
Received January 5, 2022, accepted January 24, 2022, date of publication January 31, 2022, date of current version February 9, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3147817

Novel Resistive Distance Descriptors
on Complex Network
MIN LI1,3, SHUMING ZHOU 2, GAOLIN CHEN1,2, WEI LIN3, AND QIANRU ZHOU2
1College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian 350117, China
2School of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian 350117, China
3Concord University College, Fujian Normal University, Fuzhou, Fujian 350117, China

Corresponding authors: Shuming Zhou (zhoushuming@fjnu.edu.cn) and Gaolin Chen (gaolinchen@fjnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61977016 and Grant 61572010, in part
by the Natural Science Foundation of Fujian Province under Grant 2020J01164 and Grant 2017J01738, and in part by the Education and
Scientific Research Project for Young and Middle-aged Teachers of Fujian Province under Grant JAT191119.

ABSTRACT Large-scale complex network data poses significant challenges for the analytic ideas and
tools to monitor and analyze complex networks. As classical structure descriptors, average path length (L),
global and local network efficiency (Eglob and Eloc), general and loop clustering coefficient (C3 and D),
play significant roles in complex network analysis. In this paper, we make use of resistive distance
instead of the shortest path distance to suggest resistive distance descriptors, i.e., Lr , �glob and �loc, �3
and Dr . We investigate all the resistive descriptors on classical WS, BA and ER models and find some
interesting phenomenons. On one hand, Lr and �3 (resp., �glob and �loc) can be used to characterize
the features of small-word networks. On the other hand, Lr , �3, and �glob can be utilized to measure
network invulnerability. To access the effectiveness of the resistive distance descriptors, we conduct extensive
numerical simulations on synthetic and real networks. In comparisonwith the baselines, the proposedmetrics
show competitive performance on classical network models and are more efficient for networks with small
and medium size.

INDEX TERMS Resistive distance, clustering coefficient, network efficiency, network invulnerability.

I. INTRODUCTION
During the last decades, network science, as amature interdis-
ciplinary field, has gained considerable attentions. Complex
networks describe a wide range of systems in nature and
society, such as biological, social, economic, power, traffic
systems. These complex systems, which show nontrivial
characteristics, are neither absolutely random nor perfectly
regular. The statistical analysis of graphs, as a field of
mathematics, plays an important role to understand real-
world systems. The three influential statistical graph models,
Barabási-Albert model (BA) [1], Watts-Strogatz model
(WS) [2] and Erdös-Rényi model (ER) [3], are introduced
to generate graphs and to predict some of their topological
properties, such as degree distribution, average path length,
clustering coefficient. Small-world networks, in terms of WS
models, present two significant features of large clustering
coefficient and short average path length. Scale-free net-
works, illustrated by BAmodels, emphasized that the degrees
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of nodes follow a power law distribution. An ER random net-
work is also known as a binomial network, whose clustering
coefficient is equal to its probability for edge creation.

In recent years, the researches of malicious attacks on
complex networks have attracted great attentions. Malicious
attacks can cause serious failures on various networks, such
as traffic network [4], power grid network [5], supply chain
network [6], etc. Many network security problems in the
real world can be attributed to the invulnerability problem
of the networks in terms of cascade failures. Generally, the
invulnerability of networks is tightly related to their topo-
logical structures. The Scale-free network is robust under the
random attack, while vulnerable under the high degree nodes
attack [7]. Jalili [8] investigated how the small-worldness
of networks changed when nodes are removed randomly or
systematically. The network metrics, such as network effi-
ciency, the size of the largest connected component, average
path length, clustering coefficient, are commonly used to
monitor network invulnerability. The clustering coefficient,
introduced by Watts and Strogatz [2] to measure how tightly
a node’s neighbors are connected with each other, is an
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important statistical tool to describe the structure of complex
networks. The concept of efficiency of a network, introduced
by Latora and Marchiori [9], is to measure how it exchanges
information efficiently. The efficiency εij, between nodes i
and j, is inversely proportional to the shortest path distance
dij, denoted by εij = 1

dij
. By using efficiency measure,

the small-world behavior can be interpreted and the small-
world network is shown to be both locally and globally
efficient.

As an interesting notion of distance on graphs, resis-
tive distance, proposed by Klein and Randić [10] based on
an electrical-theoretic approach in 1993, has been investi-
gated by Stephenson and Zelen [11] in 1989 in terms of
information-theoretic approach. Let a network be viewed as
an electrical circuit, where each edge corresponds to a resistor
and each node is a junction between resistors. Consider that a
unit current enters at source i and leaves from target j. Effec-
tive resistance rij, between i and j, can be denoted by potential
difference between them. A high potential difference between
nodes i and j means that i and j are far away. In fact, rij
satisfies non-negativity, symmetry and triangle inequality and
can be viewed as a distance function. Note that rij ≤ dij, with
equality if and only if there is only one path from i to j, where
dij represents the shortest path distance between i and j. Refer
to [12]–[15] for different calculation methods of resistive
distance. A main topic about resistance distance is its calcu-
lation in various graphs. Relevant literatures are available in
[16]–[18]. In recent years, many scholars have studied
resistive distance in different aspects of complex network,
such as community detection [19]–[23], centrality measures
[24]–[26], link prediction [27] and network robustness
[28]–[31], etc. By the way, resistance in the network is inti-
mately connected with the lengths of random walks on the
graph. For any i and j, Tij = 2mrij, where m is the number of
edges of the G, Tij indicates the commute time and rij repre-
sents the resistive distance. Refer to [32] for more details.

In this paper, we aim to design novel descriptors using
resistive distance instead of the shortest path distance. To sum
up, our contributions are summarized as follows:
• Novel resistive descriptors, shown in Table 1, are sug-
gested to explore on classical WS, BA and ER models.

• Motivated by L and C3 (resp., Eglob and Eloc), Lr and
�3 (resp., �glob and �loc) are employed to characterize
small-world networks.

• In comparison of L, C3 and Eglob, Lr , �3 and �glob
are utilized to measure network invulnerability and the
Kendall’s Tau coefficient is utilized to analyze each
resistive descriptor’s correlations with that based on
shortest path length.

The rest of the paper proceeds as follows. Section 2
reviews classic network descriptors and a brief overview of
resistive distance. Next, we introduce several novel structure
descriptors based on resistive distance in Section 3. Section 4
presents the algorithm descriptions and Section 5 shows
experiment results and analysis. Finally, Section 6 concludes
this paper with a summary and proposes future directions.

TABLE 1. The mainly discussed network descriptors in this work, are
shown based on the shortest path distance and resistive path distance,
respectively.

TABLE 2. Summary of main notations.

II. PRELIMINARIES
A complex network can be described as a graph G = (V ,E),
where V denotes the set of nodes and E represents the set
of edges. The Laplacian matrix LG = DG − AG, where DG
is the degree matrix with (DG)ii = ki, and AG indicates the
adjacency matrix, with (AG)ij = 1 when an edge (i, j) exists
and (AG)ij = 0 otherwise.
In this paper, unless differently stated, G represents a con-

nected, undirected and unweighted graph without self-loops
and multiple links. Ordinarily, N denotes network size. ki,
0i and Gi indicate the degree, the set of neighbors and the
induced subgraph of open neighborhood of node i, respec-
tively. dij and rij represent the shortest path distance and
resistive path distance between node i and j, respectively.
Summary of main notations are shown in Table 2.

