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ABSTRACT Photovoltaic (PV) is a highly feasible solution for modern renewable energy-powered residen-
tial buildings in terms of deployment and cost reduction of utility bills. The installation of solar PV systems
along with optimal battery energy storage systems (BESS) size is the most popular energy cost minimization
solution and will continue to increase rapidly in the coming years considering the European Union (EU)
framework for nearly zero energy buildings (nZEBs). The current methods lack BESS size optimization and a
comprehensive solution to charge/discharge BESS fromPV and the grid. Themain goal is to be self-sufficient
and sustainable while having minimal dependence on the electrical grid. Therefore, this paper presents an
efficient energy management model and optimal size of the BESS as two key factors to effectively minimize
the total energy consumption cost of the nZEBs while having aminimum dependence on the grid. The energy
management system is developed using linear programming and solved using simplex and interior-point
methods. In addition, a heuristic algorithm is presented to determine the optimized charging and discharging
schedule for nZEBs. A detailed techno-economic analysis of the proposed system is conducted for the whole
year (covering all four seasons summer, winter, spring, and autumn) considering three common residential
building cases and three different electricity pricing methods. We determined that seasonal electricity pricing
is the favorable and economical option to schedule charging and discharging of BESS from the grid in several
terms such as, minimum total hours of grid usage, the maximum number of charging hours of BESS from the
solar PV system, maximum BESS discharging hours to sell energy, the minimum number of BESS charging
hours from the grid, maximum number of discharging hours for energy usage within nZEBs, maximum
revenue earned, and peak electrical load reduction for the grid.

INDEX TERMS PV systems, battery management systems, energy storage, linear programming, economic
analysis.

NOMENCLATURE
A. ABBREVIATIONS
BESS Battery energy storage systems
CoE Cost of energy
DoD Depth of discharge
DR Demand response
DSM Demand side management
ER Energy router
EU European Union
Li-Ion Lithium-Ion
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LP Linear programming
MILP Mixed integer linear programming
MPC Model predictive control
NMC Nickel manganese cobalt oxide
NPC Net present cost
nZEBs Nearly zero energy buildings
PV Photovoltaic
RES Renewable energy sources
SoC State of Charge

B. VARIABLES AND TERMS
η Efficiency
n Number of years
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N Number of days
Cch,u
bat Battery charging cost per unit

Cdis,u
bat Battery discharging cost per unit

Cpur,u
grid Per-unit energy purchase cost

Csell,u
grid Peer-unit energy selling cost

Cu
PV Per-unit PV energy selling cost

CBat Cost of battery
CInv./Unit per-unit inverter cost
CPV Cost of PV
EBC Battery capacity [kWh]
EDay Average daily energy consumption [kWh]
Echbat Energy received to the battery [kWh]

Edisbat Energy supplied from the battery [kWh]

Esellgrid Energy sold to the grid [kWh]

Epurgrid Energy purchased from the grid [kWh]

EL Electrical energy consumption [kWh]

Emaxbat Max. energy from the battery [kWh]
EPV PV Generated Energy [kWh]
EmaxPV Max. Energy from PV [kWh]
INV rated Rated inverter power [kW]
Prated Rated PV power [kW]
Pz Maximum charging power [kW]

I. INTRODUCTION
Buildings account for nearly 40% of the global energy con-
sumption, which accords them prominence in the energy
market [1]. According to studies, about 36% of buildings
in the European Union (EU) are older than 50 years and
are energy inefficient [1], [2]. Therefore, the EU framework
2010/31/EU and its amended version 2018/844/EU defined
the energy targets for 2050. As per this directive, all the newly
constructed buildings in the EU after 2020 must be nearly
zero-energy buildings (nZEBs) [3]. These buildings will be
powered through renewable energy sources (RES) while hav-
ing a minimal dependency on the grid [4]. Therefore, the
accumulated sum of energy consumption in the buildings will
need be near zero. However, RES at the grid-scale for nZEBs
requires efficient and smart energy management systems,
including photovoltaic (PV) systems, battery energy storage
systems (BESS), and power electronics equipment [5]–[7].

The optimal energy management in nZEBs designs has
been the subject of a substantial amount of research work.
In [8], the authors proposed a technique for optimal energy
management and better air quality within the building.
In another study, efficient energy usage employing demand
response (DR) and demand-side management (DSM) are
elaborated and implemented in smart buildings [9]. Although
the aforementioned methods are effective to a certain level,
they were lacking to address the problem of load shift-
ing concerning consumers’ behavior. Therefore, in [10], the
authors solved this problem using an efficient energy man-
agement system using RES for optimal self-consumption.

