it is noted that the test and training accu-
racies of FPL are comparable with those of SGD. Since the
network is not deep as compared to VGG11, the reduction in
parameters by implementing the subnet is not significant but
a similar test accuracy can be maintained.

2) VGG11
We then continued the experiments on Fashion MNIST with
VGG11. All of the input images were also resized to 32× 32

VOLUME 10, 2022 14283



H.-T. Nguyen et al.: Layer-Wise Theoretical Framework for Deep Learning of Convolutional Neural Networks

FIGURE 18. Fashion MNIST with VGG11: The test accuracies of the 10 subnets.

TABLE 4. Fashion MNIST with AlexNet-like CNN: Training & test
accuracies (%) by FPL and SGD.

before being fed into the network. The network was trained
similarly as the training of SVHN.

Fig. 18 shows the best test accuracy for each subnet. It can
be seen that the test accuracy increases when adding a new
convolutional layer for the first 3 convolutional layers and
then stays at similar values when adding the 4th, 5th, 6th con-
volutional layer. The accuracies for the remaining successive
layers are the same (93.81%).

The SGD was also used to train the entire VGG11. It can
be seen from Table 5 that the test and training accuracies of
FPL (full net and subnet) are comparable with those of SGD.
In addition, the proposed trainingmethod also indicates that a
subnet can be implemented with lesser parameters but similar
accuracy.

C. CIFAR-10
The next classification task is based on CIFAR-10
database [37]. It is a database that contains color images of
objects in 10 classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck. It has 50,000 examples in the
training set and 10,000 examples in the test set. Each of these
images has the size of 32×32 pixels.

The VGG11 was used for the classification task of
CIFAR-10. The network was trained similarly as the training
for Fashion MNIST.

TABLE 5. Fashion MNIST with VGG11: Training & test accuracies (%) by
FPL and SGD.

TABLE 6. CIFAR-10 with VGG11: Training & test accuracies (%) by FPL
and SGD.

Fig. 19 shows the best test accuracy for each subnet. It can
be seen that the test accuracy increases when adding a new
convolutional layer for the first 4 convolutional layers and
then stays at similar values when adding the remaining con-
volutional and fully connected layers. The accuracy for the
last hidden fully connected layer is 87.30%.

The SGD was also used to train the entire VGG11. It can
be seen from Table 6 that the test accuracy of FPL (full net) is
lower than that of SGD (about 2% less for full net and 1.6%
less for subnet). Though there is a trade off in performance,
the convergence can now be ensured in training and themodel
can be implemented with lesser parameters while achieving
a similar accuracy as the full net trained by FPL.

D. KMNIST
The next classification task is based on KMNIST
database [38]. It is a database that contains 10 classes of
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FIGURE 19. CIFAR-10 with VGG11: The test accuracies of the 10 subnets.

FIGURE 20. KMNIST with VGG11: The test accuracies of the 10 subnets.

Japanese characters. It has 60,000 images for training, 10,000
images for testing. Each of these images has the size of 28×28
pixels.

The VGG11 was used for the classification task of
KMNIST. The images were resized to 32×32 before being
fed into the networks. The network was trained similarly as
the training for Fashion MNIST.

Fig. 20 shows the best test accuracy for each subnet. It can
be seen that the test accuracy increases when adding a new
convolutional layer for the first 4 convolutional layers and

then stays at similar values when adding the remaining con-
volutional and fully connected layers. The accuracy for the
last hidden fully connected layer is 93.63%.

The SGD was also used to train the entire VGG11. It can
be seen from Table 7 that the training and test accuracies of
FPL (full net and subnet) are similar to those of SGD.

E. DISCUSSION
It can be seen from the experimental results that there is a
trade-off between test accuracy and analytic learning. The test
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TABLE 7. KMNIST with VGG11: Training & test accuracies (%) by FPL
and SGD.

accuracies of some tasks are comparable with SGD and of
some other tasks are slightly less than SGD. The convergence
is observed through all case studies of the proposed method
while the convergence cannot be assured in the process of
training in SGD if the learning rate is not chosen carefully
via trial and error, as reported in subsection IV-A1.

With FPL method, the convergence can be guaranteed and
the learning gain can be automatically tuned using condition
(73). Another benefit of FPL is the possibility of cutting down
the number of layers: As we can see from Fig. 13, Fig. 14,
and Fig. 18 to Fig. 20 and as discussed in section IV-A, the
test accuracies peak after the first few convolutional layers
and then maintain similar values when more layers are added.
Therefore, with the FPL method, one could consider pruning
the top layers of the full network or terminate the layer-wise
training earlier to save computational resources and training
time. Table 3 shows the number of parameters and neurons
of VGG11 so that one knows how many could be saved by
cutting down the top layers of the full network. By using the
results of every subnet, it can be seen that the FPL can also
perform better than SGD for some of the cases.

V. CONCLUSION
In this paper, deep convolutional neural networks have been
analyzed and trained by the forward progressive learning
framework. The convergence of the proposed framework can
be guaranteed by theoretical analysis. The proposed method
has been validated in several classification tasks with popular
benchmarking datasets. It can be drawn from the experimen-
tal results that the proposed method can yield comparable
accuracies as the gradient descent method for most cases.
In some classification tasks, there is a trade-off between per-
formance and guarantee of convergence in which the end-to-
end gradient descent method performs slightly better than the
layer-wise approach in terms of accuracy while the proposed
layer-wise approach is able to guarantee the convergence of
the learning algorithm and also to be used as an indicator to
determine the appropriate number of layers in final imple-
mentations of the models. It has been shown in the case
studies that the final implementations of some widely used
CNNs do not need as many convolutional layers as in their
original structure to achieve reasonable accuracies. Addition-
ally, while gradient descent method performs well for each
specific dataset, the comparison of the generalization prop-
erty by using the MNIST dataset as test sets for the models
trained on SVHN dataset has shown that the gradient descent
method cannot generalize well for similar tasks. In contrast,

our proposed method has performed better in terms of the
generalization property for similar tasks in this case study.
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