A. CLASSIC NETWORK DESCRIPTORS
In this section, we introduce some commonly used global and
local statistical descriptors of complex network, i.e., wiener
index (Wr), average path length (L), global efficiency (Eglob),
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local efficiency (Eloc), clustering coefficient (C3), quadrilat-
eral coefficient (C4), cyclic coefficient (R), loop coefficient
(D), subgraph centrality (SC) and natural connectivity (λ̄).
These descriptors will be used as baselines for comparison in
experimental section.
• Wiener index (Wr) [33]
The Wiener index of a graph is the sum of the shortest-
path distances between each pair of reachable nodes, i.e.,

Wr =
∑
i<j

dij, (1)

where dij is the shortest path distance between i and j.
The Wiener index is one of the well-known distance-
basedmolecular structure descriptors, which can be used
for modeling physical, pharmacologic, biological and
other properties of chemical compounds.

• Average path length (L) [2]
The average path length L denotes the average distance
between two generic nodes, i.e.,

L =
1

N (N − 1)

∑
i6=j∈G

dij, (2)

where dij indicates the shortest path distance between i
and j andN is the number of nodes ofG. Many real world
networks (graphs) are observed to be small worlds, i.e.,
the average path length among nodes is small.

• Global efficiency (Eglob) [9]
The global efficiency of G, denoted by Eglob(G),
is defined as

Eglob(G) =
1

N (N − 1)

∑
i6=j∈G

1
dij
, (3)

where dij indicates the shortest path distance between i
and j and N is the number of nodes ofG. Eglob quantifies
the exchange of information across the whole network
on a global scale, where information is concurrently
exchanged.

• Local efficiency (Eloc) [9]
The local efficiency of node i, denoted by Eloc(i), i.e.,

Eloc(i) = Eglob(Gi), (4)

whereGi represents the induced subgraph of open neigh-
borhood of node i. The local efficiency Eloc(i) quantifies
a network’s resistance to failure on a small scale. The
average local efficiency of G, denoted by Eloc(G), i.e.,

Eloc(G) =
1
N

∑
i∈G

Eloc(i) =
1
N

∑
i∈G

Eglob(Gi). (5)

• Clustering coefficient (C3) [2]
The clustering coefficient of node i, denoted by
C3(i), i.e.,

C3(i) =
2

ki(ki − 1)

∑
j6=k

∑
∈0i

njk . (6)

Here, ki and 0i indicate the degree and the set of
neighbors of node i, respectively. njk=1 if there is a
link between j and k , and njk=0 otherwise. C3(i) gives
the ratio of the existing number of links between the
neighbors of node i and its maximum possible number
ki(ki − 1)/2. C3(G) denotes the average clustering coef-
ficient of G.

• Quadrilateral coefficient (C4) [34]
The quadrilateral coefficient of node i, is denoted by
C4(i), i.e.,

C4(i) =

∑ki
m=1

∑ki
n=m+1 qi(m, n))∑ki

m=1
∑ki

n=m+1[ai(m, n)+ qi(m, n)]
, (7)

where m and n are neighbors of the node i, qi(m, n) are
the number of common neighbors between m and n, and
ai(m, n) = (km−ηi(m, n))(kn−ηi(m, n)) with ηi(m, n) =
1+ qi(m, n)+ θmn, where

θmn =

{
1, (m, n) ∈ E,
0, otherwise.

(8)

C4 gives the probability that two neighbors of node i
share a common neighbor, which is different from i.
C4(G) denotes the average quadrilateral coefficient ofG.

• Cyclic coefficient (R) [37] The cyclic coefficient of
node i, is denoted by R(i), i.e.,

R(i) =
2

ki(ki − 1)

∑
〈lm〉

1

S ilm
, (9)

where ki indicates the degree of node i and 〈lm〉 denotes
all the pairs of the neighbors of the node i. S ilm is the size
of the smallest loop passing through node i and its pair of
neighbors 〈l,m〉. R can characterize the cyclic structures
of complex networks and it takes values between 0 and
1/3. If the network is a perfect tree-like structure, R = 0.
The larger value of R indicates that the network is more
cyclic. R(G) denotes the average cyclic coefficient of G.

• Loop coefficient (D) [38] The loop coefficient of an
arbitrary node i is denoted by

D(i) =
2

ki(ki − 1)

∑
j6=k

∑
∈0i

1
djk/i

, (10)

where ki represents the degree of i, 0i indicates the set
of neighbors of node i, and djk/i is the length of shortest
path between j and k not passing through i. Loop coeffi-
cient varies from 0 to 1. In addition, D(i) coincides with
C3(i), if only the shortest paths djk/i=1 are taken into
account. Therefore, Loop coefficient is a generalization
of the clustering coefficient. D(G) denotes the average
loop coefficient of G.

• Subgraph centrality (SC) [35] The subgraph centrality
of an arbitrary node i is denoted by

SC(i) =
N∑
j=1

(vij)
2eλj , (11)
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where vj is an eigenvector of the adjacency matrix A of
G corresponding to the eigenvalue λj. Furthermore, the
average subgraph centrality of G is denoted by

〈SC〉 =
1
N

N∑
i=1

SC(i) =
1
N

N∑
i=1

eλi . (12)

By the way, natural connectivity λ̄ [36] of G,
which is highly correlated with subgraph centrality, is
denoted by

λ̄ = ln [〈SC〉] = ln

[
1
N

N∑
i=1

eλi
]
. (13)

Natural connectivity (resp., subgraph centrality), as a
measure of structure robustness in complex networks,
characterizes the redundancy of alternative routes in a
network by quantifying the weighted number of closed
walks of all lengths.

B. EFFECTIVE RESISTANCE
An electrical network is defined as N = (G, r) = (V ,E, r),
where r is a function: E → R+, and re denotes the resistance
of the edge e. Also, we define an electrical network in the
form N = (G, c), where c is the a conductance function, and
ce = 1/re represents the conductance of the edge e. For any
e ∈ E , if re = 1, we call the electrical network simple.

Klein and Randić [10] have proved that the effective resis-
tance is indeed a distance function. Previous studies [10],
[12], [14], [25] have shown that Laplacian matrix LG plays
a vital role in the theory of the resistive distance. In this
work, the resistive matrix of G is defined as Rm(G) and its
calculation is shown in algorithm 1 [39]. All the proposed
resistive descriptors are calculated based on Rm(G). Here,
we will give some related results from [10].
Definition 1 [10]: The total effective resistance, also

called Kirchhoff index, is the sum of the effective resistance
over all pairs of nodes in G:

Kf =
∑
i<j

rij. (14)

It can be expressed in terms of Laplacian eigenvalues as
follows:

Kf = n
n∑

k=2

1
µk
, (15)

where µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues of Laplacian
matrix L.
Theorem 2 [10]: For all distinct pairs of nodes i, j in G,

dij ≥ rij, with equality if there is only one path between i and
j.
Corollary 3 [10]: If G is a tree, the conventional dis-

tance is the same as the effective resistance distance, i.e.,
dij = rij.