As electricity is a major component in the energy con-
sumption share of any building; therefore, a comprehensive
energy management model is required to control and manage
the energy to certain levels required for nZEBs [11], [12].
A comprehensive energy management system must include
a detailed energy usage strategy, sufficient RES availabil-
ity, and optimal battery storage size. Furthermore, a robust
control algorithm to manage battery charging and charging
while minimizing dependence on the grid and maintaining
an accumulated annual energy level near zero [13]–[15].

In [16], linear programming (LP) algorithm was developed
for a photovoltaic-based energy management system to min-
imize peak electrical load. The forecasted PV and load data
were used in the development of this algorithm. In [17], the
authors further improved the performance of the proposed
model given in [18] by improving the accuracy of the fore-
casted data. Another probabilistic method for efficient energy
scheduling is proposed to reduce the cost of energy con-
sumption [19]. A new LP algorithm was proposed to predict
the usage schedule of electrical appliances while integrating
electricity price, BESS, and RES to develop an energy man-
agement model [20]. The authors used the model predictive
control (MPC) technique for the grid, RES, diesel generator,
and BESS of an electric vehicle. In [19], the authors used both
heuristic techniques and optimization methods to minimize
the peak load of the grid. LP and Markov chain models
were used to charge and discharge the battery. In [21], the
LP algorithm was also used to optimize energy and cost
management of energy generated from mixed sources, such
as solar, gas generator, and batteries.

TheMonte Carlo method was used to determine uncertain-
ties in solar irradiance data for the BESS [22]. In [23], a Swiss
study used a genetic algorithm to optimize the operation of
a BESS for a residential building. Residential BESS was
made economically viable by using a self-sufficient photo-
voltaic system and a load shifting technique at the dynamic
energy price of the grid. The techno-economic analysis of a
grid-connected solar PV-based system including BESS was
presented in [24]. A learning-based optimization algorithm
was used to minimize the net present cost (NPC) and cost
of energy (CoE), the proposed technique was claimed to be
15.6% and 16.8% more efficient compared to the particle
swarm and the genetic algorithm, respectively. A study on
off-grid BESS optimization was conducted in the U.S. for
two different residential locations [25]. The mixed-integer
programming method was used to preschedule the load and
forecast the energy from solar PV using solar irradiance.
In another study, the cost and size of the BESS are opti-
mized using the heuristic method and stochastic gradient
for a campus area in Turkey. Both PV and wind were used
as RES with large battery banks, these results of energy
generation were initially optimized in a previous study by the
same authors [26]. The economic analysis of a grid-connected
PV system for residential users is also given in [27]. The
authors also calculated the initial investment and the payback
period.
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All the above-mentioned studies indicate that there is a
wide variety of algorithms for energy dispatch and manage-
ment in residential buildings to minimize the cost of energy
consumption. The energy generation system can contain a
grid-connected PV and a BESS. However, to achieve the goal
of nZEBs, the methods are still lacking the optimized size and
capacity of BESS and the charging/discharging of available
energy storage for internal usage or selling to the grid and
making it economically viable. To address this challenging
problem, the possible complexities are system designing,
control, and stochasticity in energy generation. Moreover,
if forecast data for electrical load and energy are used, there
is always the possibility of forecasting errors.

This study is part of an energy router (ER) based building
energy management system. The details of energy ER are
given in [28]. Taking into account aforementioned conditions,
the focus of this study is to optimize the size of the BESS
and design an efficient control algorithm to minimize grid
dependency and develop a self-sustained energymanagement
model for nZEBs. The main contributions of the paper are:

• A battery size estimation method is presented for grid-
connected BESS. To estimate the optimized size of the
BESS and the feasible rated PV system for different
residential buildings, the three most common cases of
residential buildings are considered, such as a small
flat/apartment, a medium-size residential home, and a
residential apartment building.

• A heuristic-based algorithm is developed for optimized
battery charging and discharging technique. The algo-
rithm incorporates real-time data traces of residential
load, PV energy generation, and electricity prices from
the Estonian energy market. The algorithm is designed
to minimize the usage of energy from the grid and
to make the whole system self-sustained and self-
sufficient. Moreover, the heuristics algorithm is tested
for three battery bank charging scenarios from the grid:
(a) price not applicable, (b) fix price, and (c) seasonal
price.

• A linear and convex model is developed for the energy
consumption cost minimization problem for the nZEBs.
The model is solved using a simplex algorithm and the
interior point method.

• A detailed techno-economic analysis of the proposed
methodology is conducted to determine the feasibility
of the proposed system. The analysis is carried out under
different variations, such as different load cases, differ-
ent BESS charging threshold prices, and BESS sizes.

The rest of the paper is structured as follows:
Section 2 describes the data profiles that include the details
of residential load cases, PV generation scenarios, and the
energy market prices in Estonia. Section 3 discusses the
estimation of battery size, battery charging/discharging algo-
rithm, and the optimization algorithm for the total energy
consumption cost of the nZEBs. Section 4 presents a detailed
economic analysis of the proposed method for the three

electrical load cases. Section 5 discusses the results of the
study along with a detailed comparison with previous similar
studies. The paper is concluded in Section 6 along with future
research directions.

II. DATA PROFILES
This section presents a detailed description of the real-time
residential electrical load dataset and real-time solar power
generation profiles for three different rated solar PV systems.

A. LOAD PROFILE
In this study, the real-time residential electrical load data from
the Estonian low-distribution network is used. The data was
measured and collected in a rural county in Estonia for a
whole year with a frequency of one hour. The schematic of the
grid is shown in Figure 1. This grid segment has 8 residential
loads and 3 auxiliary loads like lighting, pumping station and
heat station. In the study, three different residential electrical
load cases are under consideration: (a) case 1 (load 1): a small
flat/apartment with a limited number of appliances and hav-
ing an overall low load, (b) case 2 (load 3): a residential house,
and (c) case 3 (load 7): a residential apartment building.
Table 1 enlists the statistical details for the aforementioned
three cases. From the collected data profile, it is illustrated
that the average electrical load for a small apartment is
0.08 kW, 0.76 kW for a residential household, and 11.9 kW
for the whole apartment building. The accumulated yearly
power consumption for all these cases is also presented in
Table 1.

FIGURE 1. Schematic diagram of the distribution grid.

The hourly electrical load for all three cases is depicted
in figure 2. It is observed from Figure 2 (a) that in an hour,
the electrical load for case 1 rarely goes above 1 kW. There
are only seven instants in a whole year when the power
consumption surpasses 1 kW. Similarly, for Case 2, the peak
load (hourly average) is around 6 kW and it only happened
twice a year.
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TABLE 1. Load profile for three different residential electrical load cases.

FIGURE 2. Yearly power usage for all three cases.

However, the average electrical load is around 0.76 kW is
considerably low compared to the peak load. As case 3 rep-
resents the energy consumption for a whole residential build-
ing; therefore, a seasonal trend of electrical load is clearly
visible in Figure 1(c), which is low in summers (May-August)
and high in winters (November - March) due to the heating
load, and due to this fact, the peak load occurs in winter.

B. PV PROFILE
Estonia lies in the northeastern part of the EU and this region,
the sunlight per day in summers is on average 16-18 hours
while in winters it reduces to on average 4-6 hours in a
day. Moreover, in Estonia, the solar irradiance intensity is
nearly the same across the country. Therefore, solar power
generation from PV installations in any part of Estonia does
not have a significant variation in output. However, it is still
highly dependent on the weather conditions. The solar PV
systems proposed in this study are 5 kW, 10 kW, and 20 kW
for case 1, case 2, and Case 3, respectively as mentioned in
Table 2 [27]. The solar power output for a 5 kW PV system
is shown in Figure 3.

TABLE 2. Load profiles for three cases with PV installation.

FIGURE 3. Solar power generation throughout the year.

From figure 2, it is evident that solar energy generation is
high from March to September and low in the other months.
The accumulated energy with solar PV installation and the
respective residential electrical load is shown in figure 4.
From March to September, solar energy generation is mainly
greater while the electrical load is on the lower side; therefore,
the overall energy is in surplus and can be sold to the grid.
The maximum energy that can be sold to the grid is 4.5 kW,
9.6 kW and 15.2 kW, respectively, for the three load cases
discussed in Table 1.

In case 1 and case 2, with the installation of the roof-top PV
system, the dependency on the grid has fallen significantly in
terms of the number of hours throughout the year. Throughout
the year, the accumulated energy generated by the solar PV
system is accessible compared to the electrical load required,
as shown in Table 13. However, for case 3, the grid depen-
dency still exists as the electrical load is higher compared to
the installed PV system. Therefore, a larger rated PV system
is required for case 3 and reduces the accumulated energy
requirement from the grid by 22%, which is significant in
terms of economics as the energy bill is substantially reduced.
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FIGURE 4. Energy usage with solar PV installations.

A more detailed economic analysis of the cases is given in
section 4.

III. BATTERY ENERGY STORAGE SYSTEM (BESS)
In recent years, battery storage technologies have seen rapid
growth for the applications, such as PV-based storage sys-
tems, portable devices, industry, and electrical vehicles [29].
The most commonly used batteries are Lithium-Ion (Li-ion)
batteries and nickel manganese cobalt oxide (NMC) bat-
teries [3]. Over the years, due to advanced technological
developments and bulk generation, the cost of batteries has
been significantly reduced [30]. An estimated cost of battery
per kWh is around 100 e [31]. However, the life cycle and
limited usage cycle still required significant improvements.
It is expected that in the coming years, with the advancement
in technology new batteries will be available having a life
cycle of around 20 years [32].