III. NOVEL NETWORK DESCRIPTORS BASED ON
RESISTIVE DISTANCE
A. AVERAGE PATH LENGTH BASED ON
RESISTIVE DISTANCE
Definition 4 (Lr ): The average path length ofG is denoted

by Lr , i.e.,

Lr =
1

N (N − 1)

∑
i6=j∈G

rij. (16)

Equivalently,

Lr =
2

N (N − 1)
Kf . (17)

B. EFFICIENCY DESCRIPTORS BASED ON
RESISTIVE DISTANCE
Definition 5 (�glob): The global efficiency ofG is denoted

by �glob(G), i.e.,

�glob(G) =
1

N (N − 1)

∑
i6=j∈G

1
rij
. (18)

Definition 6 (�loc): The local efficiency of node i is
denoted by �loc(i), i.e.,

�loc(i) = �glob(Gi), (19)

where Gi is the induced subgraph of neighbors of i such that
i /∈ Gi. Usually,Gi is a disconnected graph. For any j, k ∈ Gi,
when there is no path between j and k , we define rjk = +∞,
i.e., 1

rjk
= 0. Besides, the local efficiency of G is denoted by

�loc(G), i.e.,

�loc(G) =
1
N

∑
i∈G

�loc(i) =
1
N

∑
i∈G

�glob(Gi). (20)

By the way, in this work, another local efficiency �loc′ is
defined by

�loc′ (i) = �glob(Ĝi), (21)

where Ĝi is the induced subgraph of neighbors of i such
that i ∈ Ĝi. �loc′ (G) indicates the average local efficiency
of G. Similarly, the formula based on shortest paths distance
is given by

Eloc′ (i) = Eglob(Ĝi). (22)

Furthermore, Eloc′ (G) denotes the average local efficiency
of G.

C. CLUSTERING COEFFICIENT BASED ON
RESISTIVE DISTANCE
Definition 7 (�3): The resistive clustering coefficient of

an arbitrary node i is defined as

�3(i) =
2

ki(ki − 1)

∑
j6=k

∑
∈0i

ηjk , (23)
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FIGURE 1. An example network G′ with five nodes.

where ηjk = rjk if there is a link between j and k , and ηjk = 0
otherwise. �3(G) denotes the average clustering coefficient
of G in terms of resistive distance.
Definition 8 (Dr ): The resistive loop coefficient of an

arbitrary node i is defined as

Dr (i) =
2

ki(ki − 1)

∑
j6=k∈0i

1
rjk
, (24)

where Dr (G) denotes the average resistive loop coeffi-
cient of G.

D. EXAMPLE EXPLANATION
Based on the above definitions, some simple examples are
presented to explain how the proposed descriptors work in a
specific network.

1) THE FIRST EXAMPLE
As shown in Figure 1 (a), a simpleG′ is given. Figure 1 (d)-(h)
represent the induced subgraphs G′i of open neighborhood
of i, while Figure 1 (i)-(m) show the induced subgraphs Ĝ′i
of close neighborhood of i. Figure 1 (b) and (c) describe how
to obtain G′2.
At first, we calculate Wr , L, Eglob(G′), Kf , Lr and

�glob(G′). The matrix of the shortest path distance of G′ is

Dm[G′] =



0 1 2 3 4

0 0 1 1 1 2
1 1 0 1 2 2
2 1 1 0 1 1
3 1 2 1 0 2
4 2 2 1 2 0

.

According to Eq. (1) and Dm[G′],

Wr =
∑
i<j

dij

= d01 + d02 + d03 + d04 + d12 + d13
+d14 + d23 + d24 + d34

= 1+ 1+ 1+ 2+ 1+ 2+ 2+ 1+ 1+ 2

= 14.

According to Eq. (2) and Dm[G′],

L =
2

N (N − 1)
Wr = 1.4.

According to Eq. (3) and Dm[G′],

Eglob(G′) =
1

N (N − 1)

∑
i6=j∈G′

1
dij

=
2

[5 ∗ (5− 1)]
(
1
d01
+

1
d02
+

1
d03
+

1
d04

+
1
d12
+

1
d13
+

1
d14
+

1
d23
+

1
d24
+

1
d34

)

= 0.1(
1
1
+

1
1
+

1
1
+

1
2

+
1
1
+

1
2
+

1
2
+

1
1
+

1
1
+

1
2
)

= 0.8.

In addition, according to algorithm 1, the resistive distance
matrix of G′ is

Rm[G′] =



0 1 2 3 4

0 0 0.62 0.5 0.62 1.5
1 0.62 0 0.62 1 1.63
2 0.5 0.62 0 0.62 1
3 0.62 1 0.62 0 1.63
4 1.5 1.63 1 1.63 0

.
According to Eq. (14) and Rm[G′],

Kf =
∑
i<j

rij

= r01 + r02 + r03 + r04 + r12
+r13 + r14 + r23 + r24 + r34

= 0.62+ 0.5+ 0.62+ 1.5+ 0.62

+1+ 1.63+ 0.62+ 1+ 1.63

= 9.74.

According to Eq. (17) and Rm[G′],

Lr =
2

N (N − 1)
Kf = 0.974.

According to Eq. (18) and Rm[G′],

�glob(G′) =
1

N (N − 1)

∑
i6=j∈G′

1
rij

=
2

[5 ∗ (5− 1)]
(
1
r01
+

1
r02
+

1
r03
+

1
r04
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+
1
r12
+

1
r13
+

1
r14
+

1
r23
+

1
r24
+

1
r34

)

= 0.1(
1

0.62
+

1
0.5
+

1
0.62
+

1
1.5

+
1

0.62
+

1
1
+

1
1.63
+

1
0.62
+

1
1
+

1
1.63

)

= 1.23.

Next, in terms of node 2, Eloc(2), �loc(2), �3(2), Dr (2),
Eloc′ (2) and �loc′ (2) are computed below.
As shown in Figure 1 (b) and (c), remove node 2 from G′

and obtainG′2, which is the induced subgraph of neighbors of
node 2.G′2 has two componentsC1 andC2. As is well known,
a graph is a tree if only if it is connected and has no loop.More
than one tree can constitute a forest. Clearly, both C1 and C2
are trees, and C2 is a trivial tree. G′2 is a forest. According to
Corollary 2.3, for any i and j of a tree, rij = dij. Thus, the
distance matrix of G′2 can be denoted as

Rm[G′2] = Dm[G′2] =


0 1 3 4

0 0 1 1 +∞

1 1 0 2 +∞

3 1 2 0 +∞

4 +∞ +∞ +∞ +∞

.
According to Eqs. (3)-(4) and Dm[G′2],

Eloc(2) = Eglob(G′2)

=
1

N (N − 1)

∑
i6=j∈G′2

1
dij

=
2

[4 ∗ (4− 1)]
(
1
d01
+

1
d03
+

1
d04

+
1
d13
+

1
d14
+

1
d34

)

=
2
12

(
1
1
+

1
1
+ 0+

1
2
+ 0+ 0)

= 0.42.

Similarly, according to Eqs. (18)-(19) and Rm[G′2],

�loc(2) = �glob(G′2)

=
1

N (N − 1)

∑
i6=j∈G′2

1
rij

=
2

[4 ∗ (4− 1)]
(
1
r01
+

1
r03

+
1
r04
+

1
r13
+

1
r14
+

1
r34

)

=
2
12

(
1
1
+

1
1
+ 0+

1
2
+ 0+ 0)

= 0.42.

In this example, for any i ∈ G′, G′i is either a tree or a forest
(see Figure 1 (d)-(h)). That is, only one shortest path exists
between any pair of connected nodes inG′i. In other words, the
resistive distance equals to the shortest path distance between
them. Thus, for any i ∈ G′, �loc(i) = Eloc(i), which can be
seen in Table 3.

Meanwhile, for node 2,02= {0,1,3,4} and k2= 4. Accord-
ing to Eq. (23) and Rm[G′],

�3(2) =
2

k2(k2 − 1)

∑
j6=k

∑
∈02

ηjk

=
2

[4 ∗ (4− 1)]
(r01 + r03)

=
2

[4 ∗ (4− 1)]
(0.62+ 0.62)

= 0.21.