Currently, most of the BESS installed with solar PV sys-
tems have Li-ion batteries for residential buildings. They
are preferred due to their lack of maintenance requirements,
compact size, and higher efficiency of more than 85% [33].
However, the practical life of these batteries is around 5 years
due to the limited number of charge/recharge cycles [34]. Due
to this fact, it is challenging in terms of economic viability as
the payback period of a Li-Ion battery cannot be compensated
for in 5 years [35]. Therefore, the installation of PV-based
BESS is usually supported by the government in Estonia in
terms of subsidy and reduced tariffs [36], [37]. However, opti-
mal battery size calculation is still needed to further minimize
operational costs.

A. BATTERY SIZE CALCULATION
The battery size calculation involves many important param-
eters, such as total energy used in a day, number of days
for which the backup from the battery is required, the
nominal voltage of the battery and the battery efficiency.
The following Eqn. (1) is used to calculate the battery

capacity [29]:

EBC =
EDay

η ∗ DoD ∗ 1000
∗ N (1)

Here, EBC represents the battery capacity is kWh, η is the
battery efficiency, N is the number of autonomous days for
which the battery operation is required, DoD is the depth of
discharge for the battery, and EDay is the average daily energy
used. The battery size is usually calculated against the peak
load in a single day. However, as the peak load happens only
a few times during a year, the calculations for the battery
capacity can be made using the average load in a day or
median load value. Among the most important parameters in
BESS is the state of charge (SoC) of the battery. The SoC
indicates how much energy is stored in the battery. The SoC
is computed using Eqn. (2) [29]:

SoCn+1 = SoCn +
η∗Pz∗K p ∗ st

EBC
(2)

where n represents the number of states, st is the sampling
interval, Kp indicates the online and offline status (typically
0 or 1), and Ez is the charging power in kW. The parameters
Pz is calculated as [29]:

Pz =
BC ∗ V ∗ 0.15

η
(3)

The proposed heuristic algorithm for battery charging and
discharging is evaluated on hourly real-time data traces of
electrical load and energy generation from the corresponding
rated PV system. The estimated battery sizes and the parame-
ters for all three cases described in table 1 are given in table 3.

TABLE 3. Parameters for the BESS.

B. HEURISTIC ALGORITHM FOR BATTERY CHARGING
AND DISCHARGING
If the energy generation from the solar PV system is greater
than the electrical load, then the battery will be charged.
Moreover, if the load is greater than the solar PV energy
generation, then the battery will be discharged to compensate
for the difference between solar PV energy and excessive
electrical load. In the second scenario, if the battery is charged
to a certain level and still the solar PV energy generation is
greater than the electrical load, then the extra energy will be
sold to the grid at a predefined cost. Similarly, the battery
can be charged from the grid if the electricity price is below a
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certain threshold value. Furthermore, if the electricity price is
greater than another defined threshold value, then the energy
stored in the BESS can be sold to the grid. A detailed descrip-
tion of the heuristic algorithm is given in table 4.

TABLE 4. The proposed algorithm.

C. LINEAR PROGRAMMING (FOR ENERGY COST
OPTIMIZATION)
The electricity pricing threshold selection for the charging
of BESS from the grid and utilization of BESS for grid
support is a tricky problem. In the Estonian energymarket, the
real-time electricity price dynamically changes every hour.
Estonia is a member of the Nord pool which is a European
power market consisting of 16 countries with 360 companies
that trade in the power market [38]. Therefore, the elec-
tricity price depends on factors season, availability of RES,
demand, and supply thus there are many variations in the
electricity price. The real-time electricity price for Estonia
in 2020 is shown in figure 5, which clearly illustrates the

FIGURE 5. Electricity prices Nord Pool (Estonia) in 2020.

dynamic behavior of the energy market. In figure 5, the peak
value for electricity is 0.25 e/kWh and the lowest value is
0.001 e/kWh. However, the average price range throughout
the year is 0.05 e/kWh [38].

Therefore, by keeping in view, the dynamic electricity pric-
ing, battery charging and discharging heuristics, solar power
generation, energy purchase from and sell to the grid, and
dynamic nature of energy consumption within the nZEBs, an
LPmodel is developed tominimize the total energy consump-
tion cost for the nZEBs. Moreover, the algorithm also decides
the optimized value of electricity for charging the battery
from the grid and discharging the battery to the grid. However,
as a reliability constraint, battery cannot be chargedmore than
90% and discharged less than 20%. The battery management
constraints are defined in such a way that minimizes the
utilization of energy from the grid both for residential load
and battery charging while utilizing a maximum of solar PV
energy. Batteries are charged when the electricity price is low.
The excess energy in BESS is only sold to the grid when
the electricity price is high to make this system economically
viable.