According to Eq. (24) and Rm[G′],

Dr (2) =
2

k2(k2 − 1)

∑
j6=k∈02

1
rjk

=
2

[4 ∗ (4− 1)]
(
1
r01
+

1
r03

+
1
r04
+

1
r13
+

1
r14
+

1
r34

)

=
2

[4 ∗ (4− 1)]
(

1
0.62
+

1
0.62

+
1
1.5
+

1
1
+

1
1.63
+

1
1.63

)

= 1.02.

See Figure 1 (a) and (k), G′ and Ĝ′2 represent the same
graph. Thus, according to Eqs. (21) and (22),

�loc′ (2) = �glob(Ĝ′2) = �glob(G′) = 1.23,

and,

Eloc′ (2) = Eglob(Ĝ′2) = Eglob(G′) = 0.8.

We turn to calculate �loc′ (1) and Eloc′ (1). See Figure 1
(j) for Ĝ′1. The shortest path distance matrix and resistive
distance matrix is

Dm[Ĝ′1] =


0 1 2

0 0 1 1
1 1 0 1
2 1 1 0

, and

Rm[Ĝ′1] =


0 1 2

0 0 2/3 2/3
1 2/3 0 2/3
2 2/3 2/3 0

.
Then, in terms of Dm[Ĝ′1] and Rm[Ĝ

′

1],

Eloc′ (1) = Eglob(Ĝ′1) =
2

3(3− 1)
(1+ 1+ 1) = 1,

and,

�loc′ (1) = �glob(Ĝ′1) =
2

3(3− 1)
(
3
2
+

3
2
+

3
2
) = 1.5.

VOLUME 10, 2022 14553



M. Li et al.: Novel Resistive Distance Descriptors on Complex Network

FIGURE 2. An example network with nine nodes.

2) THE SECOND EXAMPLE
Next, let us turn to Figure 2 (a), which displays another exam-
ple network named G′′. When node 2 of G′′ is removed (see
Figure 2 (b)), two connected components are obtained. Note
that, the component under grey background owns cycles.
Thus, not all the pairs of nodes have only one path. For
instance, we can find only one path between 6 and 7, i.e.,
6-7. However, two paths, indicated by 6-7-8 and 6-7-1-8,
exist between 6 and 8. Therefore, �loc must be different
from Eloc for G′′. Here, we give detailed computations of
Eloc(2) and �loc(2) of G′′. After node 2 and all directed
links incident with it are removed, G′′2 , i.e., the induced graph
of neighbors of node 2, is obtained. The shortest path dis-
tance matrix of G′′2 is, Dm[G′′2], as shown at the bottom of
the page.

According to Eqs. (3)-(4) and Dm[G′′2],

Eloc(2) = Eglob(G′′2)

=
2

[8 ∗ (8− 1)]
(
1
d03
+

1
d04
+

1
d05
+

1
d34
+

1
d35

+
1
d45
+

1
d67
+

1
d68
+

1
d61
+

1
d78
+

1
d71
+

1
d81

)

=
2

[8 ∗ (8− 1)]
(
1
1
+

1
2
+

1
3
+

1
1
+

1
2
+

1
1

+
1
1
+

1
2
+

1
2
+

1
1
+

1
1
+

1
1
)

= 0.33.

In contrast, the resistive matrix of G′′2 is, Rm[G
′′

2], as shown at
the bottom of the next page.

Similarly, according to Eqs. (18)-(19) and Rm[G′′2],

�loc(2) = �glob(G′′2)

=
2

[8 ∗ (8− 1)]
(
1
r03
+

1
r04
+

1
r05
+

1
r34
+

1
r35

+
1
r45
+

1
r67
+

1
r68
+

1
r61
+

1
r78
+

1
r71
+

1
r81

)

=
2

[8 ∗ (8− 1)]
(
1
1
+

1
2
+

1
3
+

1
1
+

1
2
+

1
1

+
1
1
+

1
1.67
+

1
1.67
+

1
0.67
+

1
0.67
+

1
0.67

)

= 0.39.

For the sake of simplicity, other descriptors’s details are omit-
ted in this example, whose results are also shown in Table 3.
Moreover, the proposed descriptors are labelled in bold.

IV. ALGORITHM DESCRIPTION
All the resistive quantities in this work are calculated in
algorithms 1-6, respectively.

Algorithm 1 CalculateR
Input: G(V ,E)
Output: Rm(G)
1: n = |G(V ,E)|;
2: AG = adjacency_matrix(G);
3: DG = degree_matrix(AG);
4: LG = DG − AG;
5: J = ||1||;
6: X = ||xij|| = (L + 1

nJ )
−1;

7: X̃ = diag(x11, . . . , xnn);
8: Rm(G) = ||rij|| = X̃J + JX̃ − 2X ;

Algorithm 2 CalculateKf
Input: G(V ,E)
Output: Kf
1: µList = laplacian_spectrum(G);

// µList = [µ1 = 0, µ2, . . . , µn];
2: Kf = n

∑n
k=2

1
µk

;

The calculation method of resistive matrix is shown in
algorithm 1. The input is a graph G and the output Rm(G)

Dm[G′′2] =



0 3 4 5 6 7 8 1

0 0 1 2 3 +∞ +∞ +∞ +∞

3 1 0 1 2 +∞ +∞ +∞ +∞

4 2 1 0 1 +∞ +∞ +∞ +∞

5 3 2 1 0 +∞ +∞ +∞ +∞

6 +∞ +∞ +∞ +∞ 0 1 2 2
7 +∞ +∞ +∞ +∞ 1 0 1 1
8 +∞ +∞ +∞ +∞ 2 1 0 1
1 +∞ +∞ +∞ +∞ 2 1 1 0


.
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TABLE 3. The values of four local efficiency quantities on two example networks.

Algorithm 3 CalculateLr
Input: G(V ,E)
Output: Lr
1: n = |G(V ,E)|;
2: Rm(G) = calculateR(G);
3: sumL = 0;
4: numList = [0, 1, . . . , n− 1];
5: for i in numList do
6: for j in numList do
7: sumL = sumL + Rm[i, j];
8: end for
9: end for

10: Lr = sumL/[n ∗ (n− 1)];

represents resistive matrix ofG. Note that at line 2, line 3 and
line 4, AG, DG and LG indicate adjacency matrix, degree
matrix and Laplacian matrix, respectively. At line 5, J is
a square matrix and all of its elements are 1. Lines 6-8 present
the formulations of Rm(G). Moreover, the entry of Rm(G),
denoted by rij, can also be expressed as rij = xii + xjj − 2xij,
where X = ||xij|| = (L + 1

nJ )
−1. Refer to [39] for more

details.
Algorithm 2 presents the calculation method of Kirch-

hoff index according to Eq. (15). Kf is closely related to
the spectrum of the Laplacian matrix LG (for more details
see [10]). At line 2, µList denotes a list of all the eigenvalues
of Laplacian matrix LG.

Algorithm 4 Calculate�glob

Input: G(V ,E)
Output: �glob
1: n = |G(V ,E)|;
2: Rm(G) = calculateR(G);
3: sum� = 0;
4: numList = [0, 1, . . . , n− 1];
5: for i in numList do
6: for j in numList do
7: if i 6= j then
8: sum�=sum�+ 1/RG[i, j];
9: end if
10: end for
11: end for
12: �glob = sum�/[n ∗ (n− 1)];

Algorithm 3 displays how to calculate average resistive
path length Lr according to Eq. (16). At first, we compute
resistive matrix Rm(G) of G according to algorithm 1 (see
line 2). Subsequently, Lr is obtained by Rm(G), which is given
at lines 3-10.

Algorithm 4 shows how to calculate resistive global effi-
ciency �glob according to Eq. (18). The execution of the
method is similar to algorithm 3. At line 2, Rm(G) is obtained.
From line 3 to line 12,�glob is computed by Rm(G). Note that
Rm(G)[i, i] = 0 for any i.
Algorithm 5 presents the method of local resistive effi-

ciency �loc according to Eqs. (19) and (20). Input is also

Rm[G′′2] =



0 3 4 5 6 7 8 1

0 0 1 2 3 +∞ +∞ +∞ +∞

3 1 0 1 2 +∞ +∞ +∞ +∞

4 2 1 0 1 +∞ +∞ +∞ +∞

5 3 2 1 0 +∞ +∞ +∞ +∞

6 +∞ +∞ +∞ +∞ 0 1 1.67 1.67
7 +∞ +∞ +∞ +∞ 1 0 0.67 0.67
8 +∞ +∞ +∞ +∞ 1.67 0.67 0 0.67
1 +∞ +∞ +∞ +∞ 1.67 0.67 0.67 0


.
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Algorithm 5 Calculate�loc

Input: G(V ,E)
Output: �loc(v), �loc(G)
1: n = |G(V ,E)|;
2: �loc(G) = 0;
3: for v in G do
4: �loc(v) = 0;
5: v_neighbors = Neighbors(v);
6: v_n_len = Len(neighbors);
7: Gv = Subgraph(v_neighbors);
8: if v_n_len == 1 then
9: �loc(v) = 0;
10: continue;
11: end if
12: cc_list = ConnectedComponents(Gv);
13: v_sum = 0;
14: for cc in cc_list do
15: cc_sum =

∑
i6=j∈cc

1
rij
;

16: v_sum = v_sum+ cc_sum;
17: end for
18: �loc(v) = v_sum/[(v_n_len) ∗ (v_n_len− 1)];
19: �loc(G) = �loc(G)+�loc(v);
20: end for
21: �loc(G) = �loc(G)/n;

Algorithm 6 CalculateDr
Input: G(V ,E)
Output: Dr (v), Dr (G)
1: n = |G(V ,E)|;
2: Rm(G) = calculateR(G);
3: for v in G do
4: v_neighbors = Neighbors(v);
5: deg = Degree(v,G);
6: if deg == 1 then
7: Dr (v) = 0;
8: continue;
9: end if

10: sum = 0;
11: potential = [deg ∗ (deg− 1)]/2;
12: for u,w in v_neighbors do
13: sum = sum+ 1/Rm(G)[u,w];
14: end for
15: sum = sum/potential;
16: Dr (v) = sum;
17: Dr (G) = Dr (G)+ Dr (v);
18: end for
19: Dr (G) = Dr (G)/n;

a graph G. Two outputs, �loc(v) and �loc(G), denote local
resistive efficiency of node v and that of graphG, respectively.
At lines 5 and 6, v_neighbors indicates neighbors of v and
v_n_len is its number. Gv is the induced subgraph of open
neighborhood of node v at line 7. If v_n_len equals to 1, Gv

is a trivial graph and�loc(v)= 0 (See lines 8-11). Otherwise,
the set of connected components of Gv, denoted by cc_list at
line 12, is computed. Usually, Gv is an unconnected graph.
Therefore, at lines 14-17, �loc(v) and �loc(G) are obtained
by enumerating each connected component of Gv.

Algorithm 6 computes loop coefficient Dr according to
Eq. (24). Similarly, resistive matrix Rm(G) ofG is obtained at
first at line 2. v_neighbors also represents the set of neighbors
of v at line 4. If v has only one neighbor, Dr (v) = 0, which is
displayed at lines 5-9. Otherwise, Dr (v) is calculated through
lines 10-16, where RG[u,w] indicates the resistive distance
between node u and w.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we assess the effectiveness of our descriptors
on computer-generated and real-world networks, and make
comparisons with baseline metrics. All the experiments are
run on a PC equipped with a 2.7 GHz Intel Core i5-7200U
CPU and 8.00G memory operating in the Microsoft win-
dows 10 environment. Our codes are conducted relying upon
python programming language. Especially, python packages,
such as networkx, numpy and matplotlib, are utilized for
modeling the networks, computation of data and visualiza-
tion, respectively.

A. COMPUTER-GENERATED NETWORKS
In this section, we considered our proposed descriptors for
three representative models of complex networks, the WS
model [2], the ERmodel [3] and the BAmodel [1]. We calcu-
late every descriptor’s value for each classical networkmodel.
This experiment is conducted with network size N = 1000.
As Tables 4-6 show, the values of all the descriptors in
this work are given, for Small-world networks, ER random
networks and Scale-free networks, respectively. Moreover,
the values in terms of resistive distance are emphasized in
bold.

1) Small-world networks
In this work, we construct small-world networks by
Watts-Strogatz models. The initial graph is taken to be
a one-dimensional lattice of N = 1000 nodes. It meets
the periodic boundary conditions, i.e., each node is
connected to its first k = 4 neighbors. The small-world
network is created by rewiring each edge of the lattice
at random with probability p. The transition from a
regular lattice (p = 0) to random network (p = 1)
can be obtained by varying p in a continuous way.
Table 4 shows the values of structural quantities with
p ranging progressively from 0 to 0.4.
As shown in Table 4, Kirchhoff index (Kf ) and aver-
age resistive path length (Lr ) decrease as p increases,
which is consistent with Wiener index (Wr ) and aver-
age path length (L). Overall, all the clustering coef-
ficient descriptors, i.e., C3, �3, C4, R, D, Dr , show
similar actions with p. C3 and C4 decrease with
increased p, so do R and D. Compared with C3, �3
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TABLE 4. The values of global structural quantities for Small-world model networks with N = 1000, k = 4

TABLE 5. The values of global structural quantities for E-R model networks with 1000 nodes.

TABLE 6. The values of global structural quantities for scale-free model networks with 1000 nodes.

displays a consistent performance, i.e., 0.241, 0.2013,
0.1715, 0.1416, 0.1187, 0.0959, 0.0913, 0.0677,
0.0478 with increased p. Dr doesn’t have a perfect
performance, but it overall decreases when p increases
significantly.

To compare L and Lr for the WS network model,
Figure 3 (a) illustrates the data normalized by the
L(0) and Lr (0), which are 125.3754 and 3385, respec-
tively. Figure 3 shows the plot of the normalized aver-
age shortest path length L(p)/L(0), the normalized
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FIGURE 3. The average shortest path length L(p), the average resistive path length Lr (p), the ordinary clustering coefficient C3 and the resistive
clustering coefficient �3 for the WS network model. The data is normalized by the L(p)(0), Lr (p)(0), C3(0) and �3(0). The network size N = 1000, m
= 4 for (a) and (b), m = 20 for (c) and (d).