The following linear and convex optimization function is
defined to minimize the net energy consumption cost for
any nZEBs considering the installed PV system, BESS, and
the electricity price constraints. The optimization problem is
defined as:

Minimize f =
∑N

t=1

{
Cpur,u
grid (t) ∗ Êpurgrid (t)+ C

sell,u
grid (t)

∗ Êsellgrid (t)+ C
ch,u
bat (t) ∗ Ê

ch
bat (t)+ C

dis,u
bat (t)

∗ Êdisbat (t)+ C
u
PV (t) ∗ ÊPV (t)

}
(4)

Subject to Epurgrid (t)− E
sell
grid (t)− E

ch
bat (t)+ E

dis
bat (t)

+ EPV (t) = EL (t) (5)

− Echbat (t)+ E
dis
bat (t) ≤ EL (t) (6)

Epurgrid (t)− E
sell
grid (t) ≤ EL (t) (7)

− Echbat (t)+ E
dis
bat (t) ≤ E

max
bat (t) (8)

Echbat (t)− E
dis
bat (t) ≤ E

max
bat (t) (9)
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− Epurgrid (t) ≤ 0 (10)

− Esellgrid (t) ≤ 0 (11)

− Echbat (t) ≤ 0 (12)

− Edisbat (t) ≤ 0 (13)

− EPV (t) ≤ 0 (14)

EPV (t) ≤ EmaxPV (t) (15)

where f is the objective function to be minimized that is
defined in the standard minimization form having equality
constraints, inequality constraints (all are in the form of less
than equal to) and bounds of the problem. Moreover, in the
aforementioned mathematical formulation t is the time inter-
val [in an hour], Epurgrid (t) and E

sell
grid (t) are electrical energy

purchased from and sold to the grid [kWh], respectively;
the Echbat and Edisbat are the electrical energy supply to and
received from the battery bank [kWh], respectively; the EPV
is the electrical energy supply by the installed PV system
[kWh]; EmaxPV is the maximum electrical energy that can be
taken from the PV system [kWh]; EL is the electrical energy
consumption of the nZEB [kWh]; Emaxbat is the maximum
energy that can be taken from the battery bank [kWh]; N is
the total number of hours in one year [8760]; Cpur,u

grid (t) is
the per-unit electrical energy purchasing cost from the grid
[cents/ kWh]; Csell,u

grid is the per-unit electrical energy sell cost

to the grid [cents/kWh]; Cch,u
bat is the per-unit BESS charging

cost [cents/kWh];Cdis,u
bat is the per-unit BESS discharging cost

[cents/ kWh]; Cu
PV (t) is the per-unit cost incurred from the

PV system [cents/kWh]. The ‘‘hat’’ symbol used with the
electrical energies in the optimization cost function denotes
the normalized values of the variables. The general formula
used for the normalization process is:

Xnew =
X − Xmean
Xmax − Xmin

(16)

where the Xmin = 0 kWh for every electrical energy.
The linear programming problem defined in Eqn. (4) is

solved using the simplex algorithm and interior point method.
Equation (5) is the equality constraint that represents the
energy balance between the energy sources (such as grid,
solar PV system, and battery bank) and the electrical load of
nZEBs. Equation (5) clearly indicates that the energy imbal-
ance between the electrical load of nZEBs and the power
generation of the solar PV system is maintained using the
energy purchased/sold from the grid and the charging/storage
of the battery bank. However, this decision is made by the
linear programming algorithm. Moreover, Eqn. (6) – Eqn. (9)
are the inequality constraints and from Eqn. (10) to Eqn. (15),
the bounds of the variables are defined.

The BESS charging is under consideration in three dif-
ferent electricity pricing scenarios from the grid: (a) price
not applicable, (b) fixed price, and (c) seasonal price. In the
price not applicable scenario, we eliminate the option of
BESS charging from the grid at any offered cost by the grid.
Equation (7) will ensure that the battery will never charge
from the grid. In fixed price scenario, we have the option to

charge BESS from the grid provided the electricity cost is
less than a certain defined threshold field for the whole year.
In the seasonal price scenario, the electricity cost threshold
for BESS charging varies seasonally. Therefore, in the sec-
ond and third cases the equality constraints of Eqn. (7) are
ignored.

IV. RESULTS & DISCUSSIONS
This section presents the technical and economic impact of
BESS charging and discharging heuristic algorithm under
three different electricity pricing scenarios from the grid, such
as (a) price not applicable, (b) fix price, and (c) seasonal price.
Moreover, energy cost minimization model-based economic
analysis results are also discussed in detail. The implemen-
tation and simulation of the proposed algorithms are carried
out in MATLAB running on an Intel Core i7-9700 CPU
with 64 GB RAM.

A. TECHNO-ECONOMIC ANALYSIS OF BESS CHARGING
AND DISCHARGING
The first scenario includes no BESS charging from the grid
at all; however, the BESS can be discharged to empower the
grid, when the electricity cost is higher than 0.1 e/kWh (one
of the highest costs, 90 percentile). The only viable option for
BESS charging is from available PV energy. For the second
scenario, the BESS can be charged both from the grid and PV
system. However, the PV is the preferred source for BESS
charging while the battery can be charged from the grid only
if the electricity price is less than 0.01 e/kWh (one of the
lowest values). This price threshold is low compared to the
average electricity price, which is around 0.03e/kWh during
the year. Battery energy can also be sold to the grid if the price
is greater than or equal to 0.06e/kWh. The price threshold is
computed using the LP algorithm. These values were initially
obtained from the hit and trial method and later verified with
the LP algorithm, as they showed the same results.

For the third scenario, the prices for battery charg-
ing/discharging from/to the grid are varied on a seasonal
basis. These values of charging/discharging prices are again
obtained from the LP method. The battery charging prices
from the grid is less than 0.033 e/kWh, 0.024 e/kWh,
0.03 e/kWh and 0.038 e/kWh for winter, spring, sum-
mer, and autumn, respectively. Similarly, energy is sold to
the BESS grid when prices are higher than 0.061 e/kWh,
0.058 e/kWh, 0.065 e/kWh, and 0.072 e/kWh for winter,
spring, summer, and autumn, respectively. The electricity
prices for purchasing and selling have a difference of around
3 cents, which provides a significant margin for the nZEBs to
minimize total energy consumption cost. Moreover, we com-
puted the SoC for BESS for all three pricing scenarios and
plotted them in figure 6. In Figure 6, it is evident that SoC is
on the lower side in winters and high in summers because
in considered region (Estonia), total energy consumption
increases in winters due to the heating and lighting load along
with increased BESS utilization. Moreover, in Figure 6(c),
the variations in SoC are observed to be more compared to
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TABLE 5. A detailed analysis of BESS charging for three pricing scenarios from the grid for one year.

FIGURE 6. SoC of battery for entire year under three pricing scenarios.

the other two, as the battery is charged and discharged more
times showing active status. Furthermore, there are not many
intervals where there is a stagnant line showing no activity.
Therefore, to compute the optimal economic impact of BESS,
a detailed analysis is conducted and tabulated in Table 4 in
terms of the number of hours of utilization, payback period,
and peak power drawn and injected into the grid.

In table 5, for the calculated optimal BESS size, the total
hours of grid usage are more for the price, not applicable
scenarios compared to the other two pricing scenarios when

we opt not to charge BESS from the grid because the energy
is coming from a European market and the price can be high.
Similarly, the total number of BESS charging hours from the
solar PV system is greater for the first two scenarios com-
pared to the seasonal pricing scenario. Moreover, the number
of discharging hours of BESS for selling energy to the grid
is more for the seasonal pricing scenario while the number of
charging hours of BESS from the grid is also high for the
seasonal pricing scenario due to low and feasible seasonal
electricity cost offered for BESS charging and discharging.

Furthermore, the number of discharging hours of BESS for
energy usage within the nZEBs is also on the higher side for
the seasonal pricing scenario. Additionally, we computed the
total revenue earned for the nZEBs under all three pricing
scenarios and illustrate that the seasonal pricing scenario is
the most viable option. We concluded that offering seasonal
lower pricing for BESS charging from the grid and high
pricing for BESS discharging to the grid is financially viable
for BESS. However, the dependency of BESS on the grid also
increases, which is indicated by the high peak load values
from/ to the grid. Therefore, a tradeoff exists to optimize this
challenge.

In a similar manner as illustrated in Table 5, to study
the impact of increase and decrease in BESS size, we inde-
pendently varied the BESS size from 10% of the proposed
optimal value to 500% of the proposed value. Here, the size
100% indicates the theoretical battery size calculated using
Eqn. (1). This variation in BESS size is tested for the three
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TABLE 6. BESS size variation impact for case 1 (small flat/apartment).

load cases, small apartment, residential house and residential
building, as discussed in section 2.1. The results of the BESS
variations for case 1, case 2, and case 3 are discussed in
tables 6, 7 and 8, respectively.