FIGURE 4. The ordinary global efficiency Eglob, local efficiency Eloc and their corresponding resistive efficiency �glob and �loc for the WS network
model. The network size N = 1000, m = 4 for (a) and (b), m = 20 for (c) and (d).

the average resistive path length Lr (p)/Lr (0), the nor-
malized ordinary clustering coefficient C3(p)/C3(0)
and the normalized resistive clustering coefficient
�3(p)/�3(0) as functions of the rewiring probability
p. The seminal work of Watts and Strogatz [2] uses
the combination of high clustering coefficient and short
average path length to define the characteristics of
small-world networks. They found that, when rewiring
probability p <0.01, average path length L (black line)
has a rapid drop, whereas the clustering coefficient
C3 (blue line) stays almost constant. Interestingly, the
resistive clustering coefficient �3 (purple line) also
stays nearly unchanged when p <0.01 (see Figure 3
(a)) and drops to 0 when p = 1 (see Figure 3 (b)).
Likewise, rewiring just a few edges (p < 0.01) also
can lead to a dramatic reduction in the average resistive
path length Lr (red line).
Figure 4 shows the plot of the ordinary global efficiency
Eglob, local efficiency Eloc and their corresponding
resistive efficiency �glob and �loc as functions of the
rewiring probability p. According to the work of Latora
and Marchiori [9], small-world networks can be seen
as systems that have high Eglob and high Eloc. A reg-
ular lattice with N=1000 and k=4 (20) is rewired with
probability p. The introduction of only a few rewired
edges (p ranging from 0 to 0.01) result in a dramatic
increase of Eglob and the a very little decrease of Eloc.
Luckily, �glob and �loc also display the same features
(see Figure 4).

2) ER random networks Erdös-Rényi model is also
known as Gn,p model. The algorithm chooses each of
the [n(n − 1)]/2 possible edges with probability p.
Table 5 shows the values of structural quantities for the
ER networks with network size N=1000 and p ranging
progressively from 0.05 to 0.2. As p increases, Wr
(resp., Kf ), L (resp., Lr ) decrease, while Eglob (resp.,
�glob), Eloc (resp., �loc) increase, R and D (resp., Dr )
increase, respectively. That is to say, resistive descrip-
tors, Kf , Lr , �glob, �loc, Dr , have similar characteris-
tics with classic descriptors in ERmodel networks. It is
well known that C3 is equal to its probability for edge
creation in an ER network. While, �3 is a constant in
ER networks when network size is given.

3) Scale-free networks Scale-free networks are con-
structed by BA model, which refers to Barabási-
Albert preferential attachment model. A graph of N
nodes is expanded by attaching new nodes each with
m edges that are preferentially attached to existing
nodes with high degree. Table 6 shows the values of
structural quantities for the BA networks with N =
1000 and m ranging from 1 to 6. As m increases,
Wr (resp., Kf ), L (resp., Lr ) decrease, Eglob (resp.,
�glob), Eloc (resp., �loc) increase, R and D (resp., Dr )
increase, respectively. That is, resistive descriptors,Kf ,
Lr , �glob, �loc, Dr , show similar characteristics with
classic descriptors in BA model networks. However,
�3 displays different results from C3 in BA model
networks.
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FIGURE 5. The Kendall’s Tau correlation matrices, between the ranking scores of different structural descriptors, are shown for the WS, ER and BA
networks of N = 500, which are under different parameters.

B. THE KENDALL’s TAU FOR WS, ER AND BA MODELS
To evaluate the performance of the proposed structural
descriptors, we investigate the Kendall’s Tau (τ ) between the
ranking scores of different methods. Higher τ suggests better
performance. Given two ranking scores of X and Y , if τ is
more closer to 1, it means that X and Y are more highly corre-
lated. Figure 5 shows the Kendall’s Tau correlation cofficient
matrices between the ranking scores given by eleven local
structural properties, i.e.,C4,C3,�3, SC ,D,R,Dr ,Eloc,Eloc′ ,
�loc, �loc′ . Three classic networks models, i.e., WS, ER and
BA, are considered with network size N = 500. For WS
networks, k = 5, and p ranging from 0.05 to 0.25, i.e., 0.05,
0.1, 0.15, 0.2, 0.25. For ER networks, p, probability for edge
creation, varies from 0.02 to 0.1. For BA networks, the values
of m, number of edges attached from a new node to existing
nodes, are 1, 2, 3, 4, 5. We classify all the structural properties
into three comparative groups, i.e., C3, and �3 for the first
group, D, R, and Dr for the second group, Eloc, Eloc′ , �loc,
and�loc′ for the last group. As shown in Figure 5, the values,
bordered in red, green, and yellow, correspond to thematrix of
the first, second and third group, respectively. The following
discussions suggest more details for each group.

First, we make an assumption that the Kendall’s Tau
between C3 and �3 is inversely related to the standard

average clustering coefficient (C3) of the target network.
A networkwith a high average clustering coefficient indicates
that the network is more clustered. That is to say, there are
more paths for any pair of nodes. However, in general, for
any two nodes, less paths can lead to a observation that the
resistive distance between them is more close to 1. In terms
of a node, resistive clustering coefficient �3 is more close to
typical clustering coefficient C3. As is well known, average
clustering coefficient of small-world networks decreases with
the increasing rewiring probability, while that of ER random
networks increases with the probability for edge creation.
As can be seen from Figure 5, the matrices with red borders
illustrate the Kendall’s τ between C3 and �3. In WS model,
shown from (a) to (e), τ = 0.61, 0.78, 0.82, 0.88, 0.88, when
p = 0.05, 0.1, 0.15, 0.2, 0.25, respectively. Clearly, τ grows
with the increased p. In BA model, shown from (f) to (j), τ =
1, 0.99, 0.96, 0.9, 0.77, when n = 1, 2, 3, 4, 5. Obviously, τ
decreases when n increases. In ER model, shown from (k) to
(o), τ = 0.94, 0.89, 0.87, 0.85, 0.84, when p = 0.02, 0.04,
0.06, 0.08, 0.1. Of course, τ increases when the probability
for edge creation increases progressively.

Second, we turn to the discussion of D, R and Dr . D is
close to R. As D considers the length of shortest path, while
R applies that of the smallest cycle. However, regardless of
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FIGURE 6. Comparisons of different invulnerability metrics under Degree Centrality attack.

TABLE 7. The values of structural quantities for eight real networks.

each model, the correlation values, between Dr and D (R),
has no functional relation to its parameter.

Third, the last group, i.e., Eloc, Eloc′ , �loc, and �loc′ , dis-
plays some interesting results. Comparatively, we have more

concerns about the values between Eloc and �loc. Excitedly,
in WS and BA models, the Kendall’s τ , in terms of any
network’s parameters, are close to 1 or equal to 1. In addition,
in WS and BA models, under the condition of network’s
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FIGURE 7. Comparisons of different invulnerability metrics under Betweenness Centrality attack.

parameters that we set, for each node v of the network, it is
possible that Eloc(v) = �loc(v). Refer to Table 4 and 6 for
the comparisons between Eloc(v) and �loc(v). As described
in Section III, if Gv is a tree, for any node i, j in Gv, rij =
dij, where rij and dij are resistive distance and shortest path
distance, respectively. Therefore, if Gv is a tree, Eloc(v) =
�loc(v).
Besides, in ER model, τ = 1, 0.97, 0.87, 0.77, 0.73, when

p = 0.02, 0.04, 0.06, 0.08, 0.1, respectively. It indicates an
inverse association between τ and p. Moreover, p equals to
C3 in ER networks. In other words, τ between Eloc and �loc,
in terms of ER random networks, is inverse to the ordinary
clustering coefficient (C3). For more details for this group,
see the matrices bordered in yellow, shown in Figure 5.

The experiments are carried on eight real networks
from disparate fields, including one transportation network
(USAir), one biological network (bio-CE-GN), one com-
munication network (Email), two collaboration networks
(NS and Jazz), three social networks (Karate, Dolphin and
Football). In brief, USAir [45] is the US air transportation
network. CE-GN [47] is a biological network and its links
are inferred by gene neighbourhoods of bacterial and archaeal
orthologs. Email [44] is a network of E-mail interchanges
between members of the Rovira i Virgili University. NS [46]
is a co-authorship network of scientists working on net-
work science. Jazz [43] is a collaboration network between
jazz musicians consisting of 198 nodes and 2,742 edges.
Karate [40] is an undirected social network of friendships

between 34 club members of a karate club at a US uni-
versity in the 1970s; Dolphin [41] is an undirected social
network of frequent associations between 62 dolphins during
a community living off Doubtful Sound, New Zealand; Foot-
ball [42] is an undirected social network of American football
games between Division IA colleges during regular season
Fall 2000. The values of structural quantities for eight real
networks are shown in Table 7.

C. INTENTIONAL ATTACKS BASED ON DC AND BC
In this section, experiments are conducted for the BA
(N = 1000, n = 4), WS (N = 1000, m = 4, p = 0.3),
ER (N = 1000, p = 0.01) and real networks under Degree
Centrality attack and Betweenness Centrality attack. Email
network is selected as an example for real networks. Dif-
ferent invulnerability metrics, including average path length
(L and Lr ), network efficiency (Eglob and �glob), clustering
coefficient (C3 and�3) are considered. The results underDC
attack and BC attack are shown in Figure 6 and Figure 7,
respectively. Clearly, the curve of each novel vulnerability
metric is similar with that of the baseline method. Moreover,
we compare the running time for calculating four global
structural metrics (L, Lr , Eglob, �glob) in different network,
as shown in Table 8. Obviously, the resistive descriptors have
better performance. Resistive metrics are based on matrix
calculation, while the shortest pathmetrics are based on graph
searching algorithms. From this section’s results, matrix
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TABLE 8. Comparisons of running time of four global structural
quantities in different network. Experiments are conducted for the
BA (N = 1000, n = 4), WS (N = 1000, m = 4, p = 0.3), ER (N = 1000,
p = 0.01).

calculation are more efficient than graph searching algo-
rithms. In other words, global metrics based on resistive
distance are more efficient in the networks with small and
medium size.

VI. CONCLUSION
In this work, analogous to classical statistical descriptors,
novel resistive descriptors, including Kirchhoff index (Kf ),
average path length (Lr ), clustering coefficient (�3), loop
coefficient (Dr ), global efficiency (�glob) and local efficiency
(�loc) are suggested. We investigate all the resistive descrip-
tors on classical WS, BA and ER models. Interestingly, �3
and Lr (resp., �glob and �loc) could be used to character-
ize the features of small-world networks. Besides, Lr , �3
and �glob are considered to measure network invulnerability
based on DC and BC attack. Experiments are conducted
on networks with small and medium size. The results show
that, in terms of running time, resistive distance depending
on matrix calculation is more efficient than the shortest-path
distance mainly based on the searching algorithms. In the
future, we will explore the potential use of the proposed
structure descriptors in other issues of complex networks
including community detection, link prediction, privacy
preservation, etc.

REFERENCES
[1] A.-L. Barabási and R. Albert, ‘‘Emergence of scaling in random net-

works,’’ Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.
[2] D. J. Watts and S. H. Strogatz, ‘‘Collective dynamics of ’small-world’

networks,’’ Nature, vol. 393, no. 6684, pp. 440–442, 1998.
[3] V. Batagelj and U. Brandes, ‘‘Efficient generation of large random net-

works,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 71, no. 3, Mar. 2005, Art. no. 036113.

[4] Y. Qian, B. Wang Y. Xue, J. Zeng, and N. Wang, ‘‘A simulation of the
cascading failure of a complex network model by considering the char-
acteristics of road traffic conditions,’’ Nonlinear Dyn., vol. 80, nos. 1–2,
pp. 413–420, 2015.

[5] J. Zhang, Y. Dai, K. Zou, B. Song, and Z. Zhang, ‘‘Vulnerability analysis of
the U.S. power grid based on local load-redistribution,’’ Saf. Sci., vol. 80,
pp. 156–162, Dec. 2015.

[6] Y. Zeng and R. Xiao, ‘‘Modelling of cluster supply network with cascading
failure spread and its vulnerability analysis,’’ Int. J. Prod. Res., vol. 52,
no. 23, pp. 6938–6953, May 2014.

[7] R. Albert, H. Jeong, and A.-L. Barabási, ‘‘Error and attack tolerance of
complex networks,’’ Nature, vol. 406, no. 6794, pp. 378–382, Jul. 2000.

[8] M. Jalili, ‘‘Error and attack tolerance of small-worldness in complex
networks,’’ J. Informetrics, vol. 5, no. 3, pp. 422–430, Jul. 2011.

[9] V. Latora andM.Marchiori, ‘‘Efficient behavior of small-world networks,’’
Phys. Rev. Lett., vol. 87, no. 19, pp. 198701–198704, Oct. 2001.

[10] D. J. Klein andM. Randić, ‘‘Resistance distance,’’ J. Math. Chem., vol. 12,
no. 1, pp. 81–95, Dec. 1993.

[11] K. Stephenson and M. Zelen, ‘‘Rethinking centrality: Methods and exam-
ples,’’ Soc. Netw., vol. 11, no. 1, pp. 1–37, 1989.

[12] W. J. Xiao and I. Gutman, ‘‘Resistance distance and Laplacian spectrum,’’
Theor. Chem. Accounts, vol. 110, no. 4, pp. 284–289, Nov. 2003.

[13] R. Bapat, I. Gutman, and W. Xiao, ‘‘A simple method for computing
resistance distance,’’ Zeitschrift Naturforschung A, vol. 58, pp. 494–498,
Oct. 2003.

[14] H. Chen and F. Zhang, ‘‘Resistance distance and the normalized Laplacian
spectrum,’’ Discrete Appl. Math., vol. 155, no. 5, pp. 654–661, Mar. 2007.

[15] Y. Yang and Y. Yu, ‘‘Resistance distances and Kirchhoff indices under
graph operations,’’ IEEE Access, vol. 8, pp. 95650–95656, 2020.

[16] L. Zhang and J.-B. Liu, ‘‘Theoretical and computational methods to
resistance distances in novel graphs operations,’’ IEEE Access, vol. 7,
pp. 107908–107916, 2019.

[17] W. Wang, T. Ma, and J.-B. Liu, ‘‘Resistance distance and Kirchhoff index
of Q-double join graphs,’’ IEEE Access, vol. 7, pp. 102313–102320, 2019.

[18] M. S. Sardar, J.-B. Liu, I. Siddique, and M. M. M. Jaradat, ‘‘A novel
and efficient method for computing the resistance distance,’’ IEEE Access,
vol. 9, pp. 107104–107110, 2021.

[19] B. Lu, C.-Y. Liu, and Y.-H. Wang, ‘‘Discovery of community structure
in complex networks based on resistance distance and center nodes,’’
J. Comput. Inform. Syst., vol. 8, no. 23, pp. 9807–9814, Dec. 2012.

[20] T. Zhang and C. Bu, ‘‘Detecting community structure in complex networks
via resistance distance,’’ Phys. A, Stat. Mech. Appl., vol. 526, Jul. 2019,
Art. no. 120782.

[21] W. Li, H. Zhu, S. Li, H. Wang, H. Dai, C. Wang, and Q. Jin, ‘‘Evolutionary
community discovery in dynamic social networks via resistance distance,’’
Expert Syst. Appl., vol. 171, Jun. 2021, Art. no. 114536.

[22] P. Lu, Z. Yu, and Y. Guo, ‘‘A novel algorithm for community detection
based on resistance distance and similarity,’’Modern Phys. Lett. B, vol. 35,
no. 9, Mar. 2021, Art. no. 2150164.