From these tables, it is concluded that with increasing
battery size, the value of ‘j’ decreases, indicating a lower
dependency on the grid in the three cases. In addition, the
value of ‘d’ increases which shows that the battery is now
used more for internal usage. The number of charging hours
‘a’ shows a straight line around 110% for cases 1 and 2.More-
over, the battery discharging hours to grid ‘b’ also shows the
lowest value before starting to increase again. This represents
the optimal battery, and it also gives optimal values for other
parameters as well. As the battery size is increased further,
it may give good numbers, but affect the economic aspects
badly.

B. ECONOMIC ANALYSIS
Considering Vision 2030, the concept of nZEBs is grow-
ing rapidly across the EU. Therefore, a detailed economic
analysis of the installed energy management system of
nZEBs is mandatory from a business perspective. If the
energy management system is financially viable, it may
encourage other building operators to convert conventional
residential buildings and homes as nZEBs. Therefore, we
separately evaluate and discuss the PV-based BESS designs
for all three load cases. The economic analysis for a PV-
based BESS requires considering several parameters that are

sequentially discussed in this section. First, the initial invest-
ment cost, CPV for the solar PV system is computed using
Eqn. (17) [14]:

CPV = Cu
PV (t) ∗ Prated ∗

i(1+ i)n

(1+ i)n − 1
(17)

where Cu
PV (t) is the per-unit cost incurred by the solar PV

system, Prated is the rated power, n is the lifetime of PV
system in years, and i(1+i)n

(1+i)n−1 is the present cost compared to

the annual investment. Similarly, the initial investment cost
of the BESS system is calculated as [14]:

CBat =
(
Cch,u
bat (t) ∗ EBC + CInv/Unit ∗ Prated

) i(1+ i)n

(1+ i)n − 1
(18)

where Cch,u
bat (t) is the per-unit cost of BESS charging,

CInv./Unit is the inverter cost per unit, Prated is the rated power
of the inverter, n is the lifetime of the battery in years, and
i(1+i)n

(1+i)n−1 is the present cost compared to the annual invest-
ment. Moreover, considering every available energy source
to balance the electrical load of nZEBs, the energy balance
equation for nZEBs is computed using Eqn. (5). Furthermore,
the first two terms of Eqn. (4) are used to calculate the energy
purchasing and energy selling prices to the grid, respectively.

In the Estonian electricity market price of electricity is
dynamically changing every hour. Therefore, the sampling
time considered in this study is taken as 1 hour. The current
price of a battery in Estonian is around 100 e/kWh whereas
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TABLE 7. Impact of BESS size variation for case 2 (residential house).

the price of the PV system is around 0.4 e/W [3], [39].
Table 9 shows the economic analysis of all three load cases
with PV installation and without the BESS. With the instal-
lation of the PV system, the dependence on the grid is signif-
icantly reduced in all three load cases. For case 1 and case 2,
the energy purchase from the grid is zero for the whole year,
instead, the energy is in excess for a certain number of hours
and sold to the grid. However, in case 3, the electricity bill is
not zero but has been reduced by very significant, nearly 65%
margin. In case 3, the average and peak loads are 11.9 kW and
36.7 kW, respectively.

The BESS price for the under-discussion three load cases is
taken as 400e, 3300e and 51800e, respectively depending
on their optimal BESS size calculation. Table 10 shows the
net cost of energy with the different BESS sizes for the three
load cases. The net price of energy usage is negative for both
case 1 and case 2, indicating that the energy was surplus
compared to the load requirements and was sold to the grid.
In addition, there is a direct relationship between the BESS
size and the net cost of energy. However, case 3 is presenting a
different scenario. The net energy price is still positive, which
means that the energy is still being used excessively from the
grid. This is because the BESS is designed with respect to
the high value of the load. The installed PV capacity for this
system is low and it must compensate for the load and charge
the BESS. Therefore, in most hours, after electrical load
compensation, very little energy is available for the BESS to
be charged to its full potential. The simulation results for PV

systems with 30 kW, 40 kW, 60 kW, and 80 kW for case 3 are
shown in table 11.

The simulation results with higher-rated PV systems for
case 3 indicate that the net energy cost reduces significantly.
The grid dependency decreases, and the net energy cost is
surplus when the rating of the PV system is increased to
80 kW and 100 kW. The system will earn around 1800 euros
revenue for one year. The maximum power drawn from the
grid and injected into the grid is shown in table 12. The peak
load from the grid is decreasing and energy transferred to
the grid is increasing. The peak loads from the grid increase
2 to 4 times with the increase in BESS size.

The payback periods for all three load cases are shown
in Table 13. The cost calculations in this table include some
approximations in the prices of the inverters and batteries.

The installation cost and the cost of land in the case
of ground installation have not been included, the payback
period varies between 10 to 20 years for all three load cases.

The payback periods for case 1 and case 2 are around
10 and 13 years respectively, while for case 3 even with the
increase in the PV capacity it is between 16 to 27 years. The
cost of additional PV energy availability increases the total
savings, but the increased cost of PV and inverter size keep
the resultant payback period nearly the same.