[23] W. Lin, M. Li, S. Zhou, J. Liu, G. Chen, and Q. Zhou, ‘‘Phase transition in
spectral clustering based on resistance matrix,’’ Phys. A, Stat. Mech. Appl.,
vol. 566, Mar. 2021, Art. no. 125598.

[24] U. Brandes and D. Fleischer, ‘‘Centrality measures based on current flow,’’
in Proc. STACS, 2005, pp. 533–544.

[25] E. Bozzo and M. Franceschet, ‘‘Resistance distance, closeness, and
betweenness,’’ Social Netw., vol. 35, no. 3, pp. 460–469, Jul. 2013.

[26] C. Gutiérrez, J. Gancio, C. Cabeza, and N. Rubido, ‘‘Finding the resistance
distance and eigenvector centrality from the network’s eigenvalues,’’ Phys.
A, Stat. Mech. Appl., vol. 569, May 2021, Art. no. 125751.

[27] D. Liben-Nowell and J. Kleinberg, ‘‘The link-prediction problem for
social networks,’’ J. Amer. Soc. Inf. Sci. Technol., vol. 58, pp. 1019–1031,
May 2007.

[28] W. Ellens, ‘‘Effective resistance and other graph measures for network
robustness,’’ M.S. thesis, Dept. Appl. Math., Math. Inst., Univ. Leiden,
Leiden, The, Netherlands, Apr. 2011.

[29] A. Tizghadam and A. Leon-Garcia, ‘‘Betweenness centrality and resis-
tance distance in communication networks,’’ IEEE Netw., vol. 24, no. 6,
pp. 10–16, Nov. 2010.

[30] M. Tyloo, T. Coletta, and P. Jacquod, ‘‘Robustness of synchrony in complex
networks and generalized Kirchhoff indices,’’ Phys. Rev. Lett., vol. 120,
no. 8, Feb. 2018, Art. no. 084101.

[31] M. Tyloo and P. Jacquod, ‘‘Global robustness versus local vulnerabilities in
complex synchronous networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 100, no. 3, Sep. 2019, Art. no. 032303.

[32] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari,
‘‘The electrical resistance of a graph captures its commute and cover
times,’’ Comput. Complex., vol. 6, no. 4, pp. 312–340, 1996.

[33] H. Wiener, ‘‘Structure determination of paraffin boiling points,’’ J. Amer.
Chem. Soc., vol. 69, pp. 17–20, Jan. 1947.

[34] P. G. Lind, M. C. González, and H. J. Herrmann, ‘‘Cycles and clustering
in bipartite networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 72, no. 5, Nov. 2005, Art. no. 056127.

[35] E. Estrada and J. A. Rodríguez-Velázquez, ‘‘Subgraph centrality in com-
plex networks,’’Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 71, no. 5, May 2005, Art. no. 056103.

[36] J.Wu,M. Barahona, Y.-J. Tan, andH.-Z. Deng, ‘‘Spectral measure of struc-
tural robustness in complex networks,’’ IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 41, no. 6, pp. 1244–1252, Nov. 2011.

14562 VOLUME 10, 2022



M. Li et al.: Novel Resistive Distance Descriptors on Complex Network

[37] H.-J. Kim and J. M. Kim, ‘‘Cyclic topology in complex networks,’’ Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 72, no. 3,
Sep. 2005, Art. no. 036109.

[38] I. Vragović and E. Louis, ‘‘Network community structure and loop coeffi-
cient method,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 74, Jul. 2006, Art. no. 016105.

[39] D. Babić, D. J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić,
‘‘Resistance-distance matrix: A computational algorithm and its applica-
tion,’’ Int. J. Quant. Chem., vol. 90, no. 1, pp. 166–176, 2002.

[40] W. W. Zachary, ‘‘An information flow model for conflict and fission in
small groups,’’ J. Anthropol. Res., vol. 33, no. 4, pp. 452–473, 1977.

[41] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and
S. M. Dawson, ‘‘The bottlenose dolphin community of doubtful sound
features a large proportion of long-lasting associations,’’ Behav. Ecol.
SocioBiol., vol. 54, no. 4, pp. 396–405, Sep. 2003.

[42] M. Girvan and M. E. J. Newman, ‘‘Community structure in social
and biological networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Apr. 2002.

[43] P. M. Gleiser and L. Danon, ‘‘Gleiser community structure in jazz,’’ Adv.
Complex Syst., vol. 6, no. 4, pp. 565–573, Dec. 2003.

[44] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas, ‘‘Self-
similar community structure in a network of human interactions,’’ Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 68, no. 6,
Dec. 2003, Art. no. 065103.

[45] V. Batageli and A. Mrvar. Pajek Datasets. Accessed: 2007. [Online].
Available: http://vlado.fmf.uni-lj.si/pub/networks/data/

[46] M. E. J. Newman, ‘‘Finding community structure in networks using the
eigenvectors of matrices,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 74, no. 3, Sep. 2006, Art. no. 036104.

[47] R. A. Rossi and N. K. Ahmed. The Network Data Repository With
Interactive Graph Analytics and Visualization. Accessed: 2015. [Online].
Available: http://networkrepository.com/

MIN LI received the B.S. degree in computer
science and technology and the M.S. degree
in computer application technology from Xid-
ian University, Xi’an, China, in 2008 and 2011,
respectively. She is currently pursuing the Ph.D.
degree with the College of Computer and Cyber
Security, Fujian Normal University. She is also a
Lecturer at the Concord University College, Fujian
Normal University. Her research interests include
graph theory, network science, data mining, and
fault diagnosis.

SHUMING ZHOU received the Ph.D. degree
in mathematics from Xiamen University, China,
in June 2005. In 2005, he joined the School of
Mathematics and Statistics, Fujian Normal Uni-
versity, where he is currently a Professor and
a Ph.D. Supervisor. He was a Visiting Scholar
at the University of Science and Technology of
China, from September 2010 to July 2011. He has
published over 80 technical papers in interna-
tional journals, such as IEEE TRANSACTIONS ON

COMPUTERS, IEEE TRANSACTIONS ON PARALLEL ANDDISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON RELIABILITY, INS, IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—I: REGULAR PAPERS, JPDC,DAM, Physica A: Statistical Mechanics
and its Applications, and PLA on these topics, since 2005. His research inter-
ests include algorithmic graph theory, combinatorial optimization, fault diag-
nosis, network science, social networks, and big data processing. He received
the Distinguishing Paper Award from the 3rd International Conference on
Science of Cyber Security (Sci Sec 2021) and the First Prize of the Excellent
Paper Award from the Fujian Association for Science and Technology,
in 2016.

GAOLIN CHEN received the B.S. and M.S.
degrees from the School of Computer Science,
Central China Normal University, Wuhan, China,
in 2006. She is currently pursuing the Ph.D.
degree with Fujian Normal University, Fuzhou,
China. She is also a Lecturer with the College
of Computer and Cyber Security, Fujian Normal
University. Her research interests include complex
networks, social networks, graph theory and appli-
cation, network analysis, and fault diagnosis.

WEI LIN received the M.S. degree in mathemat-
ics from the South China University of Technol-
ogy, in 2014. She is currently a Lecturer with
Fujian Normal University. Her research interests
include community detection, fault-tolerant com-
puting, and social networks.

QIANRU ZHOU received the B.S. degree from the
School of Mathematics and Information, Fujian
Normal University, Fuzhou, China. She is cur-
rently pursuing the M.S. degree with the School
of Mathematics and Statistics, Fujian Normal Uni-
versity. Her research interests include connectivity,
Hamiltonian laceability, fault diagnosis, graph the-
ory and application, and social networks.

VOLUME 10, 2022 14563