V. COMPARISON WITH PREVIOUS STUDIES
Previously, many studies have been conducted on the opti-
mal designing of batteries, control algorithms, and economic

VOLUME 10, 2022 13021



N. Shabbir et al.: Battery Size Optimization With Customer PV Installations and Domestic Load Profile

TABLE 8. Impact of the BESS size variation for case 3 (whole residential apartment building).

TABLE 9. The economic analysis with only PV installation.

feasibilities as discussed earlier in Section 1. The study in
Greece found that BESS can reduce the cost of bills by 20%
[40]. In [41], the economic analysis of PV paired with BESS
showed that the system can reduce 41% to 74% of the cost of
energy from the grid. The BESS alone can provide a 25% to
35% cost reduction in cost.

A Belgian residential data was used to develop a BESS
sizingmethod based on voltage sensitivity. TheBESS life was
determined to be 15 years for 80% PV power threshold and

TABLE 10. Battery sizes and net energy prices for the whole year.

10 years for 70% threshold [42]. In [43], a study conducted
in Japan indicated that PV-BESS can reduce the peak load of
the grid to 1.1%. However, the value of the peak load varies
by season. The payback period in the same study was found
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TABLE 11. Battery parameters with an increase in photovoltaic rating for case 3.

TABLE 12. Peak loads with the increased PV rating for case 3.

TABLE 13. The payback period for the three cases.

to be 18 years. An optimal battery size tool was designed and
the payback of the BESSwas found to be around 40 years [3].
However, the author reported that if there is a 10% increase
in the electricity sales cost to the grid, the payback time will
reduce by up to 10 years.

In comparison to the studies mentioned above, the results
presented in our study are more dynamic and cover a broader
aspect of BESS. The proposed LP algorithm for energy
cost minimization along with the optimized value of BESS
presents a viable economic analysis for nZEBs. The results
showed that the payback period of this PV and BESS system
is around 10 to 13 years. The first two cases showed that there
is no need to pay for energy at all and also that the domestic
users will sell excess energy to the grid with 5 and 10 kW
PV installations along with BESS. In the reduction in the
third case, the electricity cost is around 65% with 20 kW
PV-BESS.

VI. CONCLUSION
Optimal sizing of the BESS is an important prospect for
nZEBs. The inappropriate BESS size can have both technical
and economic implications. Similarly, the BESS requires an
efficient control algorithm for the optimal performance of
the battery. conversely, the BESS needs to be made econom-
ically feasible for the consumers to invest in it. Currently,
the price of BESS is very high; therefore, in many countries,
governments and grid operators offer several incentives to
consumers. However, the price of BESS is also expected to
drop in the coming years.

This study presents the findings to test different BESS
sizes for the three most common residential buildings based
on their electrical load and recommended rated PV systems.
The purpose is to find the optimal size of the BESS that is
technically viable and economically beneficial. For the three
different residential buildings, the real-time residential load
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data was taken from the Estonian low voltage distribution
network for a small apartment, a medium-sized household,
and a whole apartment building. Moreover, real-case data
for the corresponding three rated solar PV systems is also
measured and used. Based on these three electrical loads and
solar PV profiles, the theoretical size of the suitable BESS is
determined for each residential building. An effective heuris-
tic algorithm is proposed for the scheduling of BESS charging
and discharging under the influence of two energy sources,
such as solar PV system and grid.

Furthermore, we develop an LP model to compute the
total cost of energy consumption of the nZEBs considering
the viable electricity price of the grid, the available energy
of the solar PV system and the grid, the BESS charging
and discharging schedule, and the total electrical load of
the residential building. The LP model is optimized to min-
imize the total energy consumption cost for nZEBs. The
proposed LP model along with the heuristic algorithm for
BESS battery charging and discharging schedule is rigorously
tested by varying three different electricity pricing scenarios
and variable BESS sizes. In addition, a detailed comparative
analysis is conducted based on minimum utilization of the
grid, maximum charging of BESS from the solar PV system,
and maximum BESS discharging for internal usage. The
economic analysis of the proposed BESS for all three cases
with the implementation of the proposed algorithm indicates
that the payback time of small and medium-size residential
load scenarios varies from 10 to 13 years. The PV-BESS
will have a payback period of around 20 years for large
residential buildings if the PV size is small. However, it is
around 16 years when a larger PV system is installed.

For future works, the proposed algorithm will be imple-
mented in the energy router currently under development
for the energy management system for nZEBs. In this way,
the performance of the algorithm will be tested and verified
experimentally in a real-time application. Moreover, different
optimization algorithms can be investigated for this problem
to have a comparative analysis with the proposed one.
